WISDOM WORLD SCHOOL, KURUKSHETRA

Wisdom Scholarship-cum-Admission Test (WSAT)

for

Admission to Grade 11 (UDAAN Batch)

Date of Examination : 29/12/2024

PATTERN OF EXAMINATION

- Multiple choice, single correct option type questions
- Negative Marking for Physics, Chemistry, Mathematics and Biology with each correct answer carrying four marks and each wrong answer carrying one negative mark to be deducted.
- No negative marking for Reasoning Test; each question carries one mark.

Sr. No.	Grade 11	Physics	Chemistry	Mathematics	Biology	Reasoning	Total Questions
1	Non Medical	20	20	40	-	20	100
2.	Medical	20	20	10	30	20	100

SYLLABUS FOR WSAT

SUBJECT	SYLLABUS
	Light (Reflection and Refraction): Spherical Mirror (concave and convex mirror), refraction through glass slab, Apparent depth and height, lens formula, lens maker formula, combination of lens
PHYSICS	Human eye and Colourful World : Human Eye, atmospheric refraction, scattering of light, defects of vision and their correction, prism and rainbow formation
	Current Electricity: Electric Current, Potential Difference, ohms law, kirchhoff's law, series and parallel grouping of resistors and joules law of heating.
CHEMISTRY	Acid, Base and Salt, Metals and Non Metals, Carbon and its Compounds
BIOLOGY	Life Processes, Control and Coordination, Our Environment, How do Organisms Reproduce?, Heredity.
MATHEMATICS	Triangles, Quadrilaterals, Circles, Real Numbers, Polynomials, Pair of Linear Equations in Two Variables, Quadratic Equations, Arithmetic Progressions, Triangles, Coordinate Geometry, Introduction to Trigonometry, Some Applications of Trigonometry, Circles, Areas Related to Circles, Surface Areas and Volumes, Statistics, Probability
MENTAL ABILITY TEST	Verbal : Number Series, Alphabet Test, Coding-Decoding, Blood Relation, Calendar, Reasoning Puzzle Non-Verbal : Counting figures, Missing and Inserting Character, Dice

WISDOM SCHOLASTIC APTITUDE TEST (WSAT) for

NEET ASPIRANTS

Sample Question Paper PHYSICS

1. Work done in time t on a body of mass m which is accelerated from rest to a speed v in time t₁ as a function of time t is given by-

(a) $\frac{1}{2}m\frac{\upsilon}{t_l}t^2$ (b) $m\frac{\upsilon}{t_l}t^2$ (c) $\frac{1}{2}mt^2$ (d) $\frac{1}{2}m\frac{\upsilon^2}{t_1^2}t^2$

2. A body travels through a distance of 10 m on a straight line, under the influence of 5 N. If the work done by the force is 25 J, the angle between the force and displacement is(a) 0⁰
(b) 30⁰
(c) 60⁰
(d) 90⁰

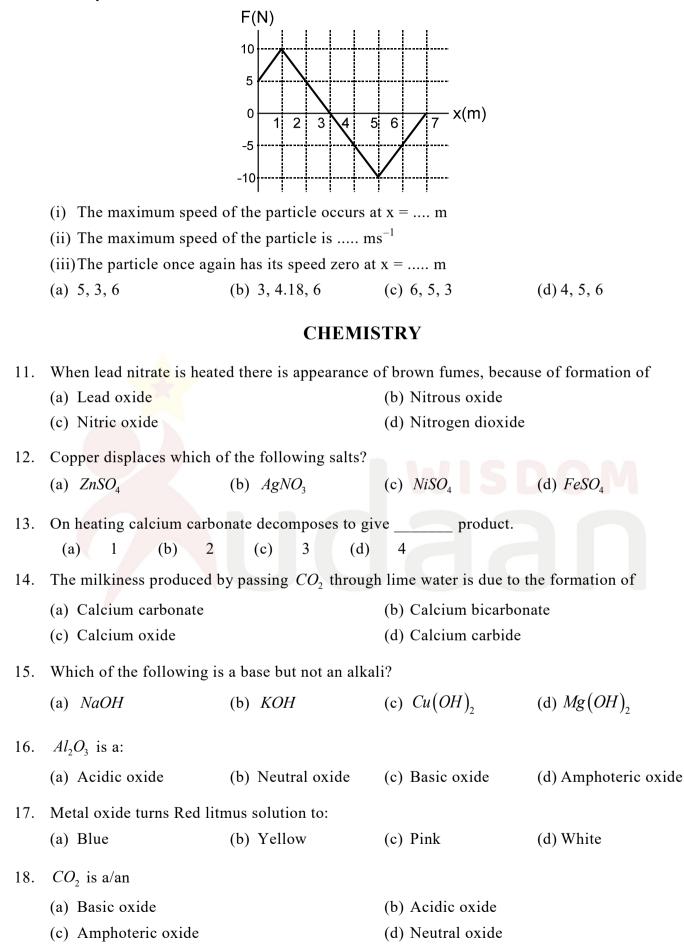
3. A convex lens of focal length 1 meter is place in contact with another concave lens of equal focal length. What is the focal length of the new lens so formed?

(a) +1 m (b) Infinity (c) +2 m (d) None of these

4. The nature of image of a candle flame located 40 cm from a concave spherical mirror is real, inverted and magnified four times. Then the radius of curvature of the mirror is:
(a) 32 cm
(b) 64 cm
(c) 48 cm
(d) 80 cm

5. An object of height 6 cm is placed on the principal axis of a concave mirror of focal length f at a distance of 3f. The length of the image will be:

(a) 2 cm (b) 12 cm (c) 3 cm (d) 1.2 cm


The magnification of an object placed in front of a convex lens of focal length 30 cm is +2. To obtain a magnification of -2 the object has to be moved a distance equal to:

(a) 10 cm (b) 30 cm (c) 20 cm (d) 40 cm

7. The near point of a hypermetropic person is 75 cm in front of the eye. Power of the lens required to correct the problem:

- (a) -1D (b) +2.66D (c) +1D (d) -2D
- 8. The stars twinkle at night because:(a) They emit energy(b) Of diffraction(c) Of refraction(d) Of reflection
- 9. The work done in pushing a block of mass 10 kg from bottom to the top of a frictionless inclined plane 5m long and 3m high is- $(g = 9.8 \text{ m/sec}^2)$
 - (a) 392 J (b) 294 J (c) 98 J (d) 0.98 J

10. The figure shows the force (F) versus displacement(s) graph for a particle of mass m=2kg initially at rest

- 19. A solution whose pH is 3 can change
 - (a) Red litmus into Blue
 - (c) Blue litmus into Red (d) Red litmus into Black
- 20. Acid found in rancid butter is:
 - (a) Butyric acid (b) Butyrous acid (c) Formic acid (d) Acetic acid

BIOLOGY

(b) Blue litmus into Blue

- 21. In Drosophila, red eye is dominant over white eye character. When a homozygous red eyed individual is crossed with a homozygous white eyed individual and individuals of F_1 generation are intercrossed, 12 individuals are produced. White eyed individuals of these will be:
 - (a) Three (b) Six (c) Nine (d) Twelve

22. The number of autosomes in a human body cell is:
(a) 46
(b) 44
(c) 22
(d) 23

- 23. Which one of the following is not one of the direct conclusions that can be drawn from Mendel's experiment?
 - (a) Only one parental trait is expressed
 - (b) Two copies of each trait is inherited in sexually reproducing organism
 - (c) For recessive trait to be expressed both should be identical
 - (d) Natural selection can alter frequency of inherited trait
- 24. Which of the following statements are true about brain?
 - (i) The main thinking part of the brain is hind brain
 - (ii) Centres of hearing, smell, memory, sigh etc. are located in fore brain
 - (iii)Involuntary actions like salivation, vomiting, blood pressure are controlled by medulla in the hind brain
 - (iv) Cerebellum does not control posture and balance of body
 - (a) (i) and (ii) (b) (i), (ii) and (iii) (c) (ii) and (iii) (d) (iii) and (iv)

25. The hormone that promotes cell division in plants is:

- (a) Auxin (b) Gibberellins (c) Cytokinin (d) Abscisic acid
- 26. What role does hydrochloric acid play in the stomach?
 - (a) Breaks down carbohydrates (b) Breaks down proteins
 - (c) Emulsify fat (d) None of these
- 27. Which part of nephron allows the selective reabsorption of useful substances like glucose, amino acids, salts and water into the blood capillaries?
 - (a) Tubule (b) Glomerulus (c) Bowman's capsule (d) Ureter

28.	Single circulation, i.e. b through the body, is exhi	e	•	ring one cycle of passage	
	(a) Hyla, rana, draco	-	(b) Whale, dolphin, turtle		
	(c) Labeo, chameleon, sa	lamander	(d) Hippocampus, exocoetus, anabas		
29.	What is the main conducting cell of phloem compounds are transported?		m that forms the tub	e through which organic	
	(a) Sieve Tube Elements		(b) Companion Cells		
	(c) Phloem Parenchyma		(d) Phloem fibers		
30.	What is the purpose of ve	eins?			
	(a) To carry oxygenated	blood away from the h	eart to the body's tissu	es and organs	
	(b) To carry impure or de	eoxygenated blood from	m all parts of the body	back to the heart	
	(c) To carry impure or de	eoxygenated blood awa	ay from the heart to the	body's tissues and organs	
	(d) To connect arteries an	nd veins			
31.	The loop of Henle is loca	ted in part	of kidneys.		
	(a) Cortex	(b) Medulla	(c) Pelvis	(d) Bowman's capsule	
32.	The process of Photosynt	hesis is:			
	(a) Reductive, exergonic	and catabolic	(b) Reductive, ender	gonic and catabolic	
	(c) Reductive, endergoni	c and anabolic	(d) Reductive, exerge	onic and anabolic	
33.	The is a ne	twork of tiny blood ve	ssels located at the beg	inning of a nephron.	
	(a) Renal calyces	(b) Renal pyramid	(c) Bowman's capsu	le (d) Glomerulus	
34.	The type of neuron that called:	carries impulses from	m the central nervous	system to the effector is	
	(a) Sensory neuron	(b) Motor neuron	(c) Relay neuron	(d) None of these	
35.	Which of the following is	s responsible for the re	gulation of sleep – wal	ke up cycle in humans?	
	(a) Cerebrum	(b) Pineal gland	(c) Pituitary gland	(d) Thyroid gland	

MATHEMATICS

36.	Evaluate the sum of re	al roots for equation:	$\frac{x^3 + x}{\left(x^2 - x + 1\right)^2} = \frac{10}{9}$		
	(a) 0	(b) -1	(c) $\frac{2}{7}$	(d)	$\frac{5}{2}$

- 37. The number of factors of $n = 2^{15} \times 3^{10} \times 5^6$ such that either they are perfect cube or perfect square but not both.
 - (a) 252 (b) 216 (c) 214 (d) 900

38.	In $\triangle ABC$, If AD , BE , CB	F are the medians and	$\frac{x}{y} \left(AB + BC + CA \right) < AL$	D + BE + CF, then the value
	of $x + y$ is: (where $x, y \in$	(N)		
	(a) 8	(b) 9	(c) 7	(d) 10
39.	Let $b_1, b_2, b_3, \dots, b_{19}$	be the first 19	terms of an arith	metic progression with
	$b_1 + b_8 + b_{12} + b_{19} = 224$. The	ne sum of first 19 terms	s of the AP is:	
	(a) 448	(b) 896	(c) 1064	(d) 1344
40.	What is the remainder v	when the polynomial p	$p(x) = x^{200} - 2x^{199} + x^{50} - $	$-2x^{49} + x^2 + x + 1$ is divided
	by $(x-1)(x-2)$?			
	(a) 1	(b) 7	(c) $2x+1$	(d) $6x-5$
		REASO	NING	
41.	$11\frac{1}{9}, 12\frac{1}{2}, 14\frac{2}{7}, 16\frac{2}{3}, ?$			
	(a) $8\frac{1}{3}$	(b) $19\frac{1}{2}$	(c) 20	(d) $22\frac{1}{3}$
42.	3, 10, 29, 66, 127, ?			
	(a) 164	(b) 187	(c) 216	(d) 218
43.	If LBAEHC is the code f	or BLEACH, then which	ch of the following is c	coded as NBOLZKMH?
	(a) OBNKZLHM	(b) LOBNHMKZ	(c) OCPMALNI	(d) BNLOKZHM
44.	If in a certain language	, MACHINE is coded	as LBBIHOD, which	word would be coded as
	SLTMFNB?			
	(a) RKSLEMA	(b) TKULGMC	(c) RMSNEOA	(d) TMUNGOC
45.	If $ZIP = 198$ and $ZAP = 2$	246, then how will you	code VIP?	
	(a) 174	(b) 222	(c) 888	(d) 990

WISDOM SCHOLASTIC APTITUDE TEST (WSAT)

for

IIT-JEE ASPIRANTS

Sample Question Paper

PHYSICS

1. Work done in time t on a body of mass m which is accelerated from rest to a speed v in time t_1 as a function of time t is given by-

(a) $\frac{1}{2}m\frac{\upsilon}{t_l}t^2$ (b) $m\frac{\upsilon}{t_l}t^2$ (c) $\frac{1}{2}mt^2$ (d) $\frac{1}{2}m\frac{\upsilon^2}{t_1^2}t^2$

2. A body travels through a distance of 10 m on a straight line, under the influence of 5 N. If the work done by the force is 25 J, the angle between the force and displacement is(a) 0⁰
(b) 30⁰
(c) 60⁰
(d) 90⁰

3. A convex lens of focal length 1 meter is place in contact with another concave lens of equal focal length. What is the focal length of the new lens so formed?

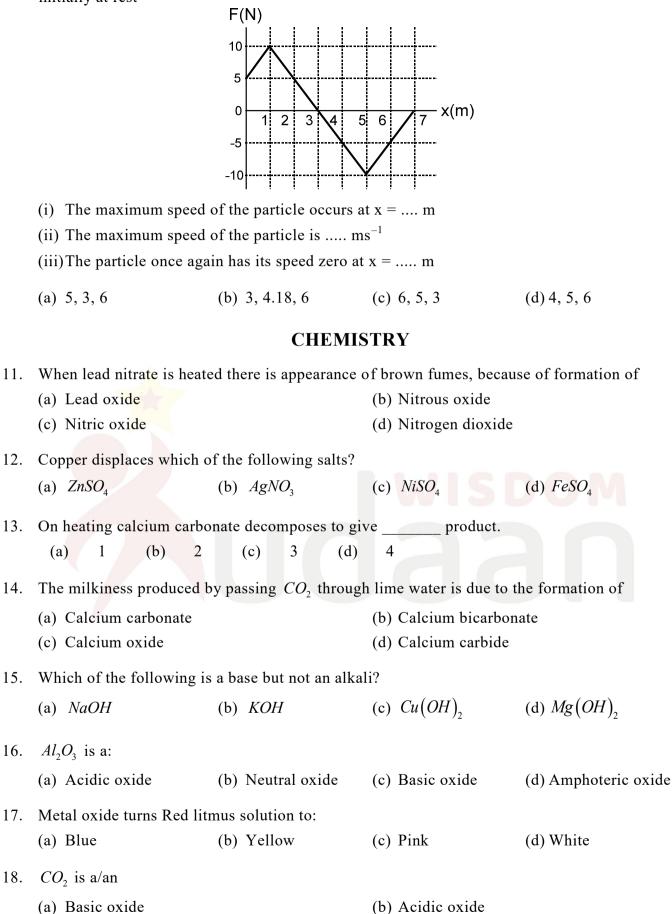
(a) $+1$ m (b) Infinity (c) $+2$ m (d) None of these
--

4. The nature of image of a candle flame located 40 cm from a concave spherical mirror is real, inverted and magnified four times. Then the radius of curvature of the mirror is:

(a) 32 cm (b) 64 cm (c) 48 cm (d) 80 cm

5. An object of height 6 cm is placed on the principal axis of a concave mirror of focal length f at a distance of 3f. The length of the image will be:

(a) 2 cm (b) 12 cm (c) 3 cm (d) 1.2 cm


6. The magnification of an object placed in front of a convex lens of focal length 30 cm is +2. To obtain a magnification of -2 the object has to be moved a distance equal to:

(a) 10 cm (b) 30 cm (c) 20 cm (d) 40 cm

7. The near point of a hypermetropic person is 75 cm in front of the eye. Power of the lens required to correct the problem:

- (a) -1D (b) +2.66D (c) +1D (d) -2D
- 8. The stars twinkle at night because:
 - (a) They emit energy (b) Of diffraction (c) Of refraction (d) Of reflection
- 9. The work done in pushing a block of mass 10 kg from bottom to the top of a frictionless inclined plane 5m long and 3m high is- (g = 9.8 m/sec^2)
 - (a) 392 J (b) 294 J (c) 98 J (d) 0.98 J

10. The figure shows the force (F) versus displacement(s) graph for a particle of mass m=2kg initially at rest

(d) Neutral oxide

(c) Amphoteric oxide

- 19. A solution whose pH is 3 can change
 - (a) Red litmus into Blue (b) Blue litmus into Blue
 - (c) Blue litmus into Red (d) Red litmus into Black
- 20. Acid found in rancid butter is:
 - (a) Butyric acid (b) Butyrous acid (c) Formic acid (d) Acetic acid

MATHEMATICS

21.	If $(7+4\sqrt{3})^{x^2-8} + (7-4\sqrt{3})^{x^2-8}$	$(x^2-8)^{x^2-8}$	=14, then the sur	n of al	l solutions is		
	(a) 0			(c)		(d)	3
22.	P = (2)(4)(6)(20) and Q	2=(1)	(3)(5)(19). What	at is th	e HCF of P and Q?		
	(a) $3^3 \times 5 \times 7$	(b)	$3^4 \times 5$	(c)	$3^4 \times 5^2 \times 7$	(d)	$3^3 \times 5^2$
23.	If the LCM of the polyne	omial	s $f(x) = (x+1)^5$	$(x+2)^a$	and $g(x) = (x+1)^{b} ($.	$(x+2)^{6}$	^{<i>a</i>} is $(x+1)^{a} (x+2)^{b}$,
	then the minimum value of	of a +	- <i>b</i> is				
	(a) 10	(b)	14	(c)	15	(d)	cannot say
24.	The value λ , if the line 3:	$x - \lambda y$	v + 6 = 0 passes the	rough	the point $(-3, 4)$ is		
	(a) $\frac{3}{4}$	(b)	$\frac{-3}{4}$	(c)	$\frac{4}{3}$	(d)	$\frac{-4}{3}$
25.	Let $\triangle ABC$ be right angled	l triar	ngle in which A(0), 2) ar	nd $B(2,0)$. Then the	coord	linates of C can be
	(a) $(0, 0)$	(b)	(2, 2)	(c)	Either (a) or (b)	(d)	None of these
26.	Evaluate the sum of real 1	roots	for equation: $\frac{1}{(x^2)}$	$\frac{x^3 + x}{x^2 - x + 1}$	$\left(\frac{1}{9}\right)^2 = \frac{10}{9}$		
	(a) 0	(b)	-1	(c)	$\frac{2}{7}$	(d)	$\frac{5}{2}$
27.	The number of factors of	n=2	$2^{15} \times 3^{10} \times 5^{6}$ such	that ei	ther they are perfec	et cub	e or perfect square
	but not both.						
	(a) 252	(b)	216	(c)	214	(d)	900
28.	In $\triangle ABC$, If AD , BE , CF	are	the medians and	$\frac{x}{y}(AB)$	(B + BC + CA) < AD +	BE +	CF, then the value
	of $x + y$ is: (where $x, y \in$	N)					
	(a) 8	(b)	9	(c)	7	(d)	10
29.	Let $b_1, b_2, b_3, \dots, b_{19}$	be	the first 19	terms	of an arithm	etic	progression with
	$b_1 + b_8 + b_{12} + b_{19} = 224$. Th	e sun	n of first 19 term	s of th	e AP is:		
	(a) 448	(b)	896	(c)	1064	(d)	1344

30.	What is the remainder	when the polynomial	$p(x) = x^{200} - 2x^{199} + x^{50}$	$-2x^{49} + x^2 + x + 1$ is divided
	by $(x-1)(x-2)$?			
	(a) 1	(b) 7	(c) $2x+1$	(d) $6x-5$
31.	The value of $\sqrt[3]{\frac{4}{9}} - \sqrt[3]{\frac{2}{9}} - \sqrt[3]{\frac{2}{9}} = \sqrt[3]{\frac{3}{9}} - \sqrt[3]{\frac{3}{9}} = \sqrt[3]{\frac{3}{9}} =$	$+\sqrt[3]{\frac{1}{9}}$ is		
	(a) $\frac{1}{\sqrt[3]{3}}$	(b) $\sqrt[3]{3}$	(c) $\frac{\sqrt[3]{3}}{\sqrt[3]{2}+1}$	$(d) \frac{3}{\sqrt[3]{2}+1}$
32.	If degree of both polyn	omials $f(x)$ and $[f(x) +$	-g(x) is 19, then degr	ee of $g(x)$ can be
	(a) 19	(b) 9	(c) 6	(d) any one of these
33.	Which term of the sequ	ence 4, 9, 14, 19, is	124?	
	(a) 20 th	(b) 15^{th}	(c) 10^{th}	(d) 25^{th}
34.	If α and β are the z	zeroes of the quadration	c polynomial $f(x) = x^2$	x^2-x-4 , then the value of
	$\frac{1}{\alpha} + \frac{1}{\beta} - \alpha \beta$ is			
	(a) $\frac{15}{4}$	(b) $-\frac{15}{4}$	(c) 4	(d) 15
35.	The pair of equations 3	$x^{x+y} = 81, 81^{x-y} = 3$ has		
	(a) no solution		(b) infinitely man	y solution
		$=2\frac{1}{8}, y=1\frac{7}{8}$	 (b) infinitely many (d) x = 2, y = 3 	y solution
36.	 (a) no solution (c) the solution is x = 	0 0	(d) $x = 2, y = 3$	
36.	 (a) no solution (c) the solution is x = 	x cuts x – axis at (-2,0)	(d) $x = 2, y = 3$	the zeros of $x^3 - 4x$ are:
	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$	x cuts x – axis at $(-2, 0)$ (b) –2, 2, 2	(d) $x = 2, y = 3$ (d), (0,0) and (2,0). The (c) -2,0,2	The zeros of $x^3 - 4x$ are: (d) -2,-2,2
	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros	x cuts x – axis at $(-2, 0)$ (b) –2, 2, 2	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (o) $x = 2, y = 3$ (c) $-2, 0, 2$ $x = x^3 - 5x^2 - 2x + 24$ such that $x = 2, y = 3$	the zeros of $x^3 - 4x$ are: (d) -2,-2,2
	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros (a) $\alpha + \beta = 7$	x cuts x – axis at $(-2,0)$ (b) $-2,2,2$ of the polynomial $f(x)$ (b) $\alpha - \beta = \pm 1$	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (c) $-2, 0, 2$ $x^{3} - 5x^{2} - 2x + 24$ succession (c) $\gamma = -2$	The zeros of $x^3 - 4x$ are: (d) -2, -2, 2 which that $\alpha\beta = 12$, then
37.	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros (a) $\alpha + \beta = 7$	x cuts x – axis at $(-2,0)$ (b) $-2,2,2$ of the polynomial $f(x)$ (b) $\alpha - \beta = \pm 1$	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (c) $-2, 0, 2$ $x^{3} - 5x^{2} - 2x + 24$ succession (c) $\gamma = -2$	The zeros of $x^3 - 4x$ are: (d) $-2, -2, 2$ (d) All of these
37.	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros (a) $\alpha + \beta = 7$ The three consecutive γ the fourth vertex is:	x cuts x – axis at $(-2,0)$ (b) $-2,2,2$ of the polynomial $f(x)$ (b) $\alpha - \beta = \pm 1$	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (c) $-2, 0, 2$ $x^{3} - 5x^{2} - 2x + 24$ successions (c) $\gamma = -2$ (c) $\gamma = -2$ (c) $\gamma = -2$	The zeros of $x^3 - 4x$ are: (d) $-2, -2, 2$ (d) All of these
37.	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros (a) $\alpha + \beta = 7$ The three consecutive γ the fourth vertex is: (a) (a,b)	x cuts x – axis at $(-2,0)$ (b) $-2,2,2$ of the polynomial $f(x)$ (b) $\alpha - \beta = \pm 1$ vertices of a parallelogramity (b) (b,b)	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (c) $-2, 0, 2$ $x^{3} - 5x^{2} - 2x + 24$ successions (c) $\gamma = -2$ (c) $\gamma = -2$ (c) $\gamma = -2$	the zeros of $x^3 - 4x$ are: (d) $-2, -2, 2$ (d) $-2, -2, 2$ (d) All of these 2a+b, 2a-b; $(a-b, a+b)$,
37. 38.	(a) no solution (c) the solution is $x =$ The graph of $y = x^3 - 4$ (a) 0,0,0 If α, β, γ are the zeros (a) $\alpha + \beta = 7$ The three consecutive γ the fourth vertex is: (a) (a,b) Solve the equation in R	x cuts x – axis at $(-2,0)$ (b) $-2,2,2$ of the polynomial $f(x)$ (b) $\alpha - \beta = \pm 1$ vertices of a parallelogramity (b) (b,b)	(d) $x = 2, y = 3$ (d) $x = 2, y = 3$ (c) $-2, 0, 2$ $x^{3} - 5x^{2} - 2x + 24$ successions (c) $\gamma = -2$ (c) $\gamma = -2$ (c) $(-b, b)$	the zeros of $x^3 - 4x$ are: (d) $-2, -2, 2$ (d) $-2, -2, 2$ (d) All of these 2a+b, 2a-b; $(a-b, a+b)$,

40. In figure AD, BE and CF are the medians of $\triangle ABC$. Points P, Q and R are the mid – points of AD, CF and BE respectively. If the area of the triangle PQR is 243 sq. units, then what is the area of $\triangle ABC$. (in sq. unit)

		F P B D	E	
	(a) 2226	(b) 2023	(c) 2030	(d) 3888
		REASO	NING	
41.	$11\frac{1}{9}, 12\frac{1}{2}, 14\frac{2}{7}, 16\frac{2}{3}, ?$			
	(a) $8\frac{1}{3}$	(b) $19\frac{1}{2}$	(c) 20	(d) $22\frac{1}{3}$
42.	3, 10, 29, 66, 127, ? (a) 164	(b) 187	(c) 216	(d) 218
43.	If LBAEHC is the code f	or BLEACH, then whi	ch of the following is a	coded as NBOLZKMH?
	(a) OBNKZLHM	(b) LOBNHMKZ	(c) OCPMALNI	(d) BNLOKZHM
44.	If in a certain language SLTMFNB?	, MACHINE is coded	as LBBIHOD, which	word would be coded
	(a) RKSLEMA	(b) TKULGMC	(c) RMSNEOA	(d) TMUNGOC
45.	If $ZIP = 198$ and $ZAP = 2$	246, then how will you	code VIP?	
	(a) 174	(b) 222	(c) 888	(d) 990

as