▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Distinct Angles and Angle Chains in \mathbb{R}^3

Ruben Ascoli, Jacob Lehmann Duke

Joint work with Livia Betti, Xuyan Liu, Wyatt Milgrim, Francisco Romero, and Santiago Velazquez Advisors: Steven J. Miller and Eyvindur Palsson

SMALL REU 2022, Williams College

Young Mathematicians Conference

August 14, 2022

Background ●00000 Angles in \mathbb{R}^3 00000000000 Distinct Angle Chains

Conclusion

Table of Contents

1 Background

2 Angles in \mathbb{R}^3

3 Distinct Angle Chains

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- Erdős, 1946: For a configuration of *n* points in the plane, what is the minimum number of distinct distances between pairs of points?
 - Conjecture: The $\sqrt{n} \times \sqrt{n}$ lattice is the best configuration, with $c \frac{n}{\sqrt{\log(n)}}$ distinct distances.
 - Best known lower bound: $c \frac{n}{\log(n)}$ (Guth and Katz, 2015).

Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
0●0000	0000000000	00000	00000
History			

- Erdős, 1946: For a configuration of *n* points in the plane, what is the minimum number of distinct distances between pairs of points?
 - Conjecture: The $\sqrt{n} \times \sqrt{n}$ lattice is the best configuration, with $c \frac{n}{\sqrt{\log(n)}}$ distinct distances.

• Best known lower bound: $c \frac{n}{\log(n)}$ (Guth and Katz, 2015).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Erdős also asked the question of how many distinct angles there must be, but the question depended a lot on what constraints are placed on the point configuration.

Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
o●oooo	00000000000	00000	00000
History			

- Erdős, 1946: For a configuration of *n* points in the plane, what is the minimum number of distinct distances between pairs of points?
 - Conjecture: The $\sqrt{n} \times \sqrt{n}$ lattice is the best configuration, with $c \frac{n}{\sqrt{\log(n)}}$ distinct distances.

• Best known lower bound: $c \frac{n}{\log(n)}$ (Guth and Katz, 2015).

- Erdős also asked the question of how many distinct angles there must be, but the question depended a lot on what constraints are placed on the point configuration.
- **SMALL 2021**: The question of distinct angles in a plane is most interesting when we disallow three points on a line or four points on a circle (also called general position).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Notation

- f(n) = O(g(n)) means that for some constant c, $f(n) \le c \cdot g(n)$ for all n sufficiently large.
- $f(n) = \Omega(g(n))$ means that for some constant c, $f(n) \ge c \cdot g(n)$ for all n sufficiently large.

 Background
 Angles in ℝ³
 Distinct Angle Chains
 Conclusion

 Objection
 Objection
 Objection
 Objection

 Distinct Angles in Two Dimensions
 Conclusion
 Objection

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = O(n^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background 000●00

Angles in ℝ³ 000000000000

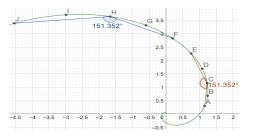
Distinct Angle Chains

Conclusion 00000

Distinct Angles in Two Dimensions

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = O(n^2)$.

• To prove this, they distributed points on a logarithmic spiral.



Rotate three points along the spiral to repeat the same angle!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Background 000●00

Angles in \mathbb{R}^3 000000000000

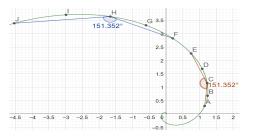
Distinct Angle Chains

Conclusion 00000

Distinct Angles in Two Dimensions

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = O(n^2)$.

• To prove this, they distributed points on a logarithmic spiral.



Rotate three points along the spiral to repeat the same angle!

- **Self-similarity**: Any angle formed by three of the points can also be formed using a special point *A* as one of the points.
- $\binom{n}{2}$ ways to choose the remaining two points, so $O(n^2)$ angles.

 Background
 Angles in ℝ³
 Distinct Angle Chains

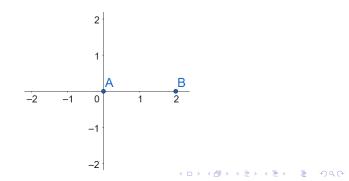
 000000
 000000000
 00000

Conclusion

Distinct Angles in Two Dimensions

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = \Omega(n)$.

• Fix two points A and B and consider only angles with A as an endpoint and B as the center point.



Background 000000

Angles in ℝ³ 00000000000

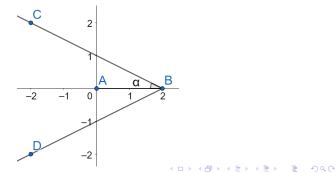
Distinct Angle Chains

Conclusion 00000

Distinct Angles in Two Dimensions

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = \Omega(n)$.

- Fix two points A and B and consider only angles with A as an endpoint and B as the center point.
- We can only form a given angle twice without putting three points on a line.

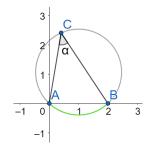


 Background
 Angles in ℝ³
 Distinct Angle Chains
 Conclusion

 Ooocoo
 Distinct Angles in Two Dimensions
 Conclusion
 Conclusion

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = \Omega(n)$.

• Alternatively, fix two points A and B and consider only angles with A and B as endpoints.



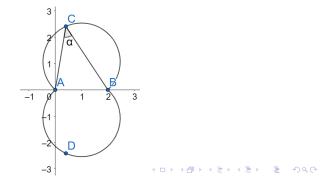
Background 00000● Angles in \mathbb{R}^3 00000000000 Distinct Angle Chains

Conclusion 00000

Distinct Angles in Two Dimensions

SMALL 2021: Let A_{gen} be the minimum number of angles formed by *n* points on a plane, with no three points on a line and no four points on a circle. Then, $A_{gen} = \Omega(n)$.

- Alternatively, fix two points A and B and consider only angles with A and B as endpoints.
- We can only form a given angle twice without putting four points on a circle.



Background 000000 Angles in \mathbb{R}^3 ••••••• Distinct Angle Chains

Conclusion

Table of Contents

2 Angles in \mathbb{R}^3

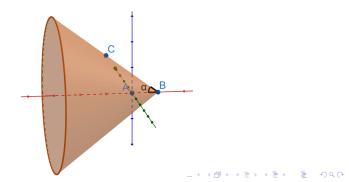
3 Distinct Angle Chains

• In three dimensions, there is more room in which to move around, potentially allowing for fewer distinct angles.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cones and Spindle Tori

- In three dimensions, there is more room in which to move around, potentially allowing for fewer distinct angles.
- Now if we fix A as an endpoint and B as the center point, we can put all remaining points on a cone to form only one distinct angle.



Background 000000

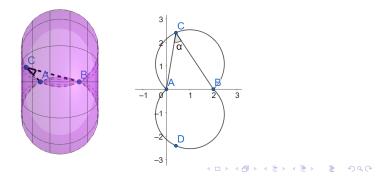
Angles in ℝ³ 0●000000000

Distinct Angle Chains

Conclusion 00000

Cones and Spindle Tori

- In three dimensions, there is more room in which to move around, potentially allowing for fewer distinct angles.
- Now if we fix A as an endpoint and B as the center point, we can put all remaining points on a cone to form only one distinct angle.
- If we fix A and B as endpoints, we can put all remaining points on a spindle torus to form only one distinct angle.



Questions w	vo con ock		
000000	000000000	00000	00000
Background	Angles in \mathbb{R}^3	Distinct Angle Chains	Conclusion

What lower bound can we get on the number of distinct angles in three dimensions with no three points on a line and no four points on a circle?

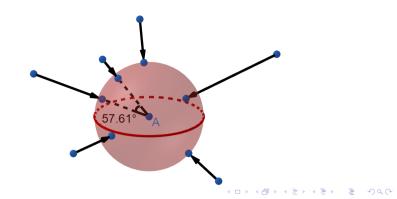
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Using the extra space that we have in 3D, can we find a construction with fewer than $O(n^2)$ distinct angles?

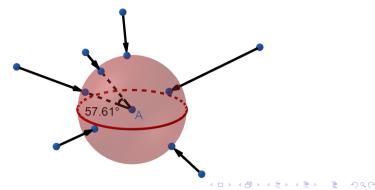
Pinned Center Po	vint		
	ngles in ℝ³ 00●0000000	Distinct Angle Chains	Conclusion 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• We can manipulate the distance of each point from A, so that any point B lies on a sphere of radius 1 centered at A.



- We can manipulate the distance of each point from A, so that any point B lies on a sphere of radius 1 centered at A.
- The measure of $\angle BAC$ is a constant multiple of the spherical distance between B and C.



Theorem (Guth and Katz, 2015)

A set of *n* points in the plane determines $\Omega\left(\frac{n}{\log n}\right)$ distinct distances.

Generalizing to sphere (Tao)

A set of *n* points on a sphere determines $\Omega\left(\frac{n}{\log n}\right)$ distinct distances.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pinned Cer	nter Point		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	00000€00000		00000

Determining the number of distinct angles with fixed center point A is equivalent to determining the number of distinct distances for these points lying on a sphere of radius 1 centered at A.

Corollary

The number of distinct angles for n points in \mathbb{R}^3 with a fixed center point is $\Omega\left(\frac{n}{\log n}\right)$.

This is also the best known lower bound for distinct angles in three dimensions in general, counting all angles.

Determining the number of distinct angles with fixed center point A is equivalent to determining the number of distinct distances for these points lying on a sphere of radius 1 centered at A.

Corollary

The number of distinct angles for n points in \mathbb{R}^3 with a fixed center point is $\Omega\left(\frac{n}{\log n}\right)$.

This is also the best known lower bound for distinct angles in three dimensions in general, counting all angles.

Note: By distributing points along a circle on a sphere, we get an O(n) upper bound on the minimum number of distinct angles with a fixed center point. The lower and upper bounds are very close together!

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

• Fix another point *B*.

Pinned Endpoir	nt		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	00000000000	00000	00000

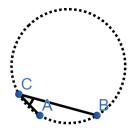
- Fix another point *B*.
- If A and B are both endpoints:

Pinned Enc	Inoint		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000€0000		00000

- Fix another point *B*.
- If A and B are both endpoints:

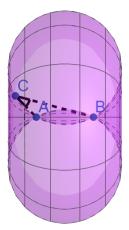
Pinned End	Inoint		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000€0000		00000

- Fix another point *B*.
- If A and B are both endpoints:



Pinned End	Inoint		
000000	00000000000	00000	00000
Background	Angles in \mathbb{R}^3	Distinct Angle Chains	Conclusion

- Fix another point *B*.
- If A and B are both endpoints:

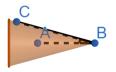


000000	00000000000	00000	00000
Pinned Endpoi	nt		

• Fix another point *B*.

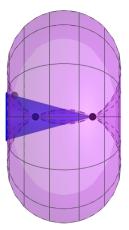
Pinned End	Inoint		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000000000		00000

- Fix another point *B*.
- If A is an endpoint and B is a center point:



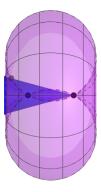
Pinned End	noint		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	0000000€000		00000

- Fix another point *B*.
- If A is an endpoint and B is a center point:



Pinned Endpoint						
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion			
000000	0000000000000	00000	00000			

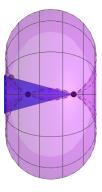
• The intersection of a cone and spindle torus with the same axis is a circle. We only allow 3 points on this circle!



▲ 臣 ▶ □ 臣 → の へ (?)

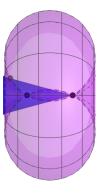
Pinned Endpoin	t		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000000000		00000

- The intersection of a cone and spindle torus with the same axis is a circle. We only allow 3 points on this circle!
- So, the number of cones multiplied by the number of spindle tori must be at least (n-2)/3.



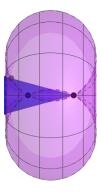
Pinned Endpoi	nt		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	0000000000000		00000

- The intersection of a cone and spindle torus with the same axis is a circle. We only allow 3 points on this circle!
- So, the number of cones multiplied by the number of spindle tori must be at least (n-2)/3.
- There are at least max(#{cones}, #{s. tori}) distinct angles.



Pinned Endpoint					
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion		
000000	00000000000	00000	00000		

- The intersection of a cone and spindle torus with the same axis is a circle. We only allow 3 points on this circle!
- So, the number of cones multiplied by the number of spindle tori must be at least (n-2)/3.
- There are at least max(#{cones}, #{s. tori}) distinct angles.
- To minimize this, $\#\{\text{cones}\} = \#\{\text{s. tori}\} = \sqrt{(n-2)/3}$.



Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000000000		00000
Pinned Endpoint			

• We now have $O(n^2)$ and $\Omega(\sqrt{n})$ as upper and lower bounds for minimum number of distinct angles with a pinned endpoint.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Background	Angles in ℝ³	Distinct Angle Chains	Conclusion
000000	00000000000	00000	00000
Pinned Endpoint			

• We now have $O(n^2)$ and $\Omega(\sqrt{n})$ as upper and lower bounds for minimum number of distinct angles with a pinned endpoint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• These bounds are very far apart!

Pinned End			
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	00000000●0	00000	

• We now have $O(n^2)$ and $\Omega(\sqrt{n})$ as upper and lower bounds for minimum number of distinct angles with a pinned endpoint.

- These bounds are very far apart!
- We conjecture that it is the lower bound that can be improved. Specifically...

Pinned Endpoir	nt		
Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	000000000000		00000

- We now have $O(n^2)$ and $\Omega(\sqrt{n})$ as upper and lower bounds for minimum number of distinct angles with a pinned endpoint.
- These bounds are very far apart!
- We conjecture that it is the lower bound that can be improved. Specifically...

Conjecture

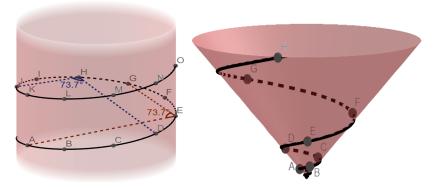
For any construction in general position in \mathbb{R}^3 , there are $\Omega(n^2)$ distinct angles formed when an endpoint is pinned (the same order as with no pinned points).

• Even without proving this conjecture, it's clear the extent to which pinning an endpoint and pinning a center point lead to radically different results.

Background 000000 Angles in \mathbb{R}^3 0000000000 Distinct Angle Chains

Conclusion

3D Constructions



To the left, points are distributed along a **cylindrical helix**, parametrized by $(\cos(t), \sin(t), t)$. To the right, points are distributed on a **conchospiral**, parametrized by $(e^t \cos(t), e^t \sin(t), e^t)$. Due to their symmetry, both of these point configurations exhibit self-similarity and thus have $O(n^2)$ distinct angles.

Background	Angles in ℝ ³	Distinct Angle Chains	Conclusion
000000	0000000000	•0000	00000
Table of C	ontents		

1 Background

2 Angles in \mathbb{R}^3

Oistinct Angle Chains

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

• A *k*-chain is a (k + 2)-tuple of points (x_1, \ldots, x_{k+2}) along with the associated *k*-tuple of angles

$$(\alpha_1,\ldots,\alpha_k)=(\angle x_1x_2x_3,\ldots,\angle x_kx_{k+1}x_{k+2}).$$

A sample three-chain in \mathbb{R}^2

- There are *n* points in space with no three points on a line and no four points on a circle. For a given *k*, what is the minimum number of distinct *k*-tuples such that there exists a *k*-chain with those angles?
- If k = 1, this is just the question we already asked.

- Recall: In 2D, if one endpoint and the center point of the angle are fixed, we get Ω(n) angles since no three points are on a line.
- So, adding one leg to the chain must multiply the number of distinct angle chains by Ω(n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Recall: In 2D, if one endpoint and the center point of the angle are fixed, we get Ω(n) angles since no three points are on a line.
- So, adding one leg to the chain must multiply the number of distinct angle chains by Ω(n).
- By induction:

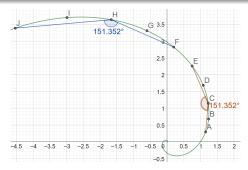
Theorem

For n points in general position in two dimensions, there are $\Omega(n^k)$ distinct k-tuples of angles with associated k-chains.

• The logarithmic spiral provides the best upper bound we could hope for in two dimensions.

Theorem

With points distributed on the logarithmic spiral, there are $O(n^{k+1})$ distinct k-tuples of angles with associated k-chains.



- In 3D, it is no longer true that adding a leg to the chain creates *n* choices for the new angle.
- We have the following weaker lower bound on the number of distinct angle *k*-chains.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- In 3D, it is no longer true that adding a leg to the chain creates *n* choices for the new angle.
- We have the following weaker lower bound on the number of distinct angle *k*-chains.

Theorem

In three dimensions, the number of distinct k-tuples of angles with associated k-chains is bounded below by:

$$\begin{cases} \Omega\left(\frac{n^{(k+2)/3}}{(\log n)^{(k+2)/3}}\right) & \text{ if } k = 1 \mod 3; \\ \Omega\left(\frac{n^{(k+1)/3}}{(\log n)^{(k-2)/3}}\right) & \text{ if } k = 2 \mod 3; \\ \Omega\left(\frac{n^{k/3+1/2}}{(\log n)^{k/3}}\right) & \text{ if } k = 0 \mod 3. \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- In 3D, it is no longer true that adding a leg to the chain creates *n* choices for the new angle.
- We have the following weaker lower bound on the number of distinct angle *k*-chains.

Theorem

In three dimensions, the number of distinct k-tuples of angles with associated k-chains is bounded below by:

$$\begin{cases} \Omega\left(\frac{n^{(k+2)/3}}{(\log n)^{(k+2)/3}}\right) & \text{ if } k = 1 \mod 3; \\ \Omega\left(\frac{n^{(k+1)/3}}{(\log n)^{(k-2)/3}}\right) & \text{ if } k = 2 \mod 3; \\ \Omega\left(\frac{n^{k/3+1/2}}{(\log n)^{k/3}}\right) & \text{ if } k = 0 \mod 3. \end{cases}$$

• Takeaway: The lower bound gets multiplied by $n/\log(n)$ every time the chain gets 3 longer (compared to n^3 for 2D).

Background 000000

Distinct Angle Chains

Conclusion •0000

Table of Contents

Background

2 Angles in \mathbb{R}^3

3 Distinct Angle Chains

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

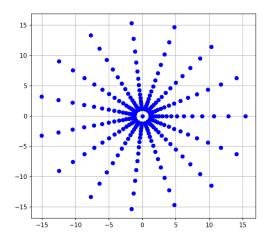
- Going forward, we hope to make progress in raising the lower bound for distinct angles in \mathbb{R}^3 with a pinned endpoint.
- This would improve bounds for the number of distinct angle chains in 3D, as would any further improvements on Agen.
- The ultimate goal would be to come up with explicit constructions that minimize the number of distinct *k*-chains for a given *k* and *n*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• We also want to look into what happens when we relax the general position requirement, for example allowing $O(\sqrt{n})$ points on a line or on a circle.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

• We also want to look into what happens when we relax the general position requirement, for example allowing $O(\sqrt{n})$ points on a line or on a circle.



Permitting $O(\sqrt{n})$ points on lines and circles allows for a configuration with O(n) distinct angles with a pinned endpoint.

・ロト・西・・田・・田・・日・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Acknowledgements

- Advisors Steven Miller and Eyvindur Palsson
- The National Science Foundation Grant DMS1947438
- Williams College Department of Mathematics and Statistics
- University of Michigan for further funding

Background	Angles in ℝ³	Distinct Angle Chains	Conclusion
000000	0000000000		0000●
Bibliography			

- Henry L. Fleischmann, Hongyi B. Hu, Faye Jackson, Steven J. Miller, Eyvindur A. Palsson, Ethan Pesikoff, and Charles Wolf, Distinct Angles Problems and Variants, preprint, 2021.
- Henry L. Fleischmann, Sergei V. Konyagin, Steven J. Miller, Eyvindur A. Palsson, Ethan Pesikoff, and Charles Wolf, *Distinct Angles in General Position*, preprint, 2022.
- L. Guth and N.H. Katz, *On the Erdős distinct distances problem in the plane*, Annals Math. **181** (2015), 155–190.
- Eyvindur A. Palsson, Steven Senger, and Charles Wolf, *Angle Chains and Pinned Variants*, preprint, 2021.
- T. Tao, Lines in the Euclidean Group SE(2), blog post, https://terrytao.wordpress.com/2011/03/05/ lines-in-the-euclidean-group-se2/.