Processor-Programmable Memory BIST for Bus-Connected Embedded Memories

Ching-Hong Tsai and Cheng-Wen Wu
Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013

ROC

Abstract—We present a processor-programmable built-in self- ble. Serial interface has been proposed that reduces hardware
test (BIST) scheme suitable for embedded memory testing in the overhead [4], but the test time is long and diagnosis cannot be
system-on-a-chip (SOC) environment. The proposed BIST circuit supported. Therefore, in [11] a BIST scheme which utilizes
can be programmed via an on-chip microprocessor. Upon receiv- an on-chip microprocessor to test the memory cores was pro-
ing the commands from the microprocessor, the BIST circuit gen- posed. The memory BIST is done by executing an assembly-
erates pre-defined test patterns and compares the memory out- language program in the on-chip microprocessor to generate
puts with the expected outputs. Most popular memory test algo- test patterns (including the address sequence, data patterns, and
rithms can be realized by properly programming the BIST circuit ~ control signals) and compare the memory outputs with the ex-
using the processor instructions. Compared with processor-based pected correct data. The advantage of such a scheme is that it
memory BIST schemes that use an assembly-language program is highly flexible because various test algorithms can be real-
to generate test patterns and compare the memory outputs, the ized by simply modifying the assembly programs run on the
test time of the proposed memory BIST scheme is greatly reduced. microprocessor. It also is easy to support testing of multiple

memory cores. However, the test time is much longer than us-
ing an integrated memory BIST circuit. We will discuss this
I. INTRODUCTION point and show some of our experimental results in the next

section.
With the advent of deep-submicron VLSI technology, core-

based system-on-chip (SOC) design is attracting an increasing

attention. On an SOC, popular reusable cores include memo-) ,
ries (such as ROM, SRAM, DRAM, and flash memory), pro- _Ip Sec. 3, we will propose a memory B_|ST_ schemg which
cessors (such as CPU, DSP, and microcontroller), input/outplr.'ﬂ"zes a processor-programmable BIST circuit to realize a test

circuits, etc. Memory cores are obviously among the most urf’ii_lgorlthm using pre-defined test elements. The BIST circuit

versal ones—almost all system chips contain some type of eiSC compares the memory outputs with the expected correct
ta to generate a go/no-go signal. The approach is a com-

bedded memory. However, to provide a low-cost test squtio?il":1 , 4
for the on-chip memory cores is not a trivial task [1, 2]. bination of the on-chip procgssor—based BIST of [11] and the
One possible solution that is also the most widely use'éS'\/l'b"’IS(ad BIST proposed in [2].
for testing embedded memories is built-in self-test (BIST).
The integration of BIST with the embedded memory under
test greatly minimizes the need for using expensive memory Since the BIST circuit is an independent one (i.e., not inte-
testers. It also reduces the test time [2]. The research in megrated with any memory core), it can be considered as a core
ory BIST has a long history (see, e.g., [2-8]). However, mogor IP) in itself. The proposed BIST scheme has at least the
of the BIST approaches proposed so far assume that the BI®llowing advantages: 1) the test time is short due to dedi-
circuit is to be integrated with the RAM circuit, whether thecated BIST core design, 2) the flexibility of processor-based
BIST circuit is processor based or finite-state machine (FSMBIST is maintained, and 3) multiple memory cores can be sup-
based. The advantage of such a scheme is that the test timpasted without multiple BIST cores, multiple sets of external
short and the area overhead is relatively small, especially fagst pins, or complicated routing. We have used an on-chip
the FSM-based approach [2]. There also are good reasons &&02 microprocessor to perform experiments on our idea. The
such one-BIST-per-RAM approach, e.g., intellectual propertgroposed BIST scheme takes aboulN1dlock cycles to per-
(IP) protection, test wrapping for IP [9, 10], performance reform the March C— test algorithm, while the on-chip processor-
quirement, etc. However, sometimes it is not feasible to hawmsed BIST scheme [11] takes aboutlllslock cycles for the
one BIST circuit for each memory core. For example, a typicalame algorithm, wherl is the address space of the memory
ASIC or SOC has tens of SRAM cores with different sizes andore. Moreover, the memory access frequency (for continuous
configurations. If each memory core on chip requires a BlSfiead/write sequences) in [11] is much lower than the proposed
circuit, then the area and test pin overhead will be untolerapproach due to overheads in the assembly-language program.

[l. ON-CHIP PROCESSORBASED MEMORY BIST Table Il shows the clock cycles for some major 6502 in-
structions used in the MARCH C- test algorithm. From the
Almost any SOC (or even ASIC) design has on-chip procesable, we can calculate the total execution time of the assem-
sor and memory cores. In addition to normal operation, thgly program in Appendix A in terms of number of clock cy-
on-chip processor core also can be used to test other coresois, assuming that each memory read/write operation takes
the same chip. In [11], the processor was used to test embefire clock cycle. The March elemeMl takes 1 clock cy-
ded logic and memory cores using instructions of the procegtes,M; ~ M, take 2N clock cycles, andiis takes 14 clock
sor core. An assembly-language program was used to realiggles. Therefore, the total number of clock cycles for March
memory test algorithms and compare the memory outputs with- js 114\. The execution time of the above assembly pro-
the expected correct data. We also have used the 6502 proggigm is about 9.6 seconds for a 4-Mbit memory core (assum-
sor in a similar experimental on-chip processor-based mefg a 50-MHz clock). In contrast, the test time for the same
ory BIST set-up. Though a 6502 assembly program was us@femory core using the integrated BIST core proposed in [2] is
to implement such a BIST scheme (see Appendix A), our apnly about 0.4 seconds. The test time of the on-chip processor-
proach is applicable to other on-chip processors. The memadsgsed BIST approach apparently is much longer than the inte-
test algorithm used in our experiment is the March C— algqyrated BIST approach. In the next section, we will propose a
rithm [12], as shown in Table I. memory BIST core with short test time while maintaining the
flexibility of the processor-based approach.

TABLE |

THE MARCH C—TEST ALGORITHM.
Ill. PROCESSORPROGRAMMABLE BIST CORE DESIGN

AND TESTFLOW

Mo M My Ms My Ms A. BIST Architecture

GWwo) A (rowl) 1 (riw0) 4 (r0wl) § (rIw0) §(r0) Figure 1 shows the architecture of the proposed BIST

scheme. The BIST core is inserted between the CPU core and
. . . the on-chip bus, which also connects the memory cores. In nor-
A memory test algorithm consists OT a finite sequence %al operation mode, the CPU transparently access the system
test elements Each test element specifies a certain addregg,s i sjight time overhead introduced by the multiplexers.
(sequence) and a combination of read/write operations (8jfke oyerhead can be minimized by careful design of the multi-
maybe other memory operations) to be ap_plied to the SpeCi,ﬁEPexers which can be integrated with the bus drivers. In mem-
gddress (sequence). Each test element in a Mar.ch algorit rl@/ BIST mode, the BIST circuitry takes over the control of the
is called aMarch element In Table |, there are six March on-chip bus. It executes certain test algorithm programmed by
elements, i.e.Mo, My,..., Ms. In each March element, the yho cpy and generates the addresses, input data, and control
address sequence is specified fifsstands for the ascending signals for the memory core. It also compares the memory out-

3ddressmg ordet) r?tanrc]is fc(;rdthe Qescegdmg adbdre§5|ng Of5ut response with the expected correct data. Since the memory
er, and(} means that the addressing order can be efther ., o can e considered as a pure channel, the data received

Y. For each memory cell add_resseq in t_he_specified order, Wom the memory should be equivalent to those written to the

perform the regd/wrlte operations given inside the parenth_es'%%mory previously. The comparison thus can be done without

before advancing to the next specified address. The algorithig,jicated manipulation of the data. To be able to allow these

IS sometimes called the March Nl(glgonthm since It requires ., gifferent modes, we use several multiplexers to multiplex

10“1 read/write operations, wheheis the number of memory 4 . - 44ress bus (ADDR), data input bus (DATAI), data output

cells. bus (DATAO), and control bus between the CPU core and the
BIST circuitry.

TABLE Il
CLOCK CYCLES FOR MAJOR6502INSTRUCTIONS T

A

\

Instruction | Addressing Mode| Clock Cycles e >

LDA Immediate 2 e 3 E ooy
LDA Absolute Index X 4 et -
LDX Immediate 2 3

STA Absolute Index X 4 oo [- 0o

lNX Imply 2 3 BIST circuitry S .

CPX Imply 2 gl

BNE Relative 2~ 4

CMP Imply 2 Fig. 1 BIST Architecture.

The BIST circuit is synchronized with CPU core by usingerror response and faulty address will be saved Ritp and
the clock signal from the clock input podock cpu of the Rga, respectively. Registé®r| ac is the BIST flag register that
CPU. The signals on the address input pdIDR cpy, data stores the current status of the BIST circuit. For example, if
input portDATACQ.cpy, and control input signalstrl_cpucome the BIST circuit detects a fault, tHERRORflag will be saved
directly from the embedded CPU’s address outputs, data outto Rr ag. All the above data registers can be enabled by the
puts, and control signal outputs, respectively. In the next seaddress decoder. When proper address values appear in input
tion we will show that the BIST functions (i.e., the test algoportADDR.p,, the address decoder will enable the correspond-
rithm) can be programmed by the CPU via the above thréeg data register.
BIST input ports. The address output p&bDDR bist, data
output portDATAQbist, and control output porttrl_bist of TABLE Il
the BIST core are connected to the output muItipIexers. Th§VMBOLS AND FUNCTIONS OF THE DATA REGISTERS IN THEBIST CORE
outputs of these multiplexers are connected to the address bus
ADDR, data output bu®ATAQ and control busontrol, re-

spectively. During the memory BIST process, the multiplexer| Register| Function

selection signamuxselis set to 1 so that the test addresses,| Rsc store background data

data patterns, and control signals can be sent to the embeddedRaL store lowest address

memory via the on-chip bus, and the memory output response Ran store highest address

can also be read via the input p@ATALsysthat is directly Rve store current March element

connected to the data input bD¥ATAL The data output port | Rr instruction register of BIST circuit
DATALbistof the BIST circuit can display the contents of the | RrLac | status register of BIST circuit

BIST core’s internal registers when appropriate address valuesRep erroneous response of defective memory ¢ell
appear oADDR cpu The status of the memory BIST process | Rea address of defective memory cell

can be read by the CPU VI2ATALDbistduring the BIST mode
because the multiplexer conneBXATALbistto the CPU’s data

input port. Details about this will be discussed next. Other blocks in the BIST circuit include 1) an address
counter which generates the test address sequence; 2) a com-
DATAO. opu parator which compares the memory output response with the
o) > expected correct data; and 3) a BIST controller which controls

lowest / highest addre

the BIST circuit. The address counter is just a simple up/down
W" “Gwa . counter whose value is betweBg_ andRay. The comparator
ateh f unmatch compares the memory output response with the conteRg ©f
P — === orits complement, depending on which March element is used.
When a discrepancy is found by the comparator, it indicates a
Fig. 2. Block diagram of the proposed BIST circuit. fault. The controller design is very simple. When BEART
instruction is stored int® R, the controller starts its function.
It first decodes the current March element instruction stored in
Rvie, then controls the data output multiplexdataamuxand
B. BIST Implementation address counter to generate the appropriate March element for
the embedded memory. When an error is found, the controller
Figure 2 shows the block diagram of our BIST circuit. Thergayes the erroneous output response and faulty address in reg-
are several registers in the BIST circuit that are used to stof&ersRep andRea. When the content of the address counter
necessary information during the memory BIST process (e.§eaches the lowest or highest address, the controller will write

data background, lowest and highest addresses of the embgeiNISH flag into R ac to inform the processor that the cur-
ded memory, type of March element, etc.) or store the mement March element is finished.

ory test result (e.g., the BIST core’s status, erroneous output

response, faulty addre_ss, etc.). Taple Il summarizes the r(_ag'- BIST Procedure

ister symbols and their corresponding test functions. Regis-

ter Rgg stores the background data, which is used during the The test flow using the proposed BIST scheme is illustrated
March test. RegisterRy andRay are used to store the low- in Fig. 3. Initially, the CPU core writes the lowest and highest
est and highest addresses of the memory under test, respmidresses of the memory under test iRkp andRay, respec-
tively. RegisteRye stores the current March element instructively. It then writes the current March element instruction
tion. The test function performed by the BIST circuit dependsto Rye, and theSTARTInstruction intoRr to activate the

on the content oRye. RegisteRr stores the instruction of BIST circuit. When the BIST controller senses that B1l&ART

the BIST circuit. For example, if the CPU writesSTARTIN- instruction has been written inf&r, the memory BIST pro-
struction intoRg, the BIST circuit will start to run memory cedure begins. The address counter generates the address se-
BIST. Both registerlRep and Rgp store the erroneous data.quence, the data output multiplexer sends the data background,
When the BIST circuit detects a fault in the memory core, thand the BIST controller generates the memory read/write con-

ADDR_bist

ADDR_cpu | address
decoder

[11]
il

DATAI_bist

trol signals. During the memory BIST process, the CPU test

: i) . TABLE IV
program continues polling the registef ac. If the BIST cir- MARCH ELEMENTS AND THE CORRESPONDINGRyE INSTRUCTION
cuit detects an error, the BIST controller will write BRROR ENCODING.
flag into R ag, and the CPU core will execute an error han-
dling routine which can feedback the error response and faulty
cell address to the test engineer. If all memory cells pass the

March element Mg M; M, Mz My Ms

current March element, the BIST circuit will write RINISH Instruction @ v 24 34 44 O
flag intoRr ac. When the CPU core detects tR&NISH flag,
the test program proceeds to the next March element, or quit
the test program by writing aBND instruction intoRr if no TABLE V
more March elementis in the gueue. ADDRESSES OF THE REGISTERS IN THBIST EXPERIMENT.
entbrogram witswes: | rahost acgssioR | Ry Register| Address
rf d b
"ot program | Rec FFEO
RaL FFE1~ FFE2
test program WritllARCH instructionntoR, .
test program writS TART instructiomtoR RAH FFE3~ FFE4
1 Rvie FFES5
‘ Towa) TRawa) | | TRawa) | |URawa) | |[(Rawa) ‘ T (Ra) R|R FFEG6
I I I 1 1 Rriac | FFE7
Rep FFE8
performed by e m::iﬁ:jr\oe?uasgrlenstssﬁéfﬁm REA FFEgN FFEA
BIST circuit write faulty address iny.,

clock cycle). Note that March elemeht, takes N clock cy-

cles, March elementel; ~ My take N clock cycles each, and
March elemenMs takes N clock cycles, wherd\ is the num-

ber of memory cells. Therefore, the proposed BIST scheme
takes only 10 clock cycles to perform the March C- test al-
gorithm. The test time is greatly reduced as compared with the
on-chip processor-based approach. Apparently, using a dedi-
cated BIST core for test algorithm generation and data compar-
ison makes big difference so far as performance is concerned.
Moreover, the BIST procedure is controlled by an assembly
IV. EXPERIMENTAL RESULT program, so the programmability of our approach is compara-
?cl)e to the processor-based approach.

yes
write FINISHflag intoR,,
test program take ovf

performed by
test program

Fig. 3. Embedded memory test flow.

We have used the Verilog hardware description language
simulate the behavior of the proposed BIST scheme. As de-
scribed above, the BIST circuit is inserted between the 6502 TABLE VI
CPU core and an embedded RAM In our experlment, th%OMPAFUSON OF VARIOUS EMBEDDED MEMORYBIST METHODOLOGIES
memory test program was stored in a 256x8 ROM. To test the

embedded RAM, the assembly program first writes necessarysistscheme Testtime Hardware overhead Routing overhelad
instructions and data into registeRss, RaL, Ran, andRue, Integrated BIST core| Short Low High

. On-chip processor Very long Zero Zero
and activates the BIST circuit by writing tH&TARTInstruc- Ours Short very low Zero

tion into Rg. Then the test program continues to monitor the
flag registeiRr| ag until the current March element is finished.
In Appendix B we show the 6502 assembly program that per- Table VI shows the comparison of some embedded memory
forms the March C- test algorithm under the proposed BISBIST schemes, including the integrated memory BIST core
scheme. Also, in Table IV we show the March element erapproach (e.g., [2]), on-chip processor-based approach (e.g.,
coding of Rye for March C—, and in Table V we show the [11]), and our BIST approach. The area overhead of our BIST
addresses of the registers in the same experiment. implementation is lower than that uses an integrated memory
The total test time (in terms of clock cycles) of the propose8IST core because the BIST controller is very simple (most
BIST scheme equals the cumulated test time of all the Maralf the BIST procedure is controlled by the assembly program
elements, plus 30 clock cycles—the time to initialize the BISExecuted on the CPU). In the case of multiple memory cores
circuit. The test time of each March element is the same @& an SOC design, we can use a centralized BIST circuit to
the number of memory read/write operations in each Mardest all memory cores, so the routing overhead will be zero be-
element (assume each memory read/write operation takes aaeise of the use of on-chip bus to access the memory cores. In

contrast to using a single dedicated BIST circuit for multiple [7]
RAM cores, the routing overhead can be very high because of
the wires connected directly between the BIST circuit and the
memory cores. Two possible solutions for such a problem are
1) to use the bus-based connection, and 2) to group the mem-
ory cores and duplicate the BIST circuits so that routing can be
localized. [

There is one restriction in our BIST scheme—the proposed
BIST scheme cannot be directly applied to those memory cores
where the CPU and the embedded memories are connected to
different system buses, or the CPU accesses the memories v[@]
a memory controller. In such cases, we must slightly modify
our BIST scheme so that the BIST core is connected to the
same system bus with embedded memories, and the BIST core
must be able to be programmed by the CPU via the memofy0]
controller.

V. CONCLUSION

We have proposed a flexible and cost-effective BIST scheme
for single or multiple memory cores in the SOC environment
where an on-chip processor is available. Our approach is
flexible because the memory access waveforms can be impﬁi]
mented by the BIST hardware, and different memory test alg
rithms can be realized by executing proper assembly programs
on the on-chip processor core. It is cost-effective because the
test time is short and the hardware overhead is low. Besidggp]
with the proposed BIST scheme, neither the CPU nor the mem-
ory design need not be modified, thus the BIST design cost is
reduced.

REFERENCES

[1] C.-W. Wu, “Testing embedded memories: Is BIST the
ultimate solution?”, inProc. Seventh IEEE Asian Test
Symp. (ATS)Singapore, Dec. 1998, pp. 516-517.

[2] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-
Y. Chang, “A programmable BIST core for embedded
DRAM”, IEEE Design & Test of Computergol. 16, no.

1, pp. 59-70, Jan.-Mar. 1999. ML:

[3] R. Dekker, F. Beenker, and L. Thijssen, “A realistic
self-test machine for static random access memories”, in
Proc. Int. Test Conf. (ITG)1988, pp. 353—-361.

[4] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “Serial
interface for embedded-memory testingEEE Design
& Test of Computersvol. 7, no. 2, pp. 52-63, Apr. 1990. .

[5] R. P. Treuer and V. K. Agarwal, “Built-in self-diagnosis
for repairable embedded RAMYIEEE Design & Test of
Computersvol. 10, no. 2, pp. 24-33, June 1993.

[6] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo,
A. Burri, and D. Medina, “Industrial BIST of embedded
RAMs”, IEEE Design & Test of Computersol. 12, no.

3, pp. 86-95, Fall 1995. M3:

S. Tanoi, Y. Tokunaga, T. Tanabe, K. Takahashi,
A. Okada, M. Itoh, Y. Nagatomo, Y. Ohtsuki, and M. Ue-
sugi, “On-wafer BIST of a 200-Gb/s failed-bit search for
1-Gb DRAM”, IEEE Journal of Solid-State Circuitsol.

32, no. 11, pp. 1735-1742, Nov. 1997.

8] J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-

based built-in self-test for embedded DRAMIEEE
Journal of Solid-State Circuitspp. 1731-1740, Nov.
1998.

Y. Zorian, “Test requirements for embedded core-based
systems and IEEE P1500", Rroc. Int. Test Conf. (ITG)
Oct. 1997, pp. 191-199.

S. Adham, D. Bhattacharya, D. Burek, C. J. Clark,
M. Collins, G. Giles, A. Hales, E. J. Marinissen,
T. McLaurin, J. Monzel, F. Muradali, J. Rajski, R. Ra-
jsuman, M. Ricchetti, D. Stannard, J. Udell, P. Varma,
L. Whetsel, A. Zamfirescu, and Y. Zorian, “Preliminary
outline of the IEEE P1500 scalable architecture for test-
ing embedded cores”, iRroc. IEEE VLSI Test Symp.
(VTS) Apr. 1999, pp. 483-488.

R. Rajsuman, “Testing a system-on-a-chip with embed-
ded microprocessor”, iRroc. Int. Test Conf. (ITGY999,
pp. 499-508.

A. J. van de Goor, “Using march tests to test SRAMs”,
IEEE Design & Test of Computersol. 10, no. 1, pp.
8-14, Mar. 1993.

A. 6502 ASSEMBLY PROGRAM FORMARCH-C

LDX #3$$00

LDA #3$$55 ; 8 bit data background 01010101
STA 0000,X ; March element O

INX

CPX #$SFF

BNE MO

LDX #3$$00

LDA 0000,X ; March element 1

CMP #$$55 ; compare output with 01010101
BNE ERROR

LDA #ESAA

STA 0000,X ; write 10101010 to memory
INX

CPX #$SFF

BNE M1

LDX #$$00

LDA 0000,X ; March element 2

CMP #$$AA ; compare output with 10101010
BNE ERROR

LDA #$$55

STA 0000,X

INX

CPX #E$FF

BNE M2

LDX HESFF

LDA 0000,X ; March element 3

M4:

M5:

CMP
BNE
LDA
STA
DEX
CPX
BNE
LDX

LDA
CMP
BNE
LDA
STA
DEX
CPX
BNE
LDX

LDA
CMP
BNE
INX
CPX
BNE
JMP

#$$55
ERROR
HESAA
0000,X

#$$00
M3
H#ESFF

0000,X
HESAA
ERROR
#$$55
0000,X

#$$00
M4
#$$00

0000,X
#$$55
ERROR

HESFF
M5
FINISH

; compare output with 01010101 BIST: LDA
STA

LOOP: LDA
CMP
BEQ
CMP
BNE

; March element 4 RTS
; compare output with 10101010

; March element 5
; compare output with 01010101

; quit memory test program

B. 6502 ASSEMBLY PROGRAM FORPROPOSEDBIST

MO:

M1:

M2:

M3:

M4:

M5:

END:

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

LDA
STA
JSR

LDA
STA
JSR

LDA
STA
JSR

LDA
STA
JSR

LDA
STA
JSR

LDA
STA
JSR

LDA
STA
JMP

#$$55
OHFFEO
#$$00
OHFFE1
#$$00
OHFFE2
H#ESFF
OHFFE3
#$$00
OHFFE4

#$$00
OHFFES5
BIST

#$$01
OHFFES5
BIST

#$$02
OHFFES5
BIST

#$$03
OHFFES
BIST

#$$04
OHFFES5
BIST

#$$05
OHFFES5
BIST

#$$04
OHFFEG6
FINISH

SCHEME

; load data background 01010101

; write tdRgg

; load lower byte of lowest address

; write to lower byte dRa.

; load upper byte of lowest address
; write to upper byte &,

; load lower byte of highest address
; write to lower byte dRan

; load upper byte of highest address
; write to upper byte &an

; loadMg March element

; write tdRvg
; run Oth March element test

; loadM3 March element

; write tdRvie
; run 1st March element test

; loadM, March element
; write tdRvie
; run 2nd March element test

; loadM3 March element

; write tadRwg
; run 3rd March element test

; loadM4 March element

; write tdRvg
; run 4th March element test

; loadMs March element

; write tdRvie
; run 5th March element test

; loadEND instruction
s write tdRg
; exit test program

#$300
OHFFEG

OHFFE7
#$$01
ERROR
#ESFF
LOOP

; loadSTARTInstruction
; write taR R

; readRrLaG

; check iIERRORlag is set

; jump to error handling routine
; check iFINISHflag is set

; else return to main program

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

