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Some Results on Invertible Cellular Automata
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A bst ract . V-Ie address certain questions concern ing invert ible cellu­
lar aut omata (ICA) , and present new results in this area . Specifically,
we explicitly const ru ct a cellular automaton (CA) in a class (r esidual
clas s) previously known not to be empty only via a nonconstr uctive
existe nce proof. T his class contains CAs that are invert ible on ev­
ery fini te suppor t but not on an infinite la t t ice. Moreover , we show a
class th at contains ICAs having bound ed neighb orh ood , but whose in­
verses const it ute a class of CAs for which there is no recur sive fun ct ion
bo unding all t he neighborhoods.

1. Introduction

Computational models sa tisfying physical laws are the subject of several
recent studies [3, 8]; of par ticular interest are invertible models [5, 8]. Cellular
automata (CAs) repr esent one of the best models of par allel computat ion;
the study of inver tib ility in CAs is of great interest in modelling physics .

Several theoretical resul ts concern ing inver tibili ty in CAs have been pre­
sented [2, 9, 10, 12, 13, 15, and 18], some leading to open quest ions.

• In [18], the existence of a peculiar class (residual class) of CAs had been
predicted but , until now, no such CAs had been exhibited . Here we
explicit ly construct a CA in this class, tha t is, a CA that is invertible
on every finit e support bu t is not invertible on an infinite support .
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• It is known [18] that for the class of all ICAs, an upp er bound to th e ra­
dius of the inverses cannot be found. We investigate the meaning of thi s
cons traint, exhibiting a class of ICAs wit h inverse local maps having
neighborh oods that cannot be bound ed by any recursive funct ion.

We construct these CAs starting from a space t iling technique introduced
in [14]. More precisely, using a variant of their technique, we discuss a
part icular set of local map s that had first been presented in [9, 10] and we
prove that this set has the abo ve mentioned propert ies.

2. Infinite cellular automata

2 .1 Cellular automata

A cellular automaton is a set of identical finite automata (also called cells)
locally connected to each other in a un iform way. In this pap er , we consider
two kinds of CAs, dep end ing on their support , that is, the grid containing
the cells.

• If the cells are located in the infinite d-d imensional lat ti ce (i.e. , Z d),
we have a proper CA .

• If the support is a d-dim ensional toroidal array (torus) of period (or
size) n along all dimensions (i.e., Z~) , we have a toroi dal CA.

The state q of each cell varies according to a uniform , determ inist ic local
[unction defined on the set of neighborh ood states. The neighborhood , a set N
of displacements, specifies the relati ve posit ions (with respect to the cell to be
updat ed ) of th e cells used by the local functi on . By radius of a CA, we mean
the rad ius of its neighb orh ood. In this paper , we use the Moore neighborhood,
consist ing of a cell and the eight adjacent cells in a two-dimensiona l grid .

Hence, a complete description of a CA (both for the infinit e and the finite
case) can be given by defining:

• the support space,

• the state set Q of the cells,

• the neighborhood N , and

• the local funct ion f : QINI -> Q.

The pair A = (neighborhood, local funct ion) will be called a local map or
rul e. The cells cha nge their states in a parallel, synchronous way. The local
function determines a global function F act ing on the space I: of all poss ible
configurations .
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2.2 Invertibility

A CA is inverti ble if its global function is bijective. T he invertibili ty of a CA
is an impor tan t issue in modelling reversible physical phenomena. Here we
give a brief summary of the main results about the inverti bili ty of CAs.

T he invertibility of a CA is a property of its global function , while the
CA itself is described in terms of a local map; in [13] it is proved th at the
bijectivity (i.e. , inver tibili ty) of a CA's global fun ct ion implies the exist ence
of an inverse local map . Note th at even if every global state is the successor
of another state , a CA is not inver tible if there is a global state having more
than one possible predecessor .

Theorem 2.1. [13] Ifthe global map ofa CA is injective, then it is invertible,
and its inverse is the global map of a CA as well.

In other words , if the global map is injective then it is also surjective and
the inverse global pr ocess can be described in local terms . The proof in [13]
is not constructive: it does not give any pro cedure for finding the inverse
local map. However , given two CAs it is possible to decide whether they are
inverses of each ot her by using Lemma 2.l.

Lemma 2.1. [18] Th ere is an effective procedure for deciding, for any two
local m eps ). and ).. ' defined on the same set of configurations, whether the
corresponding global maps F and F' are inverses of one another.

Early investigat ors conject ure d that ICA could not be computat ional uni­
versal [1, 4J. In [15] t he existence of universal inver tible d-di mensional CAs
when d > 1 is proved ; in [12] the existence of compu tational un iversal CAs
in the one-dimensional case is proved .

For many years a maj or challenge has been deciding whether or not a
given CA is invertible. For the one-dimensional case T heorem 2.2 is proved
in [2J.

Theorem 2.2. [2] Tb eie is an effective procedure for deciding whether or not
an arbitrary one-dim ensional CA , given in terms of a local map, is invertible.

In ot her words, th e class of invertible one-dimensional CAs is recursive.
T he class of mu ltidimensional ICAs is recursively enumerable (see [18J for a
pro of ). However , it was recent ly proved [9, 10] that , for d greater than one ,
the class of invertible d-dimensional CAs is not recursive.

Theorem 2.3. [9, 10] Th ere is no effective procedure for deciding whether
or not an arbi trary two-dim ensional CA , given in terms of its local m ap, is
invertible. Th us, in general, the invertibility of a CA is undecidable.

The proof of T heorem 2.3 is based on transformation from another un­
decidab le pr oblem : the tiling pr oblem on the infini te two-dimensional lat t ice
[14].

The invertibility of a CA considered on toroidal finite suppo rts has been
proved to be co-NP-complete [6]; the same result of completeness arises also
in average-case complexity theory [7].
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Along with these theoret ical results, th ere have been technological, ar­
chitectural, and algorithmic developm ents (e.g., [11, 16, 17, an d 19]); as a
result , CAs have become a very productive tool for modelling and executing
parallel computat ion.

3. A ti ling technique

In this sect ion we summarize some results and definit ions used in [10J to
prove Theorem 2.3. In par ticular , since it is used for pr oving our resul ts,
we briefly describ e a finite set of tiles having th e propert ies that they cover
an infinite two-dimensional grid and that they define a path thro ugh all the
elements of this grid . Moreover, we prove that th is set of tiles cannot be used
to tile a finite tor oidal suppor t of any size.

A tile is a square with colored edges. Formally, given a finit e set C of col­
ors, a tile set is a subset T C C 4 and a T-tile is any ordered quadrup le t of C4

A tiling (denoted as T-tiling) of a fixed grid (SUpPOTt space) using th e set
T , is a mapping from the sites of the grid to the set of tiles.

By correc t tiling we mean a t iling such that edges of adjace nt t iles have
the same color.

Using colors , labels, or numbers to distinguish different kind s of tile edges
is just a mat ter of convent ion. In what follows we adapt th e concept of edge
color as in [10].

We replace each color with one or more aTTOWS point ing inwards or out­
wards from an edge. In ot her words, each edge is tagged by the heads and
tails of different arrows (see Figur e 1). Two adjace nt edges match correc t ly
if each head meets, in the adjacent tile, the tail of an identical arr ow.

Let us fur ther genera lize the concept of color by assigning labels to th e
corners as well. If we call the four corn ers of a t ile NE , NW , SW , and SE (see
Figure 2(a) ), a passage is a pair (a in, aout), where both ain and aout (which
denote, respectively an inuiard direction and an outward direction) belong to
the set {NE ,NW ,SW ,SE} (see Figure 2(b)) . The corner NW is naturally
called opposite to SE and NE is oppos ite to SW.

Wit h this formulation, th e concept of "t ile color" has been genera lized
to one of "arrows and passages." According to these defini tions, a t iling is
correc t if both of the following are tr ue.

• Each arr ow head meets an equal arrow tail.

• For each passage (ain, aout) the neighbor tile in the aout direct ion is
"colored" with a passage whose inward direction is th e opposite of aout .

If one of these two condit ions does not arise, we say that a tiling error occurs .

IJ Ba ~
Colors Arrows Correct til~ng

Figure 1: Colors are replaced by arrows.
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Figure 2: (a) Corne rs . (b) (SW ,SW) and (NE ,SE) passages.
(c) Pat hs.

EE-~-~m

Figur e 3: Const ruct ion of a correct tili ng for a squa re of side 7.

We define a path as a sequence (poss ibly cyclic) of consecut ive passages
PI , . . . ,Pi, ' " associa ted with neighboring cells, such that the outward direc­
tion of Pi is equal to the opposite of the inward direction of Pi+I (see Figure
2(c)).

A complete description of the set TK of 160 tiles defined in [10] is given
in appendix A. This set has three very interesting properties expressed by
Lemmas 3.1 through 3.3.

Lemma 3.1. [10] An arbitrarily large square gri d can be correctly tiled with
the set TK . From Koenig 's infinity lemma, one can then correctly tile the
entire plane Z 2.

The correct t iling of arbit ra rily large square grids (s quares for simplicity)
IS obtained by a recursive construction that , given the correct tiling of a
square of side 2" - 1, determines the correct t iling of a square of side 2"+ 1- 1.
A schema tic representati on of this construction is shown in Figur e 3.

Lemma 3 .2 . [10] In every tiling of the plane from the set 'TK , only two types
of path may arise:

• either the path bes a tile for which there is a tiling error in its neigh­
botbood, or

• the path visits all the tiles of an arbit rarily large square.
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T he property of t iling arbitrarily large squa res is trivial to achieve; it
is the property expressed in Lemm a 3.2 that makes this set of tiles really
interestin g. In ot her words, what ever squa re we tile wit h the set TK , either
this tiling induces a continuous pa th through all the t iles, or the fact tha t the
pa th will not cover the entire square is locally recognizab le thro ugh a tiling
error. The path induced by the passages has the shape of the Hilbert curve
(see Figure 11). We remark that the set of ti les T K is independent of the size
of the square that ones want s to t ile.

The set TK resembles tha t present ed in [14J as an exa mple of tiles tha t
permit only nonperiod ic tiling: neither the tiles in [14] nor the set T K can
be used to tile corr ectly a torus. In fact , referring to Figure 3, a t iling err or
must occur when the space is wrapped around by joining together oppos ite
edges since some arrow heads will then meet ot her heads instead of tails. In
Lemm a 3.3 we form alize this result , using the construct ion of (2n - l) x (2n - l )
squa res wit h th e set TK given in appendix A.

Lemma 3.3 . Th e set of tiles T K does not permit correct tiling for tori of any
size.

Proof. (By contradict ion .) Sup pose that there is a correct tiling for a to rus
of size n . This t iling is equivalent to a correct periodic t iling of period n for
the infinite lat tice. Let t be a single cross of the torus (which always exists,
since in every correct ti ling each 2 x 2 square must have a single cross) .
From Lemma A.l , t is in a XY_(21n

- l l-square constructed as explained
in appendix A; since the entire plane is tiled correct ly, m is as large as we
want . Thus we can find the smaller k such that there exists a XY -(2k - 1)­
squa re includ ing our plan ar repr esenta tion of the torus (see Figure 4) . Since
n > 2k

- 1 - 1, the tor us must include the central cross of the square (A in
figure) as well as part of the arms leaving from it ; thus, when the space is
wrap ped aro und , a tiling error is encountered . _

n

2" - 1

m

2 1

. ,

Figure 4: A correct tiling for a 2k - 1 x 2k - 1 square including the planar
representation of a torus (shaded).
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Figure 5: Invertibility for CA.

4. A cellular automaton in t he r esidua l class

Here we exhibit the first constructive example of CA in the residu al class.
As described in [18], a CA on an infini te support can be:

• injecti ve and surjec tive (inveTtible);

• not inject ive and not surject ive (non surjective); or

• surject ive but not injective (pT'OpeTly surje ctioey.

It is impossible for a CA to be injective but not surjective [13]. When the
local map is considered on a finite support, the three classes listed above
have th e following behaviors (see Figure 5):

• ICAs remain invertible;

• nonsurjective CAs remain nonsur jective; and

• properly surject ive CAs can yield either inver tible or nonsurj ective
finite CAs.

The class of CAs that are invertible on every finite support bu t noninver t ible
on an infini te support is called the residual class. T he residual class cannot
be empty [18] but no examples of CAs in this class have been shown until
now.

4 .1 A specific noni nvertible cellu lar automaton

Using the set of t iles defined in section 3, we construct a CA in the residu al
class.

We tag each passage of the t iles TK with a binary digit; let us consider th e
CA having as st ates these modified t iles and performing, at each step , the
XOR between bit s of adjacent cells along the path induced by the passages.
Form ally we have Definition 4.1.

D efinition 4 .1. Th e two-dimensional CA A K is defined by the following.

St ates: Each sta te consists of two components: a tile t E T K (tile component)
and one bit (0 or 1) for each passage oft (bit components).

Neighborhood: Moore.

Local function: The local function does not change the tile component .
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o 0 0 0 0 0 bits at t ime t + 1

+ + + + + +
~~~~~~OR6 6 6 6 6 6 0 bits at t ime t

Figur e 6: Bit s along a path .

• If there is no tiling error in the neighb orhood of a cell, then tile fun ction
p erform s the XOR between the bit of each passage of the cell and the
bit of the corresponding nex t passage in the pat h (see Figure 6).

• If there is a tiling error, the bit s rem ain utictuuiged .

A K is noninvertible and has an interesting proper ty that IS stated 111

Lemma 4.1.

Lemma 4 .1. [10] The CA AK

1) is noninvertible on the in finite supp ort Z 2; and

2) for each pair of distin ct configurations Cl and C2 having tbe same im age
un der the updat e fun ction (i.e., F ( Cl ) = F (C2 )), the tile comp onent of
both Cl and C2 cons ti t utes a correct tiling of th e plan e (this property
has been called almost injectiv ity in [1OJ).

PTOOj. From Lemm a 3.1 we can choose two configurations Cl and C2 with
the tile components const it ut ing a correct t iling of the plane; thus the local
funct ion performs the XOR between each bit and the next bit in the space
covering path. If the bit components are set to a in Co and to 1 in Cl , the
images of both configura tions und er the upd ate function coincide with Co

it self; hence AK is not invertible.
If Cl -I C2 and F(cd = F (C2), there must be a cell x whose sta tes ql and

q2 , respectively in Cl and C2, are different . T he local funct ion f must change
at least one of ql and q2; however , the tile component s of these states must
be the same, since they are not changed by f. Accord ing to Definition 4.1,
th ere cannot be a tiling error in the neighborhood of x (otherwise the bit s
would remain unchanged), f comput es the XOR between bits of adjacents
passages, thus also the bits in the cell that follows xalong the path , must have
different states . By itera ting such a pro cess, since a correc t path visits every
cell (Lemma 3.2), we see that there cannot be any tiling err ors anywhere .
Thus th e t ile component of Cl and C2 must const itute a corr ect ti ling of th e
plane. _

4.2 From infinite to fin ite support

Here we prove th at the noninvertible CA AK in Definition 4.1 becomes invert­
ible when considered on finit e toroidal supports . Thus AK is a const ructive
example of a CA in th e residual class.
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The noninvertibility of AI< on an infini te support comes from the non­
injectivity of the XOR operator; if the path , defined by the passages, is an
infinite one, we cannot know the predecessor of a configurat ion (see Figure
6). Nonetheless, if we could know th e predecessor of at least one cell then we
could also determine the predecessor of th e cell that follows in the path , and
iteratively det erm ine all the ot her cell predecessors. The CA then becomes
inver tible.

The inver tibili ty of A K on a finite support follows from the fact that , on
a tor us, the set of t iles TK always leads to a tiling erro r (Lemma 3.3): from
a given configurat ion, we can reconstruct the previous one star ting from a
cell (there is at least one) where the local funct ion does not change the state
since the tiling is not correct . Formally we have Theorem 4.1.

Theorem 4 .1. Th e two-dim ensional CA A K is in the residu al class.

Proof We still call A K the toroid al CA obtained from the local map of A K

in Definition 4.1. From Lemma 3.3, for any n , for any configura tion of AT(
on the toroidal support ZnZ there must be a tiling err or due to the tile
component of the sta tes . From the second property of Lemma 4.1, given two
configurations CI and Cz such that F (CI) = F(cz), it must be that CI = Cz ,
ot herwise the tiling would be correct . Thus A K is injective on any toroidal
support . _

The proper surject ivity of A K (see Figure 5) follows from the t he fact
tha t A K is noninvertible on infinite support and becomes invertible on finite
supports . Ind ependent of this result , Theorem 4.2 can be proved.

T heorem 4 .2. Th e two-dimensional CA AI< is prop erly surje ctive.

Proof. By Lemm a 4.1, A K is not injective on the infinite support Z 2 How­
ever, A K is surjective; indeed , let C be a configuration of AK and n be a
positive integer ; on any path P = (PI, " " Pn) of length n (pass ing through
th e cells i = 1, . . . , n ) we denote as (xL . . . , x~ ) the bits associated with the
passages in P at t ime t ; then, all possible situa t ions can be easily redu ced to
the following two cases .

1. The cells i = 1, . .. , n - 1 have no t iling erro rs and cell n has a ti ling
error ; then , in th e predecessor of C, Xn must have th e same value of that
in C (see Definition 4.1). Moreover , for any t > 0 and i = 1, . . . ,n - 1,
in the XOR function

the value X~- I is uniquely determined by x; and xt;: ~ . From these facts,
by a backward-itera tive pro cedure, it is easy to correctly define all the
bit values of P in the predecessor of c.
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2. one of the cells i = 1, .. . , n have t iling erro rs; then , by Theorem
3.2, the path p cont inues into a cell n + 1 having a bit Xn+l associated
with th e passage P n+ l' Then , for any value of Xn+l , it is not hard to
determi ne all bit values of p in the pr edecessor of c by making use of
the same procedur e ment ioned in the first case.

T he pr oof is complete d by observing that the local functi on fK (and
thence the global one) is different from the identi ty only on the bits of pas­
sages . _

5. Unbounded neighborhood

Here we define a class of lCAs for which the neighb orhood of the inverse is
not bo unded by any recursive function (nonreciprocal property) . From [18]
we have Theorem 5.1.

Theor em 5.1. [18J There canno t exist a recursive function f ().. ) defined on
the local maps of the two-dimensional CAs and bounding the neighborhoods
of all the l CAs.

Proof. If this function existed, given a local map ).. we could sequent ially
generate all the local map s wit h a radius bounded by f ().. ), and by Lemma
2.1 we could check if one of these map s is the inverse of ).. . On reachin g f ().. ),
either we found an inverse or we can conclude that X is not invertible. Bu t
this contradicts the und ecidab ility of CA invertibility (T heorem 2.3) . _

This result can be easily extended to any class of CAs for which it is
undecidabl e whether a CA is inver tible. Thus, the class of CAs used in [10]
to pr ove Theorem 2.3 has the no nreciprocal pr operty.

Showing a class t ha t is "small" and st ill has the nonreciprocal property
is useful in understanding the nature of the theoret ical result of T heorem
5.1. We give a different pro of, without using the result in T heorem 2.3, of
the nonreciprocal property for the class int rodu ced in [10], emphas izing the
reason of this property. Let us now define such a class in a form al way.

D efinition 5. 1. For any tile set T , we consider the CA AK
T defined in the

following way

States: Each state is a pair (t , q) where t E T and q is an element of the sta te
set defined in Definition 4.1.

Neigbborboo d: Moore.

Local function : Th e local function operates as the function of AI{ except
that , when checking for tiling errors, it also considers the state component
given by the set T .

It can be eas ily pr oved , as done in [10] for different goals, that if a tile
set Terro r do es not admit a correct t iling for the plan e Z 2 (t hat is, it is a
NO-inst ance of the t iling prob lem ), then the corresponding CA AKTm m is
invert ible.
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Lemma 5.1. For any NO-inst ance Terror of the tiling problem , tile corre­
sp onding CA A K Te r ror is in vertible.

Proof. If we suppose, by contradict ion , that AK T w o>, is noninvertible, by the
same reasoning used for proving the second statement of Lemma 4.1, we can
prove that Terror admits a correct ti ling of the plan e. Bu t this is false, and
thus the lemma is proved. •

If we consider any possible O-instan ce Terror of the t iling problem and we
cons truct the correspo nding CA AK T

eno
,· , we then obtain the following class:

INV = {AK " e r-ro r : Terror is a NO-instance of the tiling problem}.

From Lemma 5.1, the class INV consists of CAs that are inver tible. How­
ever , in order to explicit ly obtain the pr edecessor of a cell i we must follow
the path originating from i un til a tiling error is encountered . When we find
a t iling err or in a cell y, since the local fun cti on in y is the identi ty, we know
the predecessor of y; by going backwards along the path, we can find the
predecessor of i . This is the only way to cons truct the inverse; it follows
that the rad ius of the neighborhood must be large enough to recognize the
nearest tiling err or (t his last proper ty will be formally pr oved in T heorem
5.2). But the tiling err or generated by an arbitrary NO-inst ance Terror of the
tiling pr oblem cannot be bounded by a recursive function . Indeed , for the
tiling problem we have a result similar to that of T heorem 5.1.

Lemma 5 .2 . Th ere cannot exist a recursive function g(T) defined on the
set of instances of the tiling problem and bounding the maximum distance
between two errors (or , equivalently, bounding the distance between one poin t
and its nearest tiling error) in a Terror-tiling of any p ossible N O-instances Terror .

Proof. The proof is by contradict ion . if this function existed , given any t ile
set T we would then be able to decide the t iling problem by generating all
possible T-t iling of size at most g(T). •

Since, by Lemma 5.2, we cannot pr edi ct where a t iling error eventually
occurs , the radii of the inverses of the CAs in INV cannot be bounded by
any recursive funct ion. T heorem 5.2 formalizes this resul t.

Theorem 5.2. The radius IN - I I of the inverses of the CA s in IN V cannot
be bounded by any recursive function .

Proof. Let us denote by r: th e local fun ction of the inverse of a CA in INV.
By Lemma 5.2, it is sufficient to pro ve that N - 1 must always contain at least
one t iling err or; that is, every cell, in the backward evolut ion , must have at
least one tiling error in it s neighb orhood in order to compute its next state.
Indeed , let us assume by cont radict ion that N- 1 does not always contain a
tiling err or (with respect to the TK component or the Terror component ) . T hus,
there exists a configurat ion in which a cell i has a corr ect tiling (for both TK

and Terror components ) in its neighb orhood . For simplicity we call N - 1 t he
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-- N - I
•

x Ifpath . . . . . . . t+ l
0 0 0 0 0 0 0 1

• • • • • • • • • I t
1 1 1 1 1

Figure 7: A tiling err or in the neighbor hood of t he inverse.

neighb orhood of x. By Lemma 3.2, the pa th passing on x must leave this
neighborh ood and reach a cell if which is adjacent to N - I . Without 10 of
generality, let us suppose that there is a t iling error (there must always exist
one) in the cell if (more pr ecisely, in the par t of its neighborh ood which is
outside N- I ) ; thus the bits in if are not changed by the local fun ct ion. Let us
consider the configurat ion in which all bits in N- I are O. The predecessor of x
in the forward evolut ion of the CA is j - I (N- I ); let us suppose that this value
is 0 and consider the configuration in which the bit in if is 1 (see F igur e 7).
Under these condit ions, all the bits that preceed if in the path that goes from
if to xmust be 1, also, bits in xmust be 1, bu t this is a contradict ion . Similar
arguments can be applied if we suppose .r-I (N- I ) = 1. •

6 . Conclusions

The exist ence of families of invertible toroidal CA having an inverse local
map wit h large and complex interactions could determ ine a set of one-way
funct ions having pract ical applications in cryptography. Indeed , knowledge
of the direct local map (the cryptor) does not give sufficient information (to
the cryptoanalyst) on the inverse local map (the decryptor ) (e.g., [7]). In
terms of dynami cal system theory, the results shown in this paper imply the
existence of reversible dynamical systems having local and simple interactions
but whose inverses have almost-global interactions.
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Appendix A . Kar i's t iling techn ique

Here we describe the basic st ructure of t he tiles in the set TK defined by Kari
and used in our results . We will thus follow the term inology and notations
adopted in [10].

Arrows Different kinds of arrows (see sect ion 3) are dist inguished by dr awing
them in different ways and by labelling them with different tags. Thus
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XY 51

xyEEXYXyEfj
XV NI

Single cross LI _

XY NI
Doub le cross LI _

NI
Double arms --,

sw

Figure 8: Labelled arrows.

(a) (b) (e)

Hor Hor Ver Ver X Y

~ ~ ~
Ver Ver Hor Hor Y X

Figure 9: The diagonal arrows on (a) horizontal arms, (b) vert ical
anus , and (c) crosses (X ,Y E {Hor,Ver}) .

we have the set of labelled arrows shown in F igur e 8. Each of these ti les
also has two diagonal arrows as shown in Figur e 9. T his set permits
the recur sive const ruc tion of correct tilings for arbitrarily large squares
(see Figure 10). The diagonal arrows force the hori zont al and vertical
arms to alte rnate on each diagonal row of tiles.

Passages If we denote a tile by the label of its arrow; we have the following.

• Double crosses must have the passages
{(NW ,NE) ,(NE,SE), (SE,SW ),(SW,NW )}.

• Single crosses must have one of the following six passage sets :
{(XY,XY)} such that
XY E {NE ,NW ,SE,SW};
{(NW ,SE),(SE ,NW)} ; or
{(NE ,SW), (SW ,NE)}.

• No passage for any type of arms .

In Figur e 11 the path induced by a correc t tiling on a squa re of dim ension
7 is shown.

In a (2n - 1) x (2n - 1) square correc t ly t iled by the recur sive cost ruction
sketched in Figur e 3, the til e in the middle is always a double cross (see
Figures 3 and 10); we denote this squa re by (2n - 1)-XY-squ ar e where XY
is th e label of the cent ral double cross.

The set TK is such that , given a (2n
- I) -squ are t iled correc tly , the ti les

immediately outside the squa re are the ones that allow the correct t iling to
be extended to a (2n+l - 1)-squa re .
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(-} - 1) - NW- s qua r e (-} -1) -NE-square

(-} -1 ) -SW-squa r e (-} -1 ) -SE-square
3

(2 - l ) - s qu a r e

Figur e 10: Corr ect t iling. Arm s are dr awn without secondary arr ows
and without labels.

7-NW-square

Figure 11: A correct path. T he path is dr awn without direct ion .
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In a correct t iling every 2 x 2 block of t iles contains a sing le cross. Thus,
if we cons ide r each f inal t ile cons isting of one of all possible correct 2 x 2
blocks of elementary t iles, we obtain a path visit ing the ent ire pla ne (Lemma
3.1); the following technica l lemma proves t his result .

Lemma A .I. [10] Let t be a single cross on the plane. Consider the path
that goes via t . Suppose that there are no tiling erro rs in any of the 4n tiles
that precede and the 4n tiles tlJat follow t on this path . Th en t belongs to a
XY-(2n

- I )-square (X Y can be as usu a.l, NE, NW, SE , or SW) whose single
crosses are all visited by the path .

No te that Lemma A. 1 impli es that ifthere are no tiling errors in the plane,
there is an unique, infinite covering path . A formal proof of t his conse quence
can b e found in [10].
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