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Abstract. In kernel methods, such as support vector machines, many
existing kernels consider similarity between data by taking into account
only their content and without context. In this paper, we propose an al-
ternative that upgrades and further enhances usual kernels by making
them context-aware. The proposed method is based on the optimization
of an objective function mixing content, regularization and also context.
We will show that the underlying kernel solution converges to a posi-
tive semi-definite similarity, which can also be expressed as a dot product
involving “explicit” kernel maps. When combining these context-aware
kernels with support vector machines, performances substantially improve
for the challenging task of image annotation.
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1 Introduction

Image annotation is a major challenge in computer vision, which consists in as-
signing a list of keywords to a given image [14, 20, 6]. These keywords may either
correspond to physical entities (pedestrians, cars, etc.) or to high level concepts
resulting from the interaction of many entities into scenes (races, fights, etc.). In
both cases, image annotation is challenging due to the perplexity when assigning
keywords to images especially when the number of possible keywords is taken
from a large vocabulary and when analyzing highly semantic contents.

Existing annotation methods usually model image observations using low
level features (color, texture, shape, etc.), and then assign keywords to these
observations using a variety of machine learning and inference techniques such
as latent Dirichlet allocation [2], hidden Markov models [14], probabilistic latent
semantic analysis [17] and support vector machines (SVMs) [7]. These learning
machines are used to model correspondences between keywords and low level
features and make it possible to assign keywords to new images. Among learn-
ing techniques those based on kernel methods, mainly SVMs, are particularly
successful 1 but their success remains highly dependent on the choice of kernels.
The latter, defined as symmetric and positive semi-definite functions [23], should
reserve large values to very similar contents and vice-versa.

1 See for instance the periodic and the challenging ImageCLEF benchmark [20].
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Considering a collection of images, each one seen as a constellation of primitives
(eg. interest points) [8]. Two families of kernels were introduced, in the literature,
in order to handle these types of data; holistic and alignment-based kernels. Holis-
tic kernels first map constellations of primitives to feature vectors, by estimating
their first or high order statistics or by aggregating them [13, 18]. Then, similarity
is defined as any decreasing function of a distance between these feature vectors,
via usual kernels (such as gaussian or histogram intersection). Note that the
resulting kernels are positive semi-definite per construction. In the second fam-
ily of kernels, methods proceed differently [1, 9, 5, 16, 27] and consider similarity
proportional to the quality of aligning primitives. In contrast to the first family,
the positive definiteness of this second family of kernels is not straightforward
and not always guaranteed. Notice also that holistic kernels are naturally more
flexible and invariant to geometric transformations, but alignment-based kernels
are more discriminating; it is clear that kernels that gather the advantages of
the two aforementioned families of kernels are preferred.

We are interested, in this work, in the integration of context in kernels in or-
der to further enhance their discrimination power while keeping their flexibility
to handle constellations of primitives, their invariance to geometric transforma-
tions and also their efficiency. Context is important and has, indeed, played an
important role in leveraging the performances of many computer vision tasks,
and mainly those based on Markov models (see for instance [11, 25, 12, 22, 19]),
but the novel part of this work aims to integrate context, in kernel design useful
for classification and annotation, and plug these kernels in support vector ma-
chines in order to take benefit from their well established generalization power
[26]. Again, given a collection of images, each one described as a constellation
of interest points, the proposed method is based on the optimization of an ob-
jective function mixing a fidelity term, a context criterion and a regularization
term. The fidelity term, takes into account the visual content of interest points
in order to measure the quality of their alignments, so high quality alignments
encourage high kernel values. The context criterion, considers the global scene
structure and allows us to further enhance the relevance of our designed kernel,
by restoring the similarity iff pairs of aligned interest points are also surrounded
by good quality alignments that should also share the same context (see § 2.1).
The regularization term controls the smoothness of the learned kernel and makes
it possible to obtain a closed form solution.

Note that this work is built upon [24] but includes many differences (see § 2):
- A simplification of the learning model; which now includes an unconstrained
objective function, easier-to-solve. Furthermore, the number of parameters of
our model reduces now to one, and corresponds to the weight of context.
- A new study of the theoretical properties of our solution; mainly (i) the intro-
duction of a loose upper-bound, about the weight of context, that guarantees
convergence of the learned kernel to a fixed-point and (ii) the study of the pos-
itive definiteness which shows that the obtained kernel solution can be written
as a dot product, involving “explicit” kernel maps. Indeed, in spite of the non-
linearity of our kernel, its map is explicit, so one may use extremely fast SVM
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solvers in order to handle large scale datasets2 and without the overhead of pre-
computing gram matrices and solving quadratic programming (QP) problems.

2 Explicit Context-Aware Kernel Map Learning

Let {Ip}p be a collection of images and let Sp = {xp1, . . . ,xpn} be the list of
interest points of an image Ip (the value of n may vary with the image Ip).
The set X of all possible interest points is the union over all possible images of
{Ip}: X = ∪pSp. Consider Sp,Sq ⊆ X as two finite subsets of X , the con-

volution kernel K, between Sp = {xpi }ni=1 and Sq = {xqj}n
′

j=1, is defined as

K(Sp,Sq) =
∑
i,j κ

(
xpi ,x

q
j

)
, here κ may be any symmetric and continuous func-

tion on X ×X , so K will also be continuous and symmetric, and if κ is positive
semi-definite (p.s.d) then K will also be p.s.d [10]. Since K is defined as the sum
of all the pairwise similarities between all the possible sample pairs taken from
Sp×Sq, its evaluation does not require any (hard) alignment between these pairs.
Nevertheless, the value of κ

(
xpi ,x

q
j

)
should ideally be high only if xpi actually

matches xqj , so κ needs to be appropriately designed while being p.s.d.
Formally, an interest point x is defined as x = (ψg(x), ψo(x), ψs(x), ψf (x), ω(x))
where the symbol ψg(x) ∈ R2 stands for the 2D coordinates of x while the
orientation and scale of x (respectively denoted ψo(x) ∈ [−π,+π] and ψs(x) ∈
]0,max]) are provided by the SIFT gradient and scale respectively. We have an
extra information about the visual content or features of x (denoted ψf (x) ∈ Rs);
in our case, these visual features result from the concatenation of (i) 128 SIFT
coefficients; [15], (ii) 3-channel color histograms, of 20 dimensions each and (iii)
shape context dartboard [3] of 8 bands and 8 sectors; both (ii) and (iii) are com-
puted locally, in a disk centered at x with a radius proportional to ψs(x). We
also use ω(x) to denote the image from which the interest point comes from, so
that two interest points with the same location, feature, scale and orientation
are considered different when they are not in the same image (since we want to
take into account the context of the interest point in the image it belongs to).
Introduce the context of x, N θ,ρ(x) = {x′ : ω(x′) = ω(x),x′ 6= x s.t. (1) holds},

‖ψg(x)−ψg(x′)‖2 ∈
[
ρ− 1

Nr
εp,

ρ

Nr
εp

]
, angle

(
ψo(x), ψg(x

′)−ψg(x)
)
∈
[
θ − 1

Na
π,

θ

Na
π

]
.

(1)

Here εp is the radius of a neighborhood disk surrounding x and θ = 1, ..., Na,
ρ = 1, ..., Nr correspond to indices of different parts of that disk. In practice,
Na and Nr correspond to 8 sectors and 8 bands. In the remainder of this paper,
N θ,ρ(x) will simply be denoted as N c(x), with c = (θ − 1)Nr + ρ.

2.1 The Method

We can view a kernel κ on X as a matrix K in which the “(x,x′)−element” is the
similarity between x and x′: Kx,x′ = k(x,x′). Let Pc be the intrinsic adjacency

2 Such as stochastic gradient descent [4]. When the kernel map is explicit, the com-
plexity of this method is linear in the size of the training data instead of quadratic.
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matrix defined as Pc,x,x′ = gc(x,x
′), where g is a decreasing function of any

(pseudo) distance involving (x,x′), not necessarily symmetric. In practice, we

consider gc(x,x
′) =

1

m
1{x′∈N c(x)}, with m = |X |. Let S be a matrix with

Sx,x′ = 〈ψf (x), ψf (x′)〉. We propose to use the kernel on X defined by solving

min
K

tr(−KS′)) − α
∑
c

tr(KPcK
′P′c) +

β

2

∥∥K∥∥2
2
, (2)

with α, β ≥ 0, ′, tr denote matrix transpose and trace operator respectively.
The first term, in the above optimization problem, measures the quality of
matching two features ψf (x), ψf (x′) (this is considered as the inner product,
〈ψf (x), ψf (x′)〉, between the visual features of x and x′). A small value of this
inner product should result into a small value of κ(x,x′) and vice-versa. The
second term is a neighborhood (or context) criterion which considers that a high
value of κ(x,x′) should imply high kernel values in the neighborhoods N c(x)
and N c(x′). This criterion also makes it possible to consider the spatial con-
figuration of the neighborhood of each interest point in the matching process.
The third term is a regularization criterion that controls the smoothness of the
learned kernel and also helps getting a closed form kernel solution.

Proposition 1. Let γ = α/β and ‖.‖1 denote the entrywise L1-norm. Provided
that the following inequality holds,

γ <
∥∥∑

c

Pc 1mm P′c
∥∥−1
1

(3)

the optimization problem (2) admits a unique solution K̃ as the limit of

K(t+1) = ψ
(
K(t)

)
, (4)

here ψ : Rm×m → Rm×m is defined as ψ(K) = S+γ
∑
c Pc K P′c, and 1mm is a

m×m square matrix of ones. Furthermore, the kernels K(t) in (4) satisfy the con-
vergence property:

∥∥K(t)−K̃
∥∥
1
≤ Lt

∥∥K(0)−K̃
∥∥
1
, with L = γ‖

∑
c Pc 1mm P′c‖1

and K(0) = S.

Proof. See appendix.

Now, we will show how explicit kernel maps can be obtained from this solution.

2.2 Explicit p.s.d Kernels

Definition 1. Let κ be symmetric and continuous similarity function. κ is re-
ferred to as explicit p.s.d kernel if κ is p.s.d (i.e. ∃φ : ∀x,x′ ∈ X , κ(x,x′) =
〈φ(x), φ(x′)〉) and its mapping φ is explicit and finite dimensional.

Example. following the above definition, the polynomial kernel defined, be-
tween xa = (a1 a2)t, xb = (b1 b2)t, as κ(xa,xb) = 〈xa,xb〉2, is explicit p.s.d
since 〈xa,xb〉2 = 〈φ(xa), φ(xb)〉, with φ(xa) = (a21

√
2a1a2 a

2
2)t and φ(xb) =

(b21
√

2b1b2 b
2
2)t, while the gaussian kernel κ(xa,xb) = exp(− 1

σ‖xa − xb‖22) is
p.s.d but not explicit p.s.d as its mapping is infinite dimensional.
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Proposition 2. The similarity functions K
(t+1)
x,x′ , (t = 0, 1, . . . ) defined, in propo-

sition (1), as K
(t+1)
x,x′ =

(
S + γ

∑
c Pc K(t) P′c

)
x,x′ are explicit p.s.d kernels.

Proof. See appendix.

Algorithm (1) shows the iterative process of kernel map learning. According to
this algorithm and the previous proposition, it is clear that the mapping Φ(t+1) is
not equal to Φ(t) since the dimensionality of the map increases w.r.t. t. However,

the convergence of the inner product Φ′
(t+1)

Φ(t+1) to a fixed point is guaran-
teed when (3) is satisfied, i.e., the gram matrices of the designed kernel maps
are convergent.
Resulting from the definition of the adjacency matrices {Pc}, in (2.1), it is easy
to see that the latter are block diagonal so learning kernel maps could be achieved
image per image with obviously the same number of iterations, i.e., the evalua-
tion of kernel maps of a given image is independent from others and hence not
transductive; and this makes it incremental. Now, considering K̃ as the limit of
ψ(K), the new form of the convolution kernel K between two sets of interest
points Sp, Sq can be rewritten K(Sp,Sq) =

∑
(x,x′)∈Sp×Sq 〈Φ̃x, Φ̃x′〉, again Φ̃ is

the learned kernel map obtained after convergence of algorithm (1) and the sub-
script in Φ̃x denotes the restriction of this map to an interest point x. It is easy
to see that K is an explicit p.s.d kernel as it can be rewritten as a dot product in-
volving finite dimensional and explicit maps, i.e., K(Sp,Sq) = 〈φK(Sp), φK(Sq)〉,
with φK(Sp) =

∑
x∈Sp Φ̃x, which clearly shows that each constellation of interest

points Sp can be indexed simply with the explicit kernel map φK(Sp).

Algorithm 1: Recursive kernel map learning

Input: The union of all interest points {xi} in X .
Output: Learned kernel maps Φ̃.

Set t = 0, γ using condition (3) and set the adjacency matrices {Pc} and Φ(0)

with Φ
(0)
xi = ψf (xi)

repeat

Φ(t+1) ←−
(

Φ′
(0)

γ
1
2 P1Φ

′(t) . . . γ
1
2 PNrNaΦ′

(t)
)′

,

Set t← t+ 1

until
∥∥Φ′(t+1)

Φ(t+1) −Φ′
(t)

Φ(t)
∥∥
1
 0 or t > Tmax ;

Set Φ̃← Φ(t)

3 Experiments

We plugged the learned kernel K into SVMs in order to evaluate its performance.
The targeted task is image annotation; given a picture of a database, the goal
is to predict which concepts (classes) are present into that picture. For this pur-
pose, we trained “one-versus-all” SVM classifiers for each concept; we use three
random folds (75% of a database) for SVM training and the remaining fold for
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Fig. 1. Sample of images from Swedish leaf (left) and ImageCLEF (right) databases.

testing. We repeat this training process through different folds, for each concept,
and we take the average equal error rates (EERs) of the underlying SVM clas-
sifiers. This makes classification results less sensitive to sampling.
We run these experiments on different databases ranging from simple ones such
as the Olivetti face database to relatively more challenging ones such as the
Swedish and the extremely challenging ImageCLEF Photo Annotation database
(see Fig. 1). The latter contains 18, 000 pictures split into 93 categories; a subset
of 8, 000 images was used for training and testing as ground truth was publicly
available for this subset only. The Swedish database contains 15 leaf species, each
one represented by 75 examples, resulting into 1, 125 images while the Olivetti
set is a well known face database of 40 persons each one contains 10 instances.
For each image in these databases, we run the SIFT detector [15] in order to ex-
tract a constellation of interest points, and each one is described with the visual
features discussed in Section (2).
Our goal is to show the improvement brought when using the learned ker-

nel maps {Φ(t)}t∈N+ , so we tested them against context-free kernel maps (i.e.,
Φ(t), t = 0). For that purpose, we trained the “one-versus-all” SVM classifiers
for each class in Olivetti, Swedish and ImageCLEF sets using the convolution

kernel K(Sp,Sq) =
〈∑

x∈Sp Φ
(t)
x ,
∑

x′∈Sq Φ
(t)
x′

〉
. The influence (and the perfor-

mance) of the context term in Φ(t) (and hence K(t)) increases as γ increases
(see example in Fig. 2), nevertheless and as shown earlier, the convergence of
K(t) to a fixed point is guaranteed only if Eq. (3) is satisfied. Intuitively, the
parameter γ should then be relatively high while also satisfying condition (3).
Larger values of γ (in practice γ > 1), do not always guarantee convergence of
the learned kernels and the classification performances may not converge to the
best ones.
Table. (1) shows EERs of different baseline kernel maps and their upgraded

context-aware versions. These baselines include: Linear: K
(0)
x,x′ = 〈ψf (x), ψf (x′)〉,

Polynomial: 〈ψf (x), ψf (x′)〉2, RBF: exp
(
−‖ψf (x)− ψf (x′)‖22/0.1

)
, Triangular:

−‖ψf (x)− ψf (x′)‖2, Histogram intersection:
∑
i min(ψf (x)i, ψf (x′)i) and Chi-

square: 1− 1
2

∑
i
(ψf (x)i−ψf (x

′)i)
2

(ψf (x)i+ψf (x′)i)
. Each initialization K

(0)
x,x′ should be expressed

as an explicit dot product 〈Φ(0)
x ,Φ

(0)
x′ 〉. As this explicit kernel map is not available

for the above kernels (excepting the linear), we apply kernel principal compo-

nent analysis (KPCA) in order to decompose the matrix K(0) into Φ′
(0)

Φ(0) and
hence approach these maps, i.e., each x is mapped to a finite dimensional vector
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Fig. 2. The left-hand side figure shows the evolution of the overall (average) EER
+ standard deviation, of our context-aware kernel (with Na = Nr = 8 and t = 3),
w.r.t γ; these EERs are obtained on the ImageCLEF set. The right-hand side figure,
shows this EER class-by-class (when γ = 1) and a comparison against the underlying
baseline kernel (i.e., t = 0); for ease of visualization we sort classes according to their
difficulty (i.e., increasing error rates when using the baseline kernel). It is clear that
our context-aware kernel (with γ = 1) decreases the EERs for almost all the classes.

Φ
(0)
x using the principal axes of KPCA3.

According to Table (1) and Fig. (2), results obtained on different databases,
clearly and consistently illustrate the out-performance of the learned context-
aware kernel maps with respect to context-free ones for almost all the cases, with
only few iterations (t = 3 in practice).

Kernels Lin (CF) Lin (CD) Poly (CF) Poly (CD) RBF (CF) RBF (CD)

Olivetti 1.50± 0.31 0.28 ± 0.21 1.44± 0.30 0.26 ± 0.17 1.36± 0.34 0.66 ± 0.30
Swedish 2.58± 0.90 0.12 ± 0.11 2.47± 0.97 0.08 ± 0.01 2.44± 0.85 2.32 ± 0.94

Kernels Tri (CF) Tri (CD) χ2 (CF) χ2 (CD) HI (CF) HI (CD)

Olivetti 1.00± 0.26 0.30 ± 0.20 1.50± 0.27 0.28 ± 0.19 0.90± 0.26 0.28 ± 0.18
Swedish 1.42± 0.72 0.14 ± 0.13 2.72± 0.91 0.12 ± 0.12 1.54± 0.77 0.10 ± 0.01

Table 1. This table shows EERs (in %) and standard deviations, of image annotation
using SVMs, for different baseline kernels (denoted CF) and the underlying context-
aware versions (denoted CD). In all these experiments, Na = Nr = 8, the number of
iterations = 3 and γ = 1.

4 Discussion

Similarity Diffusion. Our kernel is able to recursively diffuse the similarity
from/to larger and more influencing contexts (i.e., two primitives are considered
similar if their neighbors, with close spatial configurations, are similar and if the

3 Note that KPCA approximation is exact when principal axes are learned using the
whole set X [21] but computation is expensive, so we learn the principal axes on a
small subset of X .
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neighbors of their neighbors are similar too, etc.) so resulting into a recursive
definition and propagation/diffusion of similarity through the spatial structure
of primitives (interest points in particular). Therefore, our context-aware kernel
exploits pairwise (local) as well as higher order interactions (resulting from recur-
sion). Our comparison in Table (1) corroborates this statement as the learned
context-aware kernel maps show consistent gain compared to baseline kernel
maps built upon shape context, SIFT and color histograms.
Invariance. It is easy to see that the adjacency matrices {Pc} are translation
and rotation invariant and can also be made scale invariant when εp (see Eq. 1)
is proportional to ψs(Sp). It follows that the context term of our kernel is in-
variant to 2D similarity transformations. Notice, also, that S in K(t) involves
similarity invariant (or at least tolerant) visual features ψf (.) (including 128
SIFT features, color and shape context, see § 2), so both the kernels K(t) and
their explicit maps Φ(t) are similarity invariant.
Computational Complexity. let’s consider a collection of N images including
n interest points each. Assuming Φ(t−1), K(t−1) known at iteration t − 1, the
worst complexity of evaluating the kernel map Φ(t) is O(n2N) and the complex-
ity of the underlying SVM training using stochastic gradient descent is O(N).
This complexity reaches O(n4N2) if one considers instead the evaluation of the
gram matrix K(t). As for testing, the complexity of evaluating the kernel map
for a test image is O(n2) while the complexity of extending the gram matrix
with that test image is O(n4N). Therefore, it becomes clear that the proposed
kernel map evaluation method is at least an order of magnitude faster (than
gram matrix based evaluation) both for training and testing.
If the adjacency matrices {Pc} are sparse, the method becomes even faster and
its complexity reduces to O(nM N), here M = maxx∈X |N c(x)| � n. In prac-
tice, it takes less than 20 mins (on a standard 2Ghz PC) in order to evaluate
the kernel maps and train the SVMs on the N = 8, 000 pictures of ImageCLEF,
instead of 5 hours when evaluating gram matrices before SVM learning.

5 Conclusion and take-home message

We introduced in this paper a kernel map learning procedure that takes into
account the context. The purpose of this contribution is not to design another
kernel; the main take home message is how to upgrade usual and widely used
kernels, with context, in order to enhance their performances when used in SVM
classification.
The proposed kernel design method shows a substantial gain compared to usual
kernels for the challenging task of image classification. The method is also generic
and could easily be extended to classification tasks in other neighboring fields
and applications.
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Appendix

Proof (of Proposition 1). Following (2), let us consider the function defined on the set
of matrices in Rm×m

E : K 7→ −tr(KS′) − α
∑
c tr(KPcK

′P′c) + β
2

∥∥K∥∥2
2

(5)

The necessary condition of the fixed-point relation in (4) results from ∂E/∂K = 0
(details about derivative are omitted in this proof). We will now prove that the function
ψ is L-Lipschitzian, with L = γ‖

∑
c Pc 1mm P′c‖1.

Given two matrices K(1), K(2), we have∥∥K(2) −K(1)
∥∥
1

=
∑
x,x′

∣∣K(2)

x,x′ −K
(1)

x,x′

∣∣
= γ

∑
x,x′

∣∣∣∣ ∑
u,u′,c

Pc,x,u Pc,x′,u′ (K
(1)

u,u′ −K
(0)

u,u′)

∣∣∣∣
= γ

∑
x,x′

∣∣∣∣∑
u,u′

(K
(1)

u,u′ −K
(0)

u,u′)
∑
c

Pc,x,u Pc,x′,u′

∣∣∣∣
≤ γ

∑
x,x′

∑
u,u′

∣∣K(1)

u,u′ −K
(0)

u,u′

∣∣∑
c

∣∣Pc,x,u Pc,x′,u′
∣∣

≤ γ
∑
u,u′

∣∣K(1)

u,u′ −K
(0)

u,u′

∣∣×∑
x,x′

∑
u,u′,c

∣∣Pc,x,u Pc,x′,u′
∣∣

(as
∑
i |ai|.|bi| ≤

∑
i,j |ai|.|bj |, ∀ {ai}, {bj} ⊂ R)

= L
∥∥K(1) −K(0)

∥∥
1

with L = γ
∥∥∑

c Pc 1mm P′c
∥∥
1
�

Proof (of Proposition 2). We proceed by induction; K
(0)

x,x′ = 〈ψf (x), ψf (x′)〉 is explicit
p.s.d as it is per definition p.s.d and the mapping ψf (.) is known and finite dimensional.

Assuming K
(t)

x,x′ explicit p.s.d, we obtain

K
(t+1)

x,x′ =
(
Φ′

(0)
Φ(0) + γ

∑
c

PcK
(t)P′c

)
x,x′ =

(
Φ′

(0)
Φ(0) + γ

∑
c

PcΦ
′(t)Φ(t)P′c

)
x,x′

=
(
Φ′

(t+1)
Φ(t+1)

)
x,x′

(6)

where Φ(t+1) =
(

Φ′
(0)

γ
1
2 P1Φ

′(t) . . . γ
1
2 PNrNaΦ′

(t)
)′
, (7)

so K
(t+1)

x,x′ is also symmetric, continuous and p.s.d. Since Φ(t) is finite dimensional,

Φ(t+1) defined in (7) is also finite dimensional so K
(t+1)

x,x′ is explicit p.s.d �

References

1. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with
support vector machines, a kernel approach. IWFHR, pages 49–54, (2002).

2. Barnard, K., Duygululu, P., Forsyth, D., Blei, D., Jordan, M.: Matching words and
pictures. The Journal of Machine Learning Research, (2003).



10 Hichem SAHBI

3. Belongie, S., Malik, J., Puzicha, J.: Shape context: A new descriptor for shape
matching and object recognition. NIPS, (2000).

4. Bottou, L.: Large scale machine learning with stochastic gradient descent. Proc of
the 19th int conference on computational statistics, pages 177–187, (2010).

5. Boughorbel, S., Tarel, J., Boujemaa, N.: The intermediate matching kernel for image
local features. IEEE International J. Conference on Neural Networks, (2005).

6. Carneiro, G., Vasconcelos, N.: Formulating semantic image annotation as a super-
vised learning problem. in Proc. of CVPR, (2005).

7. Gao, Y., Fan, J., Xue, X., Jain, R.: Automatic image annotation by incorporating
feature hierarchy and boosting to scale up svm classifiers. ACM Multimedia, (2006).

8. Gartner, T.: A survey of kernels for structured data. Multi Relational Data Mining,
5(1):49–58, (2003).

9. Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets
of features. Journal of Machine Learning Research (JMLR), 8:725–760, (2007).

10. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, U. of California in Santa Cruz, CS Department, July, (1999).

11. He, X., Zimel, R., Carreira, M.: Multiscale conditional random fields for image
labeling. In CVPR, (2004).

12. Jaakkola, T., Diekhans, M., Haussler, D.: Using the Fisher kernel method to detect
remote protein homologies. ISMB, pages 149–158, (1999).

13. Kondor, R., Jebara, T.: A kernel between sets of vectors. In proceedings of the
20th International conference on Machine Learning, (2003).

14. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical mod-
eling approach. IEEE Trans. on PAMI, 25(9):1075–1088, (2003).

15. Lowe, D.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, (2004).

16. Lyu, S.: Mercer kernels for object recognition with local features. In the proceedings
of the IEEE Computer Vision and Pattern Recognition, (2005).

17. Monay, F., GaticaPerez, D.: Plsa-based image autoannotation: Constraining the
latent space. in Proc. of ACM International Conference on Multimedia, (2004).

18. Moreno, P., Ho, P., Vasconcelos, N.: A kullback-leibler divergence based kernel for
svm classification in multimedia applications. NIPS, (2003).

19. Moser, G., Serpico, B.: Combining support vector machines and markov random
fields in an integrated framework for contextual image classification. TGRS, (2012).

20. Nowak, S., Huiskes, M.: New strategies for image annotation: Overview of the photo
annotation task at imageCLEF 2010. in Working Notes of CLEF 2010, (2010).

21. Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299–1319, (1998).

22. Semenovich, D., Sowmya, A.: Geometry aware local kernels for object recognition.
In ACCV, (2010).

23. Shawe-Taylor, J., Cristianini, N.: Support vector machines and other kernel-based
learning methods. Cambridge University Press, (2000).

24. Sahbi, H., Audibert, J.-Y., Keriven, R.: Context-Dependent Kernels for Object
Classification, IEEE Trans on PAMI, Vol. 33, number. 4, April, (2011).

25. Singhal, A., Jiebo, L., Weiyu, Z.: Probabilistic spatial context models for scene
content understanding. In CVPR, (2003).

26. Vapnik, V-N.: Statistical learning theory. A Wiley-Interscience Publication, 1998.
27. Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel

recipe. ICCV, pages 257–264, (2003).


