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Abstract—The Monte-Carlo (MC) technique is a well-known
solution for statistical analysis. In contrast to probabilistic (non-
Monte Carlo) Statistical Static Timing Analysis (SSTA) techniques,
which are typically derived from simple statistical or timing
models, the MC-based SSTA technique encompasses complicated
timing and process variation models. However, a precise analysis
that involves a traditional MC-based technique requires many
timing simulation runs (1000s). In this paper, the behavior of
the critical delay of digital circuits is investigated by using a
Legendre polynomial-based ANOVA decomposition. The analysis
verifies that the variance of the critical delay is mainly due to
the pairwise interactions among the Principal Components (PCs)
of the process parameters. Based on this fact, recent progress on
the MC-based SSTA, through Latin Hypercube Sampling (LHS), is
also studied. It is shown that this technique is prone to inefficient
critical delay variance and quantile estimating. Inspired by the
decomposition observations, an efficient algorithm is proposed
which produces optimally low L2-discrepancy Quasi-MC (QMC)
samples which significantly improve the precision of critical delay
statistical estimations, compared with that of the MC, LHS, and
traditional QMC techniques.

I. INTRODUCTION

A reliable Statistical Static Timing Analysis (SSTA) is pivotal
in predicting the variabilities in digital VLSI circuits and ad-
dressing the variabilities in the design phases. Recently, several
probabilistic-based (non-Monte Carlo) SSTA techniques have
been proposed, where the signal arrival times are treated as
random variables, and the Probability Distribution Functions
(PDFs) of the circuit critical delays are achieved by proper
statistical analysis. Blaauw et al. [1] provide a recent survey
on SSTA techniques. The drawback of the current probabilistic
SSTA techniques is that, each is based on models, where
some of the timing and process variation effects are ignored or
simplified. Such effects include, the nonlinearity of gate delays
as a function of the process parameters and capacitive loads;
the nonlinearity of arrival times due to max operations, causing
non-zero skew signal arrival times; the interdependency among
input/output rise/fall time and gate delay; interconnect delay
models; non-Gaussian process parameters; and spatial/structural
correlations. Therefore, the Monte-Carlo (MC) technique has
recently attracted attentions as a suitable candidate for a reliable
and accurate timing sign-off [2], because the MC technique
can generally account for any complicated models by accepting
the excessive runtime costs. Moreover, the development and
integration costs of MC techniques are minimum, since the
available deterministic-STA engines can be maximally reused
in developing new MC-based SSTA tools. These are in addition
to the benefits of simply breaking any MC implementation into
parallel processes to reduce the overall runtime.

However, the problem of the traditional MC-based statistical
analysis technique is its slow convergence rate (O(N−1/2)).

Therefore, to achieve reasonably precise estimations of the
statistical moments of the critical delay in timing sign-off,
thousands of samples/simulations are required. The precision
of an estimation is defined in terms of the confidence inter-
val range in which the actual parameter of interest lies. For
example, the 99% confidence interval of an estimator θ̂ is[
µθ̂ − 2.576σθ̂, µθ̂ + 2.576σθ̂

]
. The standard deviation of the

estimation, σθ̂, can be obtained by repeating the experiments
with new random sample sets. It should be noted that the
objective of this paper is to reduce the runtime of the MC-
based SSTA by reducing the number of samples by improving
the precision of the estimations.

Critical Aware Latin Hypercube Sampling (CALHS [3]), a
recent study, whose focus is to improve the MC-based SSTA
precision by Latin Hypercube Sampling (LHS) and stratification,
have problems such as scalability and no significant advantage
over the traditional MC technique for the critical delay variance
estimation. The Quasi Monte Carlo (QMC) is another alternative
to the MC technique by providing a faster convergence rate for
low dimensional problems [4]. However, it will be shown and
studied later that no runtime gain can be achieved even by using
the traditionally generated QMC samples for timing variance and
quantile estimation.

The preliminaries for the MC, LHS, and QMC are presented
in Section II. In Section III, the behavior of critical delay, as
a function of the process parameters, is quantitatively analyzed
by using a Legendre polynomial-based ANOVA decomposition.
Strong bivariate monomial terms in the decomposed function
of the critical delay variance is observed, which supports the
inefficiency of the CALHS and traditional QMC. Based on
this observation, an algorithm is proposed in Section IV to
generate optimally low L2-discrepancy QMC sequences that
significantly improve the precision of estimations over those
of the MC, CALHS, and traditional QMC. Lastly, in Section
V, a complete SSTA framework is proposed by combining the
proposed enhance-precision QMC with the LHS.

II. BACKGROUND

In this section, the MC-based statistical timing analysis is
reviewed. Two advanced MC-based techniques, namely, LHS
and QMC are also investigated.

The MC is known as a powerful tool for the numerical
estimation of high-dimensional integrals. Therefore, the MC
technique can also be utilized for statistical estimations in SSTA.
Suppose, p =

{
p(1), p(2), . . . , p(d)

}
is a set of d-dimensional

process parameters with a known Joint Probability Distribution
Function (JPDF), φd (p) : �d → �. Each p(i) represents a
process parameter, including, gate length, oxide thickness, RDF-
driven threshold voltage, and interconnect dimension variations.
If D (p) is the critical delay of a circuit as a function of the
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(a) Monte Carlo Sampling (b) Latin Hypercube Sampling (c) CALHS [3], 4 × 4 stratified LHS (d) QMC Sampling (Sobol)

Fig. 1. 2-D projections of different sampling approaches. The gray squares represent areas with high or low concentration of samples.

process parameters, then the m-th statistical moment of D is
formulated as the d-dimensional integral,

E [Dm (p)] =
∫
�d

Dm (p) φ (p) dp. (1)

For the MC technique, a set of independently distributed
uniform pseudo-random vectors are generated in the [0, 1] inter-
val. Then, the set is converted through a simulation technique
(e.g., the inverse transformation method) to samples of random
variables with a given JPDF [5]. The samples are then used
to calculate the critical delay (D) statistical moments through
several calls of a deterministic-STA tool. The following is the
MC estimation of Eq. (1) by using N samples:

ÊN [Dm (p)] =
1
N

N∑
i=1

f (xi) , xi ∈ [0, 1]d (2)

where x1, x2, . . . , xN are independent and identically distrib-
uted uniform d-dimensional vectors in [0, 1]d, and f (x) =
Dm

(
Φ−1 (x)

)
, where Φ−1 : [0, 1]d → �d is the inverse

transformation function which generates samples with the JPDF
of φ (JCDF of Φ) from the uniform and i.i.d x.

However, each run of an MC-based SSTA with a new set
of pseudo-random values can lead to a different estimate for
E [Dm (p)] with an error of e = E [Dm (p)] − ÊN [Dm (p)].
The standard deviation of this error defines the probabilistic
confidence interval range of the estimator. The greater the
number of samples (N ) is, the smaller the range is. The expected
convergence rate of the MC technique is O

(
N−1/2

)
. This

indicates that to reduce the initial confidence range by ε, the
number of samples should be increased by ε2 times.

However, an important feature of the estimation error, e,
is that it is related to the equi-distribution (uniformity) of
the samples in [0, 1]d rather than their randomness. This idea
strongly suggests that by using a well-spread sequence, which
is more uniform than a pseudo-random sequence, a more precise
estimation can be achieved [4]. LHS [6] is a variance reduction
technique which increases the convergence rate by providing
more uniform samples in 1-D. This is achieved by partitioning
the [0, 1] range into equal length subranges and generating the
same number of samples in each subrange randomly. A random
permutation of the LHS samples are finally adopted to generate
the sample vectors. The uniformity of the LHS samples does not
differ from that of MC technique in projections higher than 1-D.
In the next section, it is demonstrated how this property impacts
the LHS-based SSTA. Figure 1(b) shows the 2-D projection of
the LHS-based samples. It can be seen that the samples are not
much more uniform than the traditional MC-based samples (Fig.
1(a)).

CALHS, an LHS-based SSTA approach, is proposed in [3]
and relies on criticality directed stratification to obtain a lower
estimation error. Even though, the use of CALHS is to increase
the higher dimensional unit hypercube uniformity by stratifica-
tion, the uniformity is still limited due to the finite number of
regions in each dimension (r = 4) and ignoring many other
non-stratified projections. This is demonstrated in Fig. 1(c),
where the 2-D projection uniformity is somewhat improved,
but this is the only projection which has a higher uniformity.
If more projections needed to be stratified then the number of
strata increases non-polynomially (rs, if s is the number of PCs
selected for stratification).

Instead of generating random samples by a pseudo-random
number generator, which is the base of both the traditional MC
and LHS techniques, the QMC is the technique to produce deter-
ministic low-discrepancy sequences which are more uniformly
distributed over the problem space than the random samples.
Higher than 1-D uniformity is apparent for such sequences, that
leads to a faster convergence rate than that of the MC technique.
The convergence rate of the QMC technique is O

(
logdN/N

)
which converge asymptotically faster than the MC [4]. It is
concluded that the rate is no more superior than that of the
MC, unless N > ed, which is absolutely impractical for
even moderate problems (d > 10). However, in Section III,
it is explained why this is not so in practice, and how the
QMC technique exhibits significant advantages over the MC
technique for some types of high-dimensional problems (e.g.,
high-dimensional computational finance problems [7]). Figure
1(d) depicts the 2-D projection of the QMC samples, generated
by the Sobol algorithm [8]. A very high uniformity is observed
in this projection. There are other algorithms to generate low
discrepancy sequences such as the Halton [9], Faur [10], and
Niederreiter [11].

Before closing this section, the quantitative measure of the
discrepancy in a 2-D projection is reviewed. L2 (X), the L2-
discrepancy of X , provides a measure of uniformity for N
samples X , as follows [12]:

L2 (X) =

√√√√√√√
1

N2

N∑
i=1

N∑
j=1

2∏
k=1

(
1 − max

(
x

(k)
i , x

(k)
j

))
− 1

2N

N∑
i=1

2∏
k=1

(
1 − x

(k)
i

2)
+ 3−2

(3)

where x
(k)
i is the k-th dimension of the i-th sample of X .

The lower L2 (X) is, the more uniform the distribution of the
samples is. For example, the L2-discrepancy of the samples,
depicted in Fig. 1(a) to 1(d) are 115 × 10−4, 88.3 × 10−4,
38.2 × 10−4, and 9.07 × 10−4, respectively.
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III. LEGENDRE POLYNOMIAL-BASED ANOVA
DECOMPOSITION OF CRITICAL DELAY

As mentioned in Section II, the LHS is inefficient for the
estimation of the critical delay variance and quantile point.
Moreover, it is mentioned that the QMC technique is surprisingly
efficient for high-dimensional computational finance problems.
In this section, the notion of the effective dimension is reviewed,
and a numerical technique is used to quantify the effective di-
mension of the critical delay of a digital circuit by the Legendre
polynomial-based decomposition. Finally, a discussion of the
analysis is provided to describe the reason for the weakness
of the LHS technique in SSTA, and to provide suggestions to
improve the quality of the QMC results for the variance and
quantile estimation in the Section IV.

The QMC technique’s success in computation of some high-
dimensional finance problems [7] was unexpected, given the
Koksma-Hlawka error bound of O

(
logdN/N

)
. The conver-

gence rate for such problems is roughly O
(
n−1

)
, independent

of the problem dimension. Several researchers have attempted
to explain this surprisingly good performance [13], [14]. A
qualitative explanation, applicable for any general problem, is
developed under the notation of effective dimension [15], [16].
The idea is that the integrand function f (x), defined in [0, 1]d,
can be decomposed into a sum of orthogonal functions over
the subsets of the problem variables. If a large portion of the
total function variance comes from a few random variables or
orthogonal functions with small dimensions, then the effective
dimension is significantly lower than the nominal problem
dimension, leading to more accurate results when using the
QMC.

Consequently, by using the ANalysis Of VAriance (ANOVA)
representation, f (x) can be decomposed into a sum of orthog-
onal functions of all the subsets of x, as follows:

f (x) =
∑
u⊆�

fu (x) = f0 +
d∑

i=1

fi

(
x(i)

)
+∑ ∑

i<j

fij

(
x(i), x(j)

)
+ · · · + f1···d

(
x(1), · · · , x(d)

) (4)

where �= {1, 2, · · · ,d}. The ANOVA terms are orthogonal:∫
[0,1]d

fu (x) fv (x) dx = 0 when u �= v∫ 1

0
fu (x) dx(j) = 0 for j ∈ u.

(5)

Therefore, if the variances of the integrand and the ANOVA
terms are defined as

σ2 (f) =
∫
[0,1]d

f2 (x) dx −
[∫

[0,1]d
f (x) dx

]2

σ2 (fu) =
∫
[0,1]d

f2
u (x) dx

(6)

the variance of the integrand function can be expressed as the
sum of the variances of all the orthogonal functions, as follows:

σ2 (f) =
∑
u⊆�

σ2 (fu) (7)

Consequently, the following two types of effective dimensions
are introduced in [15]:

1) The effective dimension of f in the superposition sense is
dS , if

∑
|u|≤dS

σ2 (fu) ≥ pσ2 (f)
2) The effective dimension of f in the truncation sense is

dT , if
∑

u⊆{1,2,···,dT} σ2 (fu) ≥ pσ2 (f)
where p is a proportion chosen to be less than, but close to
1. For example if 99% of the variance of f is due to the

components of x selected one at a time, the effective dimension
in the superposition sense (dS) is 1. This means the interactions
among the parameters have a negligible effect on the function.
Similarly, if dS = m, then a large portion of the integrand
variation is due to interactions of orders lower than m. Finally,
the truncation sense of effective dimension is relate to a list of
important variables. Therefore, dT = m means that the first m
variables make up most of the integrand value.

The reasons for high quality of the QMC-based estimations
due to effective dimension concept are given in [16], [17]. The
efficiency is due to the fact that the low discrepancy sequences
produce a high uniformity in the first few dimensions (≤ 12)
or low order projections (≤ 3). Therefore, if most of the
function variance comes from some few variables or low order
interactions of all the variables, the QMC provides a better
estimation than the MC-based techniques.

In this section, a numerical technique, first reported in [18],
[19], is used to estimate the effective dimension of the statis-
tical mean and standard deviation of a digital circuit’s critical
delay. To perform the estimation, the technique utilizes shifted
Legendre polynomial functions as orthogonal function bases for
the purpose of the integrand decomposition. Shifted Legendre
polynomials are orthogonal in the [0, 1] range [19]. Therefore,
f (x) is decomposed by

f (x) =
∞∑

r1=0

· · ·
∞∑

rd=0

cr

d∏
j=1

φrj

(
x(j)

)
(8)

where φn(x) =
[∫ 1

0
p2

n (2x − 1) dx
]−0.5

pn (2x − 1) is the n-

th order shifted and scaled Legendre polynomial, if pn (x) is
the n-th Legendre polynomial, and cr is the constant coefficient
for the combination of r = (r1, · · · , rd) which is calculated as
follows:

cr =
∫

[0,1]d
f (x)

d∏
j=1

φrj

(
x(j)

)
. (9)

The unbiased estimator for cr is estimated by the MC tech-
nique as follows [18]:

c2
r =

1
N (N − 1)




(
N∑

k=1

f (xk)
d∏

j=1

φrj

(
x

(j)
k

))2

−
N∑

k=1

f2 (xk)
d∏

j=1

φ2
rj

(
x

(j)
k

)

 (10)

Finally, the effective dimensions of the integrand are estimated
by setting σ2 (fu) =

∑
r∈R(u)

c2
r, where

R (u) =


{r1, · · · , rd}

∣∣∣∣∣∣∣∣
rj ∈ Z, 0 ≤ rj ≤ o
rj = 0 ↔ j /∈ u

d∑
j=1

rj ≤ m


 (11)

where m and o are the maximum degree and order of the basis
functions.

By using this numerical method, the effective dimensions of
the ISCAS85 benchmark circuits critical delays are estimated
and found to be one in the superposition sense. This occurs
because the process parameters with spatial correlations such as
gate length (Lg) contribute the most to the variance of the delay
of long paths, which are most likely to be critical. The parame-
ters produce additive-form functions of the singular monomials
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for the critical delays. In fact, the spatial statistically-correlated
process parameters are decomposed into linear additive form
of independent PCs by PCA [20]. Therefore, the delay of a
gate, and finally, of a path has strong additive singular terms
considering strong linear dependence between gate delay and
process parameters. This idea results in one of the advanced
probabilistic SSTA techniques in [20]. The analysis, described in
this paper, indicates that for the sample C6288 benchmark, and
for a maximum of the seventh order (o = 7),

∑
|u|=1 σ2 (fu) =

0.995σ2 (f) for the critical delay mean, suggesting that the
mean is effectively 1-D in superposition sense. However, in
computing the standard deviation effective dimension, only 1%
of the total σ2 (f) is found to be due to 1-D Legendre terms,
wheras more than 98% is due to the 2-D polynomials. The
reason for this is that when the standard deviation of an additive
function of singular monomials is computed, the square of that
function shows a strong pairing of monomials, leading to an
additive function of bivariate monomials. This confirms that
the effective dimension of the variance estimation is two in
superposition sense.

It is now possible to predict that the LHS-based technique
can provide a precise estimation of the critical delay mean as
LHS-based samples are highly uniform in 1-D. However, no
significant improvement in the standard deviation estimation can
be achieved theoretically by the LHS-based SSTA since they do
not provide a high 2-D uniformity. This conclusion is supported
by the CALHS simulation results, presented in Section VI.

One other important conclusion is derived from the fact that
the critical delay standard deviation is effectively 2-D. That
is, to employ any QMC sequence for the SSTA effectively, it
must be examined closely in terms of its L2 discrepancy (2-D
uniformity), and possibly improved in that sense.

IV. PROPOSED ALGORITHM FOR LOW L2-DISCREPANCY

SOBOL SEQUENCES SUITABLE FOR SSTA

As seen in Section III, to efficiently estimate the mean and
variance of a critical delay, a sampling technique is required
that provides a high uniformity in at least 2-D projections.
The QMC sequences are appropriate choices for this purpose.
The Sobol [8] is a low discrepancy QMC sequence which is
preferred over many other QMC sequences [9]–[11], especially
for high-dimensional problems, due to faster generation, easier
implementation, and a higher uniformity for both 1-D and 2-D
projections [21]. However, due to the finite number of samples,
even in the Sobol sequence, many 2-D projections show a high
discrepancy, which is undesirable for an efficient SSTA analysis.
Figure 2 illustrates some bad 2-D pairings for 1023 Sobol
samples. It is evident that some regions of the 2-D projections
are entirely empty. In contrast, an example of a good pairing is
depicted in Fig. 1(d).

In this section, an algorithm is proposed which modifies the
traditional Sobol algorithm to generate sequences with as many
good pairings as possible, that is suitable for the SSTA. It is
noteworthy that the high-dimensional finance problems have
significant 1-D portions [18]. As a result, the QMC technique
performs fairly well with no need to further optimize the
Sobol sequence to generate better 2-D projections. Moreover,
it is incorrectly assumed that it is not possible to predict a
poor pairing, prior to the generation a complete sequence [21].
However, it is shown in this paper that, the bad pairing of the
dimensions can, in fact, be detected in advance. Finally, two

algorithm are proposed to detect the bad pairings and to generate
the optimum Sobol sequences with minimum L2-discrepancies.

Before this, a brief description of the Sobol sequence gen-
eration algorithm is given in the next subsection to show
how a Sobol sequence can be improved in terms of its L2-
discrepancies.

A. Generating a Sobol Sequence

The Sobol sequence generation algorithm [8] is briefly re-
viewed now. To generate N samples of a d-dimensional Sobol
sequence, x

(j)
i , where i = 1, · · · , N and j = 1, · · · , d, each

x
(j)
i can be generated from the following:

x
(j)
i = a1v

(j)
1 ⊕ a2v

(j)
2 ⊕ · · · ⊕ aW v

(j)
W (12)

where ⊕ denotes a bitwise XOR operation, v
(j)
k are direction

numbers, and the ai ∈ {0, 1} coefficients are extracted from
the binary representation of the Gray code of i, G (i) =∑W

k=0 ak2k. The Gray code of i is defined as G (i) = i ⊕
int

[
i
2

]
, where int [x] represents the largest integer inferior or

equal to x. Thus, W = [log2 i].
For example, to find x

(j)
25 , the following steps are taken:

i = 25 → G (i) = 11001 ⊕ 01100 = 10101
and hence, x

(j)
25 = v

(j)
1 ⊕ v

(j)
3 ⊕ v

(j)
5

(13)

where each direction number, v
(j)
k , is a binary fraction that is

written as
v
(j)
k = m

(j)
k

/
2k (14)

where m
(j)
k is an odd integer, 0 < m

(j)
k < 2k for k = 1, · · · ,W .

For each dimension j, a sequence of integers m
(j)
k is defined

by a q-term recurrence relation as

m
(j)
i =

2b
(j)
1 m

(j)
i−1 ⊕ 22b

(j)
2 m

(j)
i−2 ⊕ · · ·

⊕2q−1b
(j)
q−1m

(j)
i−q+1⊕

(
2qm

(j)
i−q ⊕ m

(j)
i−q

) (15)

where b
(j)
k ∈ {0, 1}, k = 1, · · · , q − 1 are the coefficients of a

q-degree primitive polynomial [22] specified for each dimension
j. Jaeckel [23] offers a CD containing more than 8 million
primitive polynomials up to degree 27 to be used for the Sobol
generation.

It is evident in each dimension that there is a great deal
of flexibility in choosing the initial values (m(j)

1 , · · · ,m(j)
q ),

whereas the remaining (m(j)
q+1, · · · ,m(j)

W ) is generated through
the q-degree recurrence relation of Eq. (15). The constraints on
the initial values m

(j)
k for k = 1, · · · , q are that they must be

odd integers and less than 2k; therefore, for a dimension with
a q-degree primitive polynomial, there are 2q(q−1)/2 possible
choices in selecting the initial values. Consequently, a random
technique is traditionally used to choose the initial m

(j)
k terms

for each dimension in [23].
By referring back to Fig. 2, to fill the empty regions and

increase the uniformity of the samples, either more samples
are needed or the initial values of the corresponding dimension
should be changed. This is where the newly developed technique
enters to picture. As a result, the objective of this part of the
work is to pick a set of initial values which reduces the bad
pairings as much as possible. Sobol, himself, has realized the
importance of the initial values on the quality of the generated
sequences, and proposed two properties to increase the unifor-
mity of the samples [24]. However, to satisfy Sobol’s proposed
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(a) L2 = 8.02e − 2 (b) L2 = 4.04e − 2 (c) L2 = 2.07e − 2 (d) L2 = 1.06e − 2

Fig. 2. Some bad (high L2-discrepancy) pairing of Sobol samples

properties, 22d samples are needed that is not practical for even
moderate dimensional problems. Also, the property does not
have anything to do with 2-D uniformity [21], [25]. Cheng
and Druzdzel have defined a measure of 2-D uniformity and
proposed a search algorithm to find a set of initial values with
a high defined uniformity [26]. The drawback to their technique
is that the number of samples and dimensions must be known in
advance. Moreover, their technique re-produce Sobol sequences
and re-evaluate their defined discrepancy measure in each iter-
ation (after an initial value update) substantially increasing the
runtime for large number of samples and dimensions. This is
due to the incorrect assumption that poor dimension pairings
cannot be found prior to the generation of sequences [21].

B. Optimizing the Initial Values to Maximize the Uniformity

To perform any optimization of the initial values, it is critical
that the algorithm which is used to determine the L2-discrepancy
can generate the estimation efficiently. Otherwise, even though
the process of finding the optimum initial values is a one-time
task, it will not be tractable for large number of samples and
dimensions. The naive implementation of Eq. (3) is O

(
N2

)
,

and the fastest implementation of that requires O(N (logN)2)
operations [27]. This is in addition to the need for regenerating
N Sobol samples each time an initial value is updated.

However, we show that not only there is no need to generate
Sobol sequences for L2 calculation but also there is even no
need to calculate L2 from Eq. (3) to detect the bad pairings
of dimensions. This task can be performed by defining some
Boolean rules over the binary representation of the direction
values. In another words, the bad pairings can be foreseen in
advance by boolean investigating of initial values from the first
point. Let’s define the following notation: suppose v

(j)
i,b is the

b-th most-significant bit of the binary representation of v
(j)
i , the

i-th direction value of the j-th dimension. And x
(j)
s,b is the b-th

MSB of the binary representation of x
(j)
s , the s-th Sobol sample

of the j-th dimension. Therefore, from Eq. (12), the following
relation is derived:

x
(j)
s,b = a1v

(j)
1,b ⊕ a2v

(j)
2,b ⊕ · · · ⊕ aW v

(j)
W,b (16)

From this simple relation, several Boolean rules are derived
to predict the way the Sobol samples cover each projection. For
example, a simplest rule is:

if ∀i = 1, · · · ,W v
(d1)
i,1 = v

(d2)
i,1

⇒ ∀s = 1, · · · , 2W − 1 x
(d1)
i,1 = x

(d2)
i,1

(17)

which means up to the (2W − 1)-th sample, the projection of
the d1-th and d2-th dimensions is similar to that in Fig. 2(a),

since, x
(d1)
i < 0.5 ⇔ x

(d2)
i < 0.5. It is evident how fast such

bad pairing can be detected.
More complicated rules can be achieved by using the bitwise

XOR operation. For example, a pattern, similar to the one in
Fig. 2(b) is generated, if ∀i = 1, · · · ,W v

(d1)
i,1 ⊕ v

(d1)
i,2 =

v
(d2)
i,1 . Fortunately, a generic rule can be derived for such binary

rules, for as high as the degree which is required. Moreover, a
range for the L2-discrepancy of the samples can be achieved for
each rule. Here, is the general form of such binary rules and its
corresponding L2-discrepancy (L2),

if ∀i = 1, · · · ,W
v
(d1)
i,r ⊕ ∑

u∈lm

v
(d1)
i,u ⊕ v

(d1)
i,m = v

(d2)
i,r ⊕ ∑

ν∈ln

v
(d2)
i,ν ⊕ v

(d2)
i,n

⇒ for first 2W − 1 samples :
0.08 × 2(1−m−n) > L2 (X, d1, d2) > 0.08 × 2(2−m−n)

(18)
where

∑
is a bitwise XOR operator, and lm ⊆

{r + 1, · · · ,m − 1}. The L2 value reduces to half when m or n
increases by one. This occurs because the L2-discrepancy relates
to the area of the largest rectangle with a constant number of
samples, in the projection [4]. For example the areas of such
rectangles are 0.5, 0.25, 0.125, and 0.0625 in Fig. 2, respectively,
as the their L2 values reduce with the same rate.

Algorithm 1 and 2 are developed according to the defined
general Boolean rule of (18) to extract the lower bound of the
L2-discrepancy.

Finally, a simulation annealing optimization engine is devel-
oped which minimizes the number of bad pairings by switching
the appropriate bits of the initial values. For a given W , the ob-
jective of the optimizer is to limit the maximum L2-discrepancy
of the pairs of dimensions d = {1, · · · , 2W−MaxW }, less
than 0.08/2MaxW−1, where MaxW = 1, · · · ,W − 1. There-
fore, any pairing with {2W−MaxW−1, · · · , 2W−MaxW } di-
mensions from the lower dimensions should only be veri-
fied to satisfy as much as the L2 < 0.08/2MaxW−1 con-
dition, speeding the L2-discrepancy computation process. Fi-
nally, to make the optimizer converge faster, it is only the
first MaxW bits of the initial values in the dimensions of
(d = {2W−MaxW−1, · · · , 2W−MaxW }) which are included in
the search during the optimization. Moreover, the simulation an-
nealing engine is directed by an initial value selection criterion,
giving high priority to those dimensions that have the worst
discrepancies.

Figure 3 reflects the distribution of the calculated L2-
discrepancies (base on Eq. (3)) before and after the initial values
are optimized. As depicted in Fig. 3(d), even for the first few
dimensions (1, · · · , 32) before optimization, some pairs have
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Algorithm 1 Calculate L2 (MaxW )
for cnt = 1 to MaxW do

if cnt is even then
mx ⇐ (cnt/2) − 1

else
mx ⇐ (cnt − 1)/2

end if
if mx < 0 then

mx ⇐ 0
end if
s1 ⇐ non-empty subsets of set: {0, · · · ,mx}
for i = 1 to N (s1) do

w1 ⇐ s1(i)
m ⇐ last element of w1

s2 ⇐ all subsets of set: {w1(1) + 1, · · · , cnt − m − 2}
for j = 1 to N (s2) do

w2 ⇐ s2(j)
ne ⇐ N (w2)
for k = ne down to 1 do

w2(k + 1) ⇐ w2(k)
end for
w2(1) ⇐ w1(1)
w2(ne + 2) ⇐ cnt − m − 1
if (CheckRule(w1, w2) or CheckRule(w2, w1)) is true
then

return 0.08/2(cnt−1)

end if
end for

end for
end for
return 0

Algorithm 2 CheckRule(w1, w2)
for i = 1 to W do

d1xor ⇐ false
for j = 1 to N (w1) do

d1xor ⇐ d1xor ⊕ v
(d1)
i,w1(j)+1

end for
d2xor ⇐ false
for j = 1 to N (w2) do

d2xor ⇐ d2xor ⊕ v
(d2)
i,w2(j)+1

end for
if d1xor �= d2xor then

return false
end if

end for
return true

very high discrepancies (L2 > 0.08) and many others have
discrepancies higher than the maximum of the optimized version
(L2 > 0.01). However, as shown in Fig. 3(e)-3(h) for the
optimized version, the maximum discrepancy reduces to half
in each step from 256 dimensions down to 32.

V. THE PROPOSED SSTA

The proposed SSTA framework is established by combining
low discrepancy Sobol sequences and the LHS technique. The
number of each type is related to the total number number of
samples. For a given number of samples N = 2W − 1, 2W−1

Algorithm 3 Optimize Initial Values (W )
Generate initial IVs
Compute L2s for all pairs
Initialize priorities of IVs based on L2 values
while there is a bad pairing (L2 > 0) do

while inner-loop criterion do
Randomly select an IV, directed by priorities
Switch the value of an appropriate bit
Update the altered pairings’ L2s
if accept(Pairing cost, Temperature) then

Apply the changed bit to the selected IV
end if

end while
Update Temperature

end while

dimensions use Sobol samples, whereas the reminder dimensions
use LHS samples.

The optimum initial values of the Sobol generator for a given
W is pre-computed and stored by using the algorithm, proposed
in Section IV. Since the Sobol samples provide low 1-D and
2-D discrepancies, they are prioritized for assigning them to
PCs of the process parameters. As discussed in Section III, the
PCs contribute the most to the variance of critical delay. The
LHS samples are used to provide samples for the non-spatially
correlated process parameters (e.g., RDF) or any remaining PCs
to provide an efficient mean estimation.

The number of Sobol dimensions is limited (2W−1) for a
given number of samples. However approaching the first dimen-
sion, the 2-D uniformities increase. Therefore, it is beneficial to
order the PCs, so that the most important components, which
contribute more to the circuit critical delay, use the lower
discrepancy dimensions. Consequently, a weight is assigned for
each PC as a measure of its criticality. The following is used to
derive the criticality of each PC:

ci =
p∑

j=1

ψi,j

Nj∑
k=1

exp

{
α ·

(
Slackj,k

Dnom

)2
}

(19)

where ci is the measure of the criticality of the i-th principal
component, p is the number of PCs, ψi,j is the coefficient of the
j-th PC in the i-th grid variable (obtained from the PC analysis
[20]), Nj is the number of logic cells in the j-th grid, Slackj,k

is the slack of the k-th cell in the j-th grid, Dnom is the nominal
critical delay of the circuit, and α < 0 is a constant factor.

As a result, if a grid has many close-to-zero slack cells and/or
its neighboring grids have many close-to-zero slack cells, the
corresponding PC of that grid has a high criticality.

The PCs are then ordered, based on their criticalities and then
assigned to the Sobol dimensions, sequentially. If there are more
Sobol dimensions than PCs, the remaining Sobol dimensions
are assigned to some of the non-correlated process parameters,
according to a simple criticality measure for them, equal to −1×
slackcell. Thus, the smaller the slack of a cell is, the higher the
probability that the non-correlated parameters of that cell are
assigned to the Sobol samples.

VI. RESULTS AND DISCUSSIONS

To verify the efficiency of the proposed technique, the
ICCAS85 benchmark circuits are employed. The gate length
variation is assumed to be Gaussian and spatially-correlated
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Fig. 3. Distribution of L2-discrepancies for 511 Sobol samples using (top) random initial values and (bottom) optimized initial values.
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Fig. 4. Comparison of the confidence interval range of C6288 SSTA statistics by using different MC-based techniques.

with σL = 12% (the technique can generally accept any other
type of distribution). In addition, the RDF-driven vth variation
is picked as the list of non-correlated random parameters. The
results of the C6288 circuit, the largest benchmark, are chosen
to provide a comparison of the algorithms in a high-dimensional
case. All the other benchmarks exhibit the same superiority
for the newly developed technique. The Capo [28] placer is
selected to place the logic cells in order to determine the
correlation coefficients of the spatial parameters. The area of
the die of C6288 is partitioned into 11 × 11 = 121 grids.
The timing response surfaces of the logic cells are characterized
quadratically to deliver a high quality approximation in terms
of process parameters based on a 65 nm CMOS industrial
technology. The output rise/fall and the the gate propagation
delay are expressed as functions of input rise/fall time, output
load, gate length, and thereshold voltage.

The traditional MC, CALHS [3], traditional (non-optimized
IV) QMC techniques, and mixed traditional QMC with the LHS
techniques are compared with the proposed technique, a mixed
low discrepancy (optimized IV) QMC with the LHS. The 99%

confidence interval range of the mean, standard deviation, and
99-th quantile point of the C6288 critical delay are compared
as the measures of the precision. This confidence interval is
achieved by rerunning the experiments 2000 times for each
technique and finding the standard deviation of the three re-
ported statistics (mean, std, and 99-th quantile point). For the
QMC-based samples, rerunning the original Sobol generator
does not generate different sequences. Therefore, the scrambing
technique, proposed for such purposes in [29], is used.

It is evident in Fig. 4 that except for the traditional MC, all the
techniques perform well in the estimation of the mean of critical
delay. However, only the proposed technique exhibits a signifi-
cant superiority over the others including CALHS in estimating
the critical delay variance and quantile point. Therefore, the 99th
quantile point of the circuit’s critical delay, the parameter of
interest in the SSTA analysis, can be estimated more precisely
by using the novel technique. It also can be seen that the
convergence rate of the proposed technique, in estimating both
the mean and standard deviation, approaches O(N−1), when
the number of samples increases, because the initial values are
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Fig. 5. The ratio of the runtime speedup of the proposed technique over the
traditional MC to achieve a required confidence interval of the 99-th quantile
point.

appropriately optimized to deal with an effectively 2-D problem.
Figure 5 shows the runtime speed up ratio of the proposed

technique over the traditional MC versus the required confidence
interval range of the quantile estimation. The ratio begins with
1.4X for a very wide confidence interval and increases almost
linearly with the same rate of the required confidence range.
The reason for such an aggressive (almost linear) increase
in the runtime gain is that the ratio between the error of
the MC and proposed technique is close to O

(
N1/2

)
=

O
(
N−1/2

)
/O

(
N−1

)
. Therefore, the number of samples to

achieve a similar error as the traditional MC increases linearly,
O (N) = O

(
(N1/2)2

)
.

Finally, it is noteworthy that, thanks to the unbiasness of LHS
and QMC estimations, not only is the confidence interval range
reduced in the proposed technique, but also are the actual values
of the estimations (mean, standard deviation, and quantile point)
unbiased and agree with the MC results.

VII. CONCLUSION

In this paper, an efficient MC-based SSTA technique is
proposed that requires a significantly lower number of samples
than the MC technique to provide statistical estimations with
the same confidence interval range. The technique is established
in relation to the fact that the variance of the circuit critical
delays is strongly due to the pairwise interaction among the
PCs of process parameters. This fact is verified by using a
Legendre polynomial-based decomposition method. As a result,
it is shown that the LHS technique, by itself, is not a suitable
candidate for SSTA since LHS does not provide highly uniform
samples in 2-D projections. The QMC sequence, Sobol, is
chosen as another alternative; however, the poor pairings of some
projections lead to no improvement in the variance estimation.
Consequently, an optimization technique is proposed which
manipulates the initial values, used in the Sobol generator, to
provide samples with a higher 2-D uniformity. An SSTA tech-
nique is finally formed by combining the pre-optimized Sobol
sequences and LH samples in a critical-aware framework. The
significant reduction in required runtime for quantile estimation
promises a faster timing sign-off of digital VLSI circuits.
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