
ROAdNoC: Runtime Observability for an Adaptive
Network on Chip Architecture
Mohammad Abdullah Al Faruque, Thomas Ebi, and Jörg Henkel

University of Karlsruhe, Chair for Embedded Systems, Karlsruhe, Germany
{alfaruque, ebi, henkel} @ informatik.uni-karlsruhe.de

Abstract— Hard-to-predict system behavior and/or reliability
issues resulting from migrating to new technology nodes requires
considering runtime adaptivity in future on-chip systems. Run-
time observability is a prerequisite for runtime adaptivity as it
is providing necessary system information gathered on-the-fly.

We are presenting the first comprehensive runtime observabil-
ity infrastructure for an adaptive network on chip architecture
which is flexible (e.g. in choosing the routing path), hardly
intrusive, and requires little additional overhead (around 0.7% of
the total link bandwidth). The hardware overhead is negligible,
too, and is in fact less than the hardware savings due to
resource multiplexing capabilities that are achieved through
runtime observability/adaptivity. As an example, our on-demand
buffer assignment scheme increases the buffer utilization and
decreases the overall buffer requirements by an average of 42%
(the buffer area amounts to about 60% of the entire router
area [19]) in our case study analysis compared to a fixed buffer
assignment scheme [7]. Our runtime observability on an average
also increases the connection success rate by 62% compared to
the case without runtime observability for the applications from
the E3S benchmark suite [6]. We show the advantages obtained
through runtime observability and compare with state-of-the art
communication-centric designs.

I. INTRODUCTION AND MOTIVATION

The 100 Billion transistor chip is predicted to emerge within
a decade [3]. It will allow for integration of hundreds or even
thousands of processor cores on a single die. It is obvious
that such a large number of cores requires a sophisticated
on-chip communication architecture. Hence, it is anticipated
that future designs need to be communication-centric [3]. The
fact that interconnects need special attention even in current
Multi Processor Systems on Chip (MPSoCs) has already been
recognized several years ago when research started to focus
on Networks on Chip (NoCs) [5], [9]. Application specific
NoCs [1], [14], are design-time parameterized architectures
with a custom topology, fixed routing scheme, and a fixed
number of allowed virtual connections at each output port [1],
[7]. They are generally tailor-made for a certain application
or an application domain and fail in scenarios of hard-to-
predict system behavior and/or in situations where reliability
is a concern. Some scenarios are as follows :

• The system constraints may change during runtime.
• The user of the system may change their pattern of how

to operate/use the system.
• Smaller feature sizes in the nano age will cause reliability

concerns. It will require building future reliable systems
out of un-reliable components [3].

A reliable communication-centric System on Chip (SoC) may,
for example, depend upon the ability of the NoC to route
traffic in such a way that it can efficiently bypass faulty
areas at runtime. All these scenarios – from user behavior to
reliability issues – require designing systems with adaptivity
capabilities in mind which allow application variations and to
react on faulty situations accordingly. Adaptivity is required
in both the system-level as well as in the architecture-level
where it is realized through modification thereof, or even new
paradigms in architectural design. We consider the software

part between the application and the underlying hardware
layer executed in the processing element as the system-
level and the data transmission part which is implemented in
hardware as the architecture-level. Changes in user behavior,
system constraints, and/or reliability issues can be effectively
compensated at system-level by, for instance, dynamically
(re-)mapping a running application at runtime. Architecture-
level modifications on the other side may help to increase the
resource utilization at runtime as proposed in [7].

In order to assure a certain degree of quality-of-service
(e.g. guarantees in performance and bandwidth), a feedback
of the current system state must be available. This can be
achieved through runtime observability in an adaptive system.
A runtime observability infrastructure with small hardware
and communication overheads would be more than compen-
sated by the degree of freedom achieved using adaptation.
Within this paper we propose an event-based NoC monitoring
component1 at architecture-level that offers runtime observ-
ability. The prime challenges for runtime observability are
scalability, flexibility, non-intrusiveness, real-time capabilities,
and cost. For the monitoring components to be as non-intrusive
as possible, they need to keep their interference with normal
system execution (probe effects) [12] at a minimum. An
example of these effects would be the sending of monitoring
packets2 through the regular data network. If these packets are
injected too rapidly, they demand resources which otherwise
may have been used for regular traffic. It is therefore necessary
to limit monitoring traffic by keeping its bandwidth usage and
occurrence frequency minimal.

The rest of the paper is organized as follows. After present-
ing our novel contribution and related work in II, in III we
introduce our adaptive on-chip communication architecture. In
IV our novel ROAdNoC infrastructure is explained in detail.
Our hardware implementation for the monitoring components
is shown in V. Experimental results are discussed in VI with
VII concluding the paper.

II. RELATED WORK AND OUR NOVEL CONTRIBUTION

Runtime adaptivity in both the system-level and the
architecture-level considering the user behavior and reliability
issues, is a relatively new aspect of SoC design introduced
in [7], [10]. Recently, several general-purpose NoCs such
as Tile64TM, an embedded multicore by Tilera [19], and an
80-core general-purpose processor from Intel [11] have been
proposed. They are design-time parametrized (e.g. the number
of output ports and the worst case amount of concurrent virtual
connections in a single output port) but focus more on general-
purpose issues and are hardly capable of changing different
architecture-level parameters such as buffer assignments to
different output ports on-demand and thus suffer from low

1In this paper we denote runtime observability as a complete infrastruc-
ture and monitoring as a hardware component attached to each tile.

2This is the traffic that is generated during runtime observation of the
system state and is described in detail later in this paper.

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 543

Fig. 1. Overview of our adaptive on-chip communication architecture

resource utilization. They also lack a sophisticated resource
management scheme (e.g. runtime application (re-)mapping).

There is also related work in the domain of on-demand
interconnection schemes in different problem spaces. In [18]
the authors proposed to provide interconnection on-demand by
adapting the physical network. The required number of links
increases exponentially relative to the number of processing el-
ements making this approach non-scalable. In [16] the authors
have proposed a power-aware network whose links are turned
on and off on-demand in response to bursts and dips of traffic.
Their approach assumes that future traffic characteristics are
predicable based on recent traffic patterns which may not be
possible in situations similar to those we itemized earlier. In
[2] the authors present a dynamic communication infrastruc-
ture which routes traffic around modules placed dynamically
on a reconfigurable device. It is built on top of a reconfigurable
hardware, i.e. on an FPGA and it is limited to such devices.

In summary, it can be stated that observability capabilities
for on-chip communication have not been proactively inves-
tigated in the NoC domain. In [13] authors have mentioned
an operating system controlled on-chip runtime collection of
traffic statistics at the Network Interface (NI) to optimize
the usage of communication resources in a NoC using a
centralized resource management scheme. In [4] authors have
presented a generic event-based NoC Monitoring Service
(NoCMS) for Æthereal. It is not designed specifically to
detect faults in network traffic during runtime adaptation but
instead to gather NoC behavior statistics (debugging). In [17]
authors further used the monitoring probes proposed in [4]
for a new communication service to control congestion. In
a nutshell, the Æthereal monitoring framework is not used
to adapt the underlying on-chip communication architecture.
Runtime observability is also not included in general-purpose
NoCs (e.g. [11], [19]) as these architectures do not adapt at
the architecture-level to increase resource utilization. Recently,
authors in [15] have also focused on self-monitoring compo-
nents for NoCs considering reliability factors.

We have integrated a runtime observability infrastructure
for our adaptive NoC at the architecture-level. It analyzes the
communication infrastructure during runtime and self-adapts
depending on the monitoring traffic on when and how a certain
router should be configured for a certain connection. Our
runtime observability infrastructure on an average increases

the connection success rate by 62% compared to having
no runtime observability for the automotive application from
the E3S benchmark suite [6]. The extra overhead that stems
from the monitoring component is smaller than the hardware
saving due to resource multiplexing in the architecture. Our
on-demand buffer assignment scheme increases the buffer
utilization and decreases the overall buffer use on an average of
42% in our experiment compared to a fixed buffer assignment
scheme [7]. Our novel contribution is as follows:
To employ successful adaptation to the communication infras-
tructure needs to be observed. Therefore, to provide runtime
observability for realizing a successful on-demand adaptation,
we present a novel low cost runtime observability infrastruc-
ture. It is highly flexible and hardly intrusive.

III. OUR RUNTIME ADAPTIVE APPROACH

As most NoCs, our adaptive on-chip communication archi-
tecture is pipelined, utilizes packet-based communication, de-
ploys wormhole routing, and has a regular 2-D mesh topology.
The overview of our adaptive scheme shown in Fig. 1 is di-
vided into two main parts along with the runtime observability
infrastructure, the system-level, and the architecture-level.

The adaptivity at system-level is deployed using a runtime
agent-based distributed application mapping scheme. An agent
is a computational entity, realized in software, that acts on
behalf of other entities. A detailed description of our agent-
based runtime application mapping is presented in [8]. The
architecture-level handles the runtime routing algorithm and
the on-demand VCB3 assignment besides the normal data-
flow functionalities of the router. To accomplish a successful
adaptation, both the system-level and the architecture-level
require runtime observability.

A. System-level Adaptation

Our proposed agent-based distributed application mapping
algorithm dynamically maps applications at runtime as needed.
Therefore, one or more application tasks are mapped onto
NoC tiles which fulfill the task’s requirements (computa-
tion/communication). The detailed scheme is explained in [8].
To obtain a scalable mapping solution we have reduced the

3A Virtual Channel (VC) is a unidirectional virtual connection between
two tiles and is realized by message buffers, Virtual Channel Buffers (VCB).

544

computation load by confining mapping to clusters which are
a connected subset of NoC tiles. The clusters have a variable
size that can be adjusted during runtime and each cluster has
one cluster agent which is responsible for (re-)mapping.

Among others, there are two main reasons for (re-)mapping.
The first is due to changing user behavior, i.e. new application
tasks scheduled to run at a specific time t. The second is
as a response to faults during adaptation reported by the
monitoring component associated with the cluster agent. This
causes the cluster agent to attempt to update the current map-
ping instance based on received information (i.e. connection
source, destination tiles, and fault type). This limits the more
expensive complete (re-)mappings to when they are absolutely
needed. If the cluster agent is unable to find a new mapping
instance it contacts a global agent. These special agents
are responsible for cluster selection, coordination, and re-
clustering. The global agent then first tries to resize the cluster
associated with the cluster agent. If this fails, a different cluster
is chosen and a new mapping is done. The actual mapping is
accomplished using a heuristic which is also explained in [8].
All agents are implemented in software and may be migrated
to run on any PE in every tile within their deployment area. All
the information necessary to manage a cluster/global agent is
stored in the local memory associated with the tile where the
current instance of the cluster/global agent dwells. No extra
hardware is necessary for managing this information and it is
transmitted as regular system configuration traffic.

B. Architecture-level Adaptation
Once a mapping instance has been set up at the system-

level, the architecture-level must then handle the resulting
connections in every tile. For a requesting connection, the
route is first checked in every possible direction and the
VCB is assigned accordingly on-demand. The adaptive routing
algorithm assigns each output port a weight based on available
bandwidth, the horizontal distance, and the vertical distance
between the current and the destination tiles which maximizes
the number of sensible routing choices along its route.

Up until now, the number of VCBs at one port has always
been fixed at design-time [1], [11]. With on-demand assign-
ment (the runtime routing algorithm and on-demand buffer
assignment schemes are explained in [7]), the VCBs are not
tied to ports, but only to the router itself. The router may
distribute the VCBs to any route as needed by assigning a
connection to the VCB through the Virtual Channel Arbiter
(VCA) and then assigning the VCB to an output port. The
benefits of such an on-demand assignment are evident: through
on-demand assignment, buffers are only assigned when needed
meaning that VCBs can be reused by different ports and
therefore, the buffer utilization increases and that decreases
the overall buffer use on an average of 42% in our case study
analysis compared to a fixed buffer assignment scheme [7].

IV. RUNTIME OBSERVABILITY INFRASTRUCTURE

After explaining the main features of our NoC platform
we now focus on the contribution of this paper. Our Runtime
Observability for an Adaptive Network on Chip (ROAdNoC)
that supports successful architecture-level adaptation is imple-
mented using monitoring components inside each tile.

A. Events
ROAdNoC is event-based. Events are caused by failures in

a subsystem of an individual router: i.e. the adaptive routing
algorithm. The list of events are explained in the following:4

4The event list is generic and can be enhanced depending on the
architecture. It covers our on-demand buffer assignment and routing algorithm.

Fig. 2. Overview of the monitoring component

• TTL-expire-event: In order to assure deadlock-free rout-
ing, each packet is given a maximum time-to-live (TTL)
hop count. If a packet fails to reach its destination within
the TTL, it is removed from the network. The TTL is
the Manhattan Distance plus a given maximum number
of misroutes.

• No-route-found-event: If the routing algorithm fails to
find any available routes inside a router, i.e. there are not
enough available bandwidth slots in any direction, the
packet is removed from the network.

• No-buffer-event: If the VCA fails to find a free VCB to
hold the incoming packet it is removed from the network.

• Buffer-full-event: Occurs when the VCA already has
assigned a VCB to a connection but cannot write to it
because it is full. This does not directly result in packet
loss but is a sign of congestion in the network. This
situation is resolved automatically, however it should be
observed and be reacted to if it persists.

Unlike in Æthereal [4], these events are used to identify the
faults during NoC adaptation at architecture-level and are used
to invoke the necessary steps to remedy it. The events given
here are binary in nature; that is, either an event has occurred
or not (except buffer-full-event which is invoked for a given
specified value). This simplification eliminates the need for
attributes to be supplied for events as with the monitoring
component for Æthereal [4]. The user-configuration-events of
Æthereal (high level communication configuration events such
as connection-opened and connection-closed) are indirectly
observed. However this is only done in order to set up the
counters for each connection and to free them when the
connection closes.

B. Design and Event Collection

The monitoring component of a router for our ROAdNoC
consists of a look-up-table (LUT) containing a set of counters
for each connection going through the router. These are tied
to events which can occur in the on-demand buffer assignment
and the adaptive routing part of the router and are incremented
every time one is reported, thereby collecting data on events.

The counters are stored in the LUT with the corresponding
connection ID and the source address of a connection. In
particular, the source address can be the same address as the
monitoring component if the corresponding PE is the source
of the connection. This is a special case, as the counters

545

Conn_ID No-buffer Conn_ID No-buffer Conn_ID No-buffer Conn_ID No-buffer Conn_ID No-bufferConn_ID No-buffer

C1 1C1 C1 C1 0C1 0 M1 M1 M1 M1 M1M1

-C1 C1 C1 0 0- 0 M2 M2 M2 M2 M2M2

R1 Ri Rj R2 R1 Ri Rj R2 R1 Ri Rj R2 R1 Ri Rj R2

T1 T2 T3 T4 T6T5

Data Data Data Data

PE1 sends C1.
C1 arrives at Router R2
M2 adds C1 to ist table.

VCA of R1 fails to
find a free VC.
M2 increments
its counter.

“No-buffer” threshold
is 1, M2 sends mess-
age to M1 M2 resets
its counter.

M1 increments its
counter since thres-
hold is met,M1 sends
tail flit to R2.

M1 resets counter,
resending C1, M2
removes C1 upon
receiving tail flit.

R1 Ri Rj R2

Data

R1 Ri Rj R2

Monitor Packet

0

0 0

1

0

0

C1

C1

(Time)

Fig. 3. Runtime observability capabilities of ROAdNoC

are not only incremented by events occurring within the
router but also through messages received from monitoring
components in other routers.
Algorithm 1 Aggregation and processing of monitoring traffic

input: event e = {event type t, connection ID C,
connection source S}

definitions: X: current router; E: event queue
LUT[connection ID, event type]: event counter look-up-table
τt: given threshold for events of type t
δ: given threshold for re-sending
sc: send counter in S for C; NI: network interface
CA: cluster agent associated with X

1: get next event e from E
2: event counter ← LUT[C, t]
3: increment event counter
4: if event counter > τ then
5: if X != S then
6: send event message e = {t, C, S} to S
7: else
8: signal NI: send tail flit from packet buffer for C to close conn.
9: if sc < δ then

10: signal NI: re-send packet for C
11: else
12: send (re-)mapping message {remap,S,t} to CA
13: end if
14: end if
15: LUT[C, t] ← 0
16: else
17: LUT[C, t] ← event counter
18: end if

C. Aggregation and Processing
An adaptation fault occurs when an event counter reaches

a certain value. The event aggregation and processing scheme
is explained in Fig. 2 and the functionality upon problem
detection is given in Algorithm 1. The aggregation is done
through the NI by sending messages to the source of the
connection. The processing is done partially in the NI and
in the cluster agent. The NI takes care of re-transmission
while the cluster agent is invoked if a (re-)mapping is needed.
A time-line diagram portraying a certain scenario of the
ROAdNoC infrastructure can be seen in Fig. 3.
T1: The processing element PE1 associated with router R1

begins to send data to another PE. The NI assigns this
connection the connection ID C1. Thus, the monitoring
component M1 of R1 adds this connection to its list of
observed connections. Here, only one exemplary counter
representing the event of no-buffer being available in a
router is given. Its initial value is zero.

T2: On its way to the destination the header flit of this
connection arrives at R2. R2 is generally not reached after
one hop; the header flit may already have been routed
through other routers. Upon arrival of the header flit, C1

is added to the connection table of M2 at R2.
T3: The flit then progresses through R2 until it reaches the

VCA which fails to assign a free buffer for C1. This

event is reported to M2 which increments its no-buffer
counter. The VCA then simply discards the header flit and
all subsequent flits and does not send a NACK signal as
it would if the buffer were already successfully assigned
but simply full. This prevents blocking in previous routers
and a tail flit can arrive to close the connection.

T4: For the no-buffer counter the threshold is one. That is,
one no-buffer-event is enough to invoke a monitoring
packet from the monitoring component. M2 informs the
sender of the connection through its NI which sends a
monitoring packet to the monitoring component M1 at
time T4. At the same time, M2 resets its no-buffer counter
for connection C1.

T5: Once the monitoring packet arrives at M1 it increments
its own counter for C1 and, since the threshold is met, it
informs its NI to close the current connection C1. This
is done by simply sending a tail flit.

T6: M1 has already reset its no-buffer counter and the NI is
in the process of re-sending its data. The tail flit arrives at
R2 causing M2 to remove C1 from its connection table.

D. Monitoring Related Traffic
The monitoring component is situated partially between the

router and the NI (Fig. 2). It is therefore able to interact with
the NI to send its own packets over the regular communication
network. This means, however, that the monitoring traffic must
compete with regular transmissions for network resources. The
monitoring packet must be of a higher priority to allow it to
preempt regular connections in a VCB. When using only two
priorities, one for regular traffic and one for monitoring traffic,
a packet’s priority requires a one-bit field in the header flit. For
the rest of the fields we give an example monitoring packet in
a 4×4 NoC. It is two flits in size and is composed of a regular
header flit for transmission plus a tail flit with payload data
containing at least the triggering connection ID and the type
of event. In addition, it may also contain information such
as the source of the transmission which is used to provide
the cluster agent with additional knowledge it may exploit
during (re-)mapping. It does not require a source field in the
header since monitoring packets are not monitored themselves.
The size of the monitoring packet can be calculated from the
formulas given in Table 1.

Flit part Size n × m Size 4 × 4
Type 2 bit 2 bit

Priority log
2

(priorities) 1 bit (2 priorities)
Destination log

2
(n × m) 8 bit

TTL log
2
(n + m + 2x†) 4 bit

BW log
2

(BW slots) 3 bit (8 slots)
†x = number of misroutes

Table 1: Flit size in an n × m NoC and in a 4 × 4 NoC

546

The frequency with which monitoring packets are generated
is also important. They are event-based and are only sent when
an event occurs. Since events are only generated on faults
during adaptation, there is no monitoring traffic when the net-
work operates normally. Events can also eventually initiate (re-
)mapping which comes with a high communication overhead.
It is, however, also through observability that unnecessary (re-
)mapping can be avoided compared to a scheme where any
connection fault automatically calls for (re-)mapping.

V. HARDWARE IMPLEMENTATION

We implemented ROAdNoC and evaluated the area overhead
on a XILINX Virtex2 FPGA [20] board. The event-counter
values are stored in an LUT. One entry in the LUT ties the
connection ID to the source of the connection and to its
associated counters. If there are n VCBs and k inputs, then
(n+k) entries are needed. Connections are added to the LUT
when a header flit arrives at a router (Fig. 4(b)). The arrival
causes the set and configure flags to be triggered, initiating
a write to the LUT and setting the counter values to zero.
Similarly, a tail flit arriving at the router causes the configure
flag to be triggered while the set flag remains zero. This causes
the monitoring component to remove the connection from the
LUT. Once an event occurs it initiates a read from the LUT
using the event connection ID (Fig. 4(a)). It then compares
the counter value returned from the LUT of the event type
corresponding to the event type that arrived. If the counter
value has reached its threshold, the NI part of the monitoring
component is informed and the counter value is set to zero in
the LUT. If not, the incremented value is written to the LUT.

NI

Resend
Threshold

Remap

Own Address

Resend

S
en

d
M

es
sa

ge
T

o
ot

he
r

no
de

LUT

Read/
Write

LUT

r/w addr

FIFO

Incr Incr

TTL
Threshold

No Buffer
Threshold

TTL No Buffer

8

4

4

4 4

10

Router

F
I
F
O

�0000"

�0000"

out
incr

reset

Resend
Counter

Write

LUT

r/w addr

F
I
F
O

�0..0"

�0000"

Ready

Source
8 bit

Set/reset

Configure

ID10 bit

�0000"

10

8

8 4

4

b) Adding and deleting connections from
the monitor using a LUT

a) Analyzing events with LUT

Router

Fig. 4. Hardware for adding and analyzing monitoring events

The NI part of the monitoring component, upon receiving
an event, first compares the connection source with its own
address. If it is not the sender then a packet is sent to
the remote sender. Otherwise, the connection send count is
examined to find out if there are previous send attempts by
comparing the connection-send counter stored in a register
with a given re-send threshold. Based upon this, the NI is
either told to re-send the packet if the threshold has not been
met or a (re-)mapping is required. If the packet is re-sent,
the connection-send counter is incremented. A (re-)mapping
causes the counter to be reset to zero.

Each router has 5 input ports resulting in 5 possible si-
multaneous connections needing to be set up in a monitoring
component. Also, using a LUT entails a few cycles delay in
which new connections/events cannot be processed. To allow
each tile to function using only one monitoring component,
FIFOs are added to buffer its inputs.

VI. RESULTS AND CASE STUDY ANALYSIS

We have evaluated our ROAdNoC infrastructure with several
parameters that directly influence the monitoring traffic and
bandwidth usage:

• The packet injection rate determines the arrival frequency
of the new packets to the network in each router.

• The packet flit size is responsible for the duration of traffic
(along with the allocated bandwidth slots).

• The allocated link bandwidth slots per connection influ-
ence the number of simultaneous connections per link.

• The number of VCBs limits the number of simultaneous
connections per router.

A number of assumptions are made to determine the simu-
lation parameters: the traffic distribution used is uniform, the
data packet size is 200 flits, the monitoring packet size is 2
flits, and the bandwidth is 20 slots. These parameters have
been chosen to observe the effects of both no-buffer-event and
no-route-found-event.

For the first simulation the data packet injection rates are
based on allocated bandwidth slots. They are chosen as to
supply a (near) continuous stream of data by using the highest
possible rates. For instance, a connection allocated 1 slot
out of 20 can at most send one flit every 20ns (20 cycles).
Hence, the highest accommodatable data packet (200 flits)
injection rate is one packet every 4us. The traffic is streaming
with packet injection being normally distributed with some
variance. This traffic is the worst case for VCB usage as
continuous traffic also requires constant VCB assignment. In
the simulation each router has 8 VCBs. For the adaptive routing
algorithm, the worst case is any slot value greater than 10
as each link can only transmit one connection of this type.
The simulation results (Fig. 5) show a gradually increasing
monitoring packet injection rate for increasing traffic density.
However, the monitoring traffic remains low considering the
overall link bandwidth – less than 0.7%.

Fig. 6 shows the effect of different number of VCBs
per router and allocated bandwidth slots on the monitoring
packet injection rate. There is a clear distinction between
the low bandwidth/continuous traffic on the left and the high
bandwidth/burst traffic on the right. This is due to the VCB
assignment being the dominant cause of monitoring events in
the left part and the adaptive routing in the right part.

Fig. 5. Monitoring packets injection and traffic density

The traffic generated by ROAdNoC cannot directly be
compared to that of the Æthereal monitoring component.
The occurrence of events in Æthereal monitoring component
is different to ours as they are mainly managing events
necessary for debugging whereas we are managing different
types of events that are needed to adapt the on-chip com-
munication architecture. Using only connection-opened-events
and connection-closed-events to calculate the resulting data
rate assumes that all connections are set up successfully and
specifically no alert-events occur. Under such circumstances
our implementation would generate no traffic. For comparison
we assume Æthereal to have a comparable routing algorithm
which is able to choose alternative routes. It is assumed to
produce Æthereal NoC alert-events when no route is found.

547

Furthermore, it is assumed that any failed connection attempts
are resolved through re-routing or (re-)mapping if needed.

Taking the assumptions from [4] but expanding the traffic
model by the number of successful connections setup by the
initial attempt to set up 200 connections, the two approaches
may be compared. To calculate the total monitoring traffic
tM we require the number of unsuccessful connections u per
second, the number of total connections c (200) per second,
the monitoring traffic for an unsuccessful connection tu, and
the monitoring traffic for a successful connection ts. For the
first attempt we calculate the monitoring traffic tM1:

tM1 = u · tu + (c− u) · ts (1)
Unsuccessful connections are assumed to be successful after
they are re-routed causing the additional monitoring traffic,
tM2 to be u · ts. By adding tM1 and tM2 we obtain the
total traffic shown in Table 2. For the first comparison, the
Æthereal monitoring component produces both connection-
opened/closed-events for successful connections and alert-
events for unsuccessful ones. The unsuccessful ones then also
produce connection-opened/closed-events as they are estab-
lished successfully after routing. However, since Æthereal can
switch the monitoring of specific events on and off, a more
direct comparison is given by limiting the Æthereal monitoring
to only alert-events. The results show that ROAdNoC generates
less traffic even with the simple profile of the Æthereal
monitoring. In conclusion, both monitoring components are

Fig. 6. Causes of monitoring events.

Successful Monitoring Æthereal Æthereal
connections traffic (Alert & (Alert-events)

(ROAdNoC) Config.-events) only)
50 1.2KB/s 6.6KB/s 1.8KB/s
100 0.8KB/s 6KB/s 1.2KB/s
150 0.4KB/s 5.4KB/s 0.6KB/s
200 0KB/s 4.8KB/s 0KB/s

Table 2: Traffic comparison using 200 connections/s

designed with entirely different goals in mind. Our ROAdNoC
infrastructure is designed specifically to facilitate the adap-
tivity of the NoC and thus only monitors events required to
control the NoC configuration.

Fig. 7 shows the effect of re-sending packets on the number
of packets which are able to be successfully transmitted for
the E3S benchmark suite [6]. On an average, a re-sending
threshold of 1 is able to increase the success rate by 62%
compared to the case without runtime observability. For higher
threshold values this value increases even further, allowing our
infrastructure to avoid a costly (re-)mapping.

VII. CONCLUSION

We have introduced our approach of an infrastructure that
provides runtime observability for an adaptive network on chip
architecture. It is hardly intrusive, i.e. in worst case it may
require a mere 0.7% of the total link capacity. Besides the main

Fig. 7. Unsuccessful connection for various re-sending thresholds

objective of achieving flexibility in the communication archi-
tecture for higher resource utilization the hardware overhead
at architecture-level due to runtime observation is rather small
(46 slices). As a result, ROAdNoC increases the connection
success rate by 62% in average compared to state-of-the-art
approaches. It is currently the first prototype of its kind that
can efficiently cope with hard-to-predict system behavior as a
result of constraints that may change during runtime, reliability
issues etc.

REFERENCES

[1] L. Benini and G. D. Micheli. “Networks on Chips: a new SoC
paradigm”. Computer, 35(1):70–78, 2002.

[2] C. Bobda and A. Ahmadinia. “Dynamic interconnection of reconfig-
urable modules on reconfigurable devices”. IEEE Des. Test, 22(5):443–
451, 2005.

[3] S. Borkar. “Thousand core chips: a technology perspective”. DAC’07:
Proc. of the 44th Conf. on Design Automation, pages 746–749, 2007.

[4] C. Ciordas, T. Basten, A. Rădulescu, K. Goossens, and J. V. Meerbergen.
“An event-based monitoring service for networks on chip”. ACM Trans.
Des. Autom. Electron. Syst., 10(4):702–723, 2005.

[5] W. J. Dally and B. Towles. “Route packets, not wires: on-chip
interconnection networks”. DAC’01: Proc. of the 38th Conf. on Design
Automation, pages 684–689, 2001.

[6] E3S. http://ziyang.eecs.northwestern.edu/ dickrp/e3s/.
[7] M. A. A. Faruque, T. Ebi, and J. Henkel. “Run-time adaptive on-chip

communication scheme”. ICCAD’07: Proc. of the 2007 IEEE/ACM Int.
Conf. on Computer-aided design, pages 26–31, 2007.

[8] M. A. A. Faruque, R. Krist, and J. Henkel. “ADAM: run-time agent-
based distributed application mapping for on-chip communication”.
DAC’08: Proc. of the 45th Conf. on Design Automation, pages 760–
765, 2008.

[9] R. Ho, K. Mai, and M. Horowitz. “The future of wires”. Proc. of the
IEEE, pages 490–504, 2001.

[10] P. Horn. “Autonomic computing: IBM‘s perspective on the state of
information technology”. IBM Corporation, 2001.

[11] Y. Hoskote, S. Vangal, A. Singh, and S. Borkar. “A 5-GHz mesh
interconnect for a teraflops processor”. IEEE Micro, 27(5):51–61, 2007.

[12] W. Karl, M. Leberecht, and M. Oberhuber. “SCI monitoring hard-
ware and software: Supporting performance evaluation and debugging”.
SCI: Scalable Coherent Interface, Architecture and Software for High-
Performance Compute Clusters, pages 417–432, 1999.

[13] V. Nollet, T. Marescaux, D. Verkest, J.-Y. Mignolet, and S. Vernalde.
“Operating-system controlled network on chip”. DAC’04: Proc. of the
41th Conf. on Design Automation, pages 256–259, 2004.

[14] U. Y. Ogras and R. Marculescu. “Application-specific network-on-chip
architecture customization via long-range link insertion”. ICCAD’05:
Proc. of the 2005 IEEE/ACM Int. Conf. on Computer-aided design, pages
246–253, 2005.

[15] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and
L.-S. Peh. Research challenges for on-chip interconnection networks.
IEEE Micro, 27(5):96–108, 2007.

[16] V. Soteriou and L.-S. Peh. “Design-Space exploration of power-aware
on/off interconnection networks”. ICCD’04: Proc. of the IEEE Int. Conf.
on Computer Design (ICCD’04), pages 510–517, 2004.

[17] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Basten.
“Congestion-controlled best-effort communication for networks-on-
chip”. DATE ’07: Proc. of the Conf. on Design, Automation and Test
in Europe, pages 948–953, 2007.

[18] S. Vassiliadis and I. Sourdis. “FLUX networks: Interconnects on
demand”. Proc. of the Embedded Computer Systems: Architectures,
Modeling and Simulation, pages 160–167, 2006.

[19] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, and A. Agarwal. “On-Chip interconnection
architecture of the tile processor”. IEEE Micro, 27(5):15–31, 2007.

[20] Xilinx. ”Virtex2 complete datasheets”. http://www.xilinx.com/.

548

	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

