Operator topologies: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Topologies on the set of operators on a Hilbert space}} |
|||
In the [[mathematics|mathematical]] field of [[functional analysis]] there are several standard [[topology|topologies]] which are given to the algebra {{math|B(''X'')}} of [[bounded linear operator]]s on a [[Banach space]] {{mvar|X}}. |
In the [[mathematics|mathematical]] field of [[functional analysis]] there are several standard [[topology|topologies]] which are given to the algebra {{math|B(''X'')}} of [[bounded linear operator]]s on a [[Banach space]] {{mvar|X}}. |
||
Line 7: | Line 8: | ||
* If <math>\|T_n - T\| \to 0</math>, that is, the [[operator norm]] of <math>T_n - T</math> (the supremum of <math>\| T_n x - T x \|_X</math>, where {{mvar|x}} ranges over the [[unit ball]] in {{mvar|X}} ) converges to 0, we say that <math>T_n \to T</math> in the '''[[uniform operator topology]]'''. |
* If <math>\|T_n - T\| \to 0</math>, that is, the [[operator norm]] of <math>T_n - T</math> (the supremum of <math>\| T_n x - T x \|_X</math>, where {{mvar|x}} ranges over the [[unit ball]] in {{mvar|X}} ) converges to 0, we say that <math>T_n \to T</math> in the '''[[uniform operator topology]]'''. |
||
* If <math>T_n x \to Tx</math> for all <math>x \in X</math>, then we say <math>T_n \to T</math> in the '''[[strong operator topology]]'''. |
* If <math>T_n x \to Tx</math> for all <math>x \in X</math>, then we say <math>T_n \to T</math> in the '''[[strong operator topology]]'''. |
||
* Finally, suppose that for all {{math|''x'' ∈ ''X''}} we have <math>T_n x \to Tx</math> in the [[weak topology]] of {{mvar|X}}. This means that <math>F(T_n x) \to F(T x)</math> for all |
* Finally, suppose that for all {{math|''x'' ∈ ''X''}} we have <math>T_n x \to Tx</math> in the [[weak topology]] of {{mvar|X}}. This means that <math>F(T_n x) \to F(T x)</math> for all continuous linear functionals {{mvar|F}} on {{mvar|X}}. In this case we say that <math>T_n \to T</math> in the '''[[weak operator topology]]'''. |
||
== List of topologies on B(''H'') == |
== List of topologies on B(''H'') == |
||
Line 20: | Line 21: | ||
The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak. |
The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak. |
||
If {{mvar|H}} is a Hilbert space, the [[Hilbert space]] {{math|B(''X'')}} has a (unique) [[predual]] <math>B(H)_*</math>, |
If {{mvar|H}} is a Hilbert space, the linear space of [[Hilbert space]] operators {{math|B(''X'')}} has a (unique) [[predual]] <math>B(H)_*</math>, |
||
consisting of the trace class operators, whose dual is {{math|B(''X'')}}. |
consisting of the trace class operators, whose dual is {{math|B(''X'')}}. |
||
The seminorm {{math|''p''<sub>''w''</sub>(''x'')}} for ''w'' positive in the predual is defined to be |
The seminorm {{math|''p''<sub>''w''</sub>(''x'')}} for ''w'' positive in the predual is defined to be |
||
Line 57: | Line 58: | ||
However, when {{mvar|H}} is separable, all the topologies above are metrizable when restricted to the unit ball (or to any norm-bounded subset). |
However, when {{mvar|H}} is separable, all the topologies above are metrizable when restricted to the unit ball (or to any norm-bounded subset). |
||
== |
== Topology to use == |
||
The most commonly used topologies are the norm, strong, and weak operator topologies. |
The most commonly used topologies are the norm, strong, and weak operator topologies. |
||
Line 76: | Line 77: | ||
== See also == |
== See also == |
||
* {{annotated link|Banach space}} |
|||
* {{annotated link|Bounded operator}} |
* {{annotated link|Bounded operator}} |
||
* {{annotated link|Continuous linear operator}} |
* {{annotated link|Continuous linear operator}} |
||
Line 83: | Line 83: | ||
* {{annotated link|Modes of convergence}} |
* {{annotated link|Modes of convergence}} |
||
* {{annotated link|Norm (mathematics)}} |
* {{annotated link|Norm (mathematics)}} |
||
* {{annotated link|Normed vector space}} |
|||
* {{annotated link|Topologies on spaces of linear maps}} |
* {{annotated link|Topologies on spaces of linear maps}} |
||
* {{annotated link| |
* {{annotated link|Vague topology}} |
||
* {{annotated link|Weak convergence (Hilbert space)}} |
* {{annotated link|Weak convergence (Hilbert space)}} |
||
Line 94: | Line 93: | ||
{{Banach spaces}} |
{{Banach spaces}} |
||
{{ |
{{Hilbert space}} |
||
{{Duality and spaces of linear maps}} |
|||
{{Functional |
{{Functional analysis}} |
||
{{Topological vector spaces}} |
|||
[[Category:Functional analysis]] |
|||
[[Category:Topological vector spaces]] |
|||
[[Category:Topology of function spaces|*]] |
[[Category:Topology of function spaces|*]] |
Latest revision as of 20:43, 17 June 2024
In the mathematical field of functional analysis there are several standard topologies which are given to the algebra B(X) of bounded linear operators on a Banach space X.
Introduction
[edit]Let be a sequence of linear operators on the Banach space X. Consider the statement that converges to some operator T on X. This could have several different meanings:
- If , that is, the operator norm of (the supremum of , where x ranges over the unit ball in X ) converges to 0, we say that in the uniform operator topology.
- If for all , then we say in the strong operator topology.
- Finally, suppose that for all x ∈ X we have in the weak topology of X. This means that for all continuous linear functionals F on X. In this case we say that in the weak operator topology.
List of topologies on B(H)
[edit]There are many topologies that can be defined on B(X) besides the ones used above; most are at first only defined when X = H is a Hilbert space, even though in many cases there are appropriate generalisations. The topologies listed below are all locally convex, which implies that they are defined by a family of seminorms.
In analysis, a topology is called strong if it has many open sets and weak if it has few open sets, so that the corresponding modes of convergence are, respectively, strong and weak. (In topology proper, these terms can suggest the opposite meaning, so strong and weak are replaced with, respectively, fine and coarse.) The diagram on the right is a summary of the relations, with the arrows pointing from strong to weak.
If H is a Hilbert space, the linear space of Hilbert space operators B(X) has a (unique) predual , consisting of the trace class operators, whose dual is B(X). The seminorm pw(x) for w positive in the predual is defined to be B(w, x*x)1/2.
If B is a vector space of linear maps on the vector space A, then σ(A, B) is defined to be the weakest topology on A such that all elements of B are continuous.
- The norm topology or uniform topology or uniform operator topology is defined by the usual norm ||x|| on B(H). It is stronger than all the other topologies below.
- The weak (Banach space) topology is σ(B(H), B(H)*), in other words the weakest topology such that all elements of the dual B(H)* are continuous. It is the weak topology on the Banach space B(H). It is stronger than the ultraweak and weak operator topologies. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
- The Mackey topology or Arens-Mackey topology is the strongest locally convex topology on B(H) such that the dual is B(H)*, and is also the uniform convergence topology on Bσ(B(H)*, B(H)-compact convex subsets of B(H)*. It is stronger than all topologies below.
- The σ-strong-* topology or ultrastrong-* topology is the weakest topology stronger than the ultrastrong topology such that the adjoint map is continuous. It is defined by the family of seminorms pw(x) and pw(x*) for positive elements w of B(H)*. It is stronger than all topologies below.
- The σ-strong topology or ultrastrong topology or strongest topology or strongest operator topology is defined by the family of seminorms pw(x) for positive elements w of B(H)*. It is stronger than all the topologies below other than the strong* topology. Warning: in spite of the name "strongest topology", it is weaker than the norm topology.)
- The σ-weak topology or ultraweak topology or weak-* operator topology or weak-* topology or weak topology or σ(B(H), B(H)*) topology is defined by the family of seminorms |(w, x)| for elements w of B(H)*. It is stronger than the weak operator topology. (Warning: the weak Banach space topology and the weak operator topology and the ultraweak topology are all sometimes called the weak topology, but they are different.)
- The strong-* operator topology or strong-* topology is defined by the seminorms ||x(h)|| and ||x*(h)|| for h ∈ H. It is stronger than the strong and weak operator topologies.
- The strong operator topology (SOT) or strong topology is defined by the seminorms ||x(h)|| for h ∈ H. It is stronger than the weak operator topology.
- The weak operator topology (WOT) or weak topology is defined by the seminorms |(x(h1), h2)| for h1, h2 ∈ H. (Warning: the weak Banach space topology, the weak operator topology, and the ultraweak topology are all sometimes called the weak topology, but they are different.)
Relations between the topologies
[edit]The continuous linear functionals on B(H) for the weak, strong, and strong* (operator) topologies are the same, and are the finite linear combinations of the linear functionals (xh1, h2) for h1, h2 ∈ H. The continuous linear functionals on B(H) for the ultraweak, ultrastrong, ultrastrong* and Arens-Mackey topologies are the same, and are the elements of the predual B(H)*.
By definition, the continuous linear functionals in the norm topology are the same as those in the weak Banach space topology. This dual is a rather large space with many pathological elements.
On norm bounded sets of B(H), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the Banach–Alaoglu theorem. For essentially the same reason, the ultrastrong topology is the same as the strong topology on any (norm) bounded subset of B(H). Same is true for the Arens-Mackey topology, the ultrastrong*, and the strong* topology.
In locally convex spaces, closure of convex sets can be characterized by the continuous linear functionals. Therefore, for a convex subset K of B(H), the conditions that K be closed in the ultrastrong*, ultrastrong, and ultraweak topologies are all equivalent and are also equivalent to the conditions that for all r > 0, K has closed intersection with the closed ball of radius r in the strong*, strong, or weak (operator) topologies.
The norm topology is metrizable and the others are not; in fact they fail to be first-countable. However, when H is separable, all the topologies above are metrizable when restricted to the unit ball (or to any norm-bounded subset).
Topology to use
[edit]The most commonly used topologies are the norm, strong, and weak operator topologies. The weak operator topology is useful for compactness arguments, because the unit ball is compact by the Banach–Alaoglu theorem. The norm topology is fundamental because it makes B(H) into a Banach space, but it is too strong for many purposes; for example, B(H) is not separable in this topology. The strong operator topology could be the most commonly used.
The ultraweak and ultrastrong topologies are better-behaved than the weak and strong operator topologies, but their definitions are more complicated, so they are usually not used unless their better properties are really needed. For example, the dual space of B(H) in the weak or strong operator topology is too small to have much analytic content.
The adjoint map is not continuous in the strong operator and ultrastrong topologies, while the strong* and ultrastrong* topologies are modifications so that the adjoint becomes continuous. They are not used very often.
The Arens–Mackey topology and the weak Banach space topology are relatively rarely used.
To summarize, the three essential topologies on B(H) are the norm, ultrastrong, and ultraweak topologies. The weak and strong operator topologies are widely used as convenient approximations to the ultraweak and ultrastrong topologies. The other topologies are relatively obscure.
See also
[edit]- Bounded operator – Linear transformation between topological vector spaces
- Continuous linear operator
- Hilbert space – Type of topological vector space
- List of topologies – List of concrete topologies and topological spaces
- Modes of convergence – Property of a sequence or series
- Norm (mathematics) – Length in a vector space
- Topologies on spaces of linear maps
- Vague topology
- Weak convergence (Hilbert space) – Type of convergence in Hilbert spaces
References
[edit]- Functional analysis, by Reed and Simon, ISBN 0-12-585050-6
- Theory of Operator Algebras I, by M. Takesaki (especially chapter II.2) ISBN 3-540-42248-X