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Abstract. We address certain questions concerning invertible cellu-
lar automata (ICA), and present new results in this area. Specifically,
we explicitly construct a cellular automaton (CA) in a class (residual
class) previously known not to be empty only via a nonconstructive
existence proof. This class contains CAs that are invertible on ev-
ery finite support but not on an infinite lattice. Moreover, we show a
class that contains ICAs having bounded neighborhood, but whose in-
verses constitute a class of CAs for which there is no recursive function
bounding all the neighborhoods.

1. Introduction

Computational models satisfying physical laws are the subject of several
recent studies [3, 8]; of particular interest are invertible models [5, 8]. Cellular
automata (CAs) represent one of the best models of parallel computation;
the study of invertibility in CAs is of great interest in modelling physics.

Several theoretical results concerning invertibility in CAs have been pre-
sented [2, 9, 10, 12, 13, 15, and 18], some leading to open questions.

e In [18], the existence of a peculiar class (residual class) of CAs had been
predicted but, until now, no such CAs had been exhibited. Here we
explicitly construct a CA in this class, that is, a CA that is invertible
on every finite support but is not invertible on an infinite support.
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e It is known [18] that for the class of all ICAs, an upper bound to the ra-
dius of the inverses cannot be found. We investigate the meaning of this
constraint, exhibiting a class of ICAs with inverse local maps having
neighborhoods that cannot be bounded by any recursive function.

We construct these CAs starting from a space tiling technique introduced
in [14]. More precisely, using a variant of their technique, we discuss a
particular set of local maps that had first been presented in [9, 10] and we
prove that this set has the above mentioned properties.

2. Infinite cellular automata
2.1 Cellular automata

A cellular automaton is a set of identical finite automata (also called cells)
locally connected to each other in a uniform way. In this paper, we consider
two kinds of CAs, depending on their support, that is, the grid containing
the cells.

e If the cells are located in the infinite d-dimensional lattice (i.e., Z‘i),
we have a proper CA.

e If the support is a d-dimensional toroidal array (torus) of period (or
size) n along all dimensions (i.e., Z9), we have a toroidal CA.

The state g of each cell varies according to a uniform, deterministic local
function defined on the set of neighborhood states. The neighborhood, a set N
of displacements, specifies the relative positions (with respect to the cell to be
updated) of the cells used by the local function. By radius of a CA, we mean
the radius of its neighborhood. In this paper, we use the Moore neighborhood,
consisting of a cell and the eight adjacent cells in a two-dimensional grid.

Hence, a complete description of a CA (both for the infinite and the finite
case) can be given by defining:

the support space,

the state set @ of the cells,
e the neighborhood N, and

the local function f : QN — Q.

The pair A = (neighborhood, local function) will be called a local map or
rule. The cells change their states in a parallel, synchronous way. The local
function determines a global function F' acting on the space X of all possible
configurations.
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2.2 Invertibility

A CA is inwvertible if its global function is bijective. The invertibility of a CA
is an important issue in modelling reversible physical phenomena. Here we
give a brief summary of the main results about the invertibility of CAs.

The invertibility of a CA is a property of its global function, while the
CA itself is described in terms of a local map; in [13] it is proved that the
bijectivity (i.e., invertibility) of a CA’s global function implies the existence
of an inverse local map. Note that even if every global state is the successor
of another state, a CA is not invertible if there is a global state having more
than one possible predecessor.

Theorem 2.1. [13] If the global map of a CA is injective, then it is invertible,
and its inverse is the global map of a CA as well.

In other words, if the global map is injective then it is also surjective and
the inverse global process can be described in local terms. The proof in [13]
is not constructive: it does not give any procedure for finding the inverse
local map. However, given two CAs it is possible to decide whether they are
inverses of each other by using Lemma 2.1.

Lemma 2.1. [18] There is an effective procedure for deciding, for any two
local maps A and X' defined on the same set of configurations, whether the
corresponding global maps F' and F' are inverses of one another.

Early investigators conjectured that ICA could not be computational uni-
versal [1, 4]. In [15] the existence of universal invertible d-dimensional CAs
when d > 1 is proved; in [12] the existence of computational universal CAs
in the one-dimensional case is proved.

For many years a major challenge has been deciding whether or not a
given CA is invertible. For the one-dimensional case Theorem 2.2 is proved
in [2].

Theorem 2.2. [2] There is an effective procedure for deciding whether or not
an arbitrary one-dimensional CA, given in terms of a local map, is invertible.

In other words, the class of invertible one-dimensional CAs is recursive.
The class of multidimensional ICAs is recursively enumerable (see [18] for a
proof). However, it was recently proved [9, 10] that, for d greater than one,
the class of invertible d-dimensional CAs is not recursive.

Theorem 2.3. [9, 10] There is no effective procedure for deciding whether
or not an arbitrary two-dimensional CA, given in terms of its local map, is
invertible. Thus, in general, the invertibility of a CA is undecidable.

The proof of Theorem 2.3 is based on transformation from another un-
decidable problem: the tiling problem on the infinite two-dimensional lattice
[14].

The invertibility of a CA considered on toroidal finite supports has been
proved to be co-NP-complete [6]; the same result of completeness arises also
in average-case complexity theory [7].
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Along with these theoretical results, there have been technological, ar-
chitectural, and algorithmic developments (e.g., [11, 16, 17, and 19]); as a
result, CAs have become a very productive tool for modelling and executing
parallel computation.

3. A tiling technique

In this section we summarize some results and definitions used in [10] to
prove Theorem 2.3. In particular, since it is used for proving our results,
we briefly describe a finite set of tiles having the properties that they cover
an infinite two-dimensional grid and that they define a path through all the
elements of this grid. Moreover, we prove that this set of tiles cannot be used
to tile a finite toroidal support of any size.

A tile is a square with colored edges. Formally, given a finite set C' of col-
ors, a tile set is a subset 7 C C* and a 7-tile is any ordered quadruple ¢ of C*.

A tiling (denoted as 7-tiling) of a fixed grid (support space) using the set
7, 1s a mapping from the sites of the grid to the set of tiles.

By correct tiling we mean a tiling such that edges of adjacent tiles have
the same color.

Using colors, labels, or numbers to distinguish different kinds of tile edges
is just a matter of convention. In what follows we adapt the concept of edge
color as in [10].

We replace each color with one or more arrows pointing inwards or out-
wards from an edge. In other words, each edge is tagged by the heads and
tails of different arrows (see Figure 1). Two adjacent edges match correctly
if each head meets, in the adjacent tile, the tail of an identical arrow.

Let us further generalize the concept of color by assigning labels to the
corners as well. If we call the four corners of a tile NE, NW, SW, and SE (see
Figure 2(a)), a passage is a pair (@i, dout), Where both ay, and aey (Which
denote, respectively an inward direction and an outward direction) belong to
the set {NE,NW ,SW SE} (see Figure 2(b)). The corner NW is naturally
called opposite to SE and NE is opposite to SW.

With this formulation, the concept of “tile color” has been generalized
to one of “arrows and passages.” According to these definitions, a tiling is
correct if both of the following are true.

e Bach arrow head meets an equal arrow tail.

e For each passage (i, dout) the neighbor tile in the aqy direction is
“colored” with a passage whose inward direction is the opposite of agyt.

If one of these two conditions does not arise, we say that a tiling error occurs.

i e
< <
Colors Arrows Correct tiling

Figure 1: Colors are replaced by arrows.
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Figure 2: (a) Corners. (b) (SW.SW) and (NE,SE) passages.
(¢) Paths.
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Figure 3: Construction of a correct tiling for a square of side 7.

We define a path as a sequence (possibly cyclic) of consecutive passages
Pis- .., Di,- .. associated with neighboring cells, such that the outward direc-
tion of p; is equal to the opposite of the inward direction of p;y; (see Figure
2(c)).

A complete description of the set 7 of 160 tiles defined in [10] is given
in appendix A. This set has three very interesting properties expressed by
Lemmas 3.1 through 3.3.

Lemma 3.1. [10] An arbitrarily large square grid can be correctly tiled with
the set Tx. From Koenig’s infinity lemma, one can then correctly tile the
entire plane Z2.

The correct tiling of arbitrarily large square grids (squares for simplicity)
is obtained by a recursive construction that, given the correct tiling of a
square of side 2" — 1, determines the correct tiling of a square of side 2"+ —1.
A schematic representation of this construction is shown in Figure 3.

Lemma 3.2. [10] In every tiling of the plane from the set Tk, only two types
of path may arise:

e cither the path has a tile for which there is a tiling error in its neigh-
borhood, or

e the path visits all the tiles of an arbitrarily large square.
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The property of tiling arbitrarily large squares is trivial to achieve; it
is the property expressed in Lemma 3.2 that makes this set of tiles really
interesting. In other words, whatever square we tile with the set 7, either
this tiling induces a continuous path through all the tiles, or the fact that the
path will not cover the entire square is locally recognizable through a tiling
error. The path induced by the passages has the shape of the Hilbert curve
(see Figure 11). We remark that the set of tiles 7k is independent of the size
of the square that ones wants to tile.

The set 7k resembles that presented in [14] as an example of tiles that
permit only nonperiodic tiling: neither the tiles in [14] nor the set 7 can
be used to tile correctly a torus. In fact, referring to Figure 3, a tiling error
must occur when the space is wrapped around by joining together opposite
edges since some arrow heads will then meet other heads instead of tails. In
Lemma 3.3 we formalize this result, using the construction of (2"—1)x (2" —1)
squares with the set 7 given in appendix A.

Lemma 3.3. The set of tiles T does not permit correct tiling for tori of any
size.

Proof. (By contradiction.) Suppose that there is a correct tiling for a torus
of size n. This tiling is equivalent to a correct periodic tiling of period n for
the infinite lattice. Let ¢ be a single cross of the torus (which always exists,
since in every correct tiling each 2 x 2 square must have a single cross).
From Lemma A.1, ¢t is in a XY-(2™ — 1)-square constructed as explained
in appendix A; since the entire plane is tiled correctly, m is as large as we
want. Thus we can find the smaller k such that there exists a XY-(2F — 1)-
square including our planar representation of the torus (see Figure 4). Since
n > 2571 — 1, the torus must include the central cross of the square (A in
figure) as well as part of the arms leaving from it; thus, when the space is
wrapped around, a tiling error is encountered. ®

9k-1) 4

k

2" -1

Figure 4: A correct tiling for a 25=! x 26=1 square including the planar
representation of a torus (shaded).
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Infinitef Invertible Properly Surjective Nonsurjective
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Z <
Finite Invertible ( \ ) )
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SUpports (Rec. Enum.) : Residual Class (Rec. Enum.)
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Figure 5: Invertibility for CA.

4. A cellular automaton in the residual class

Here we exhibit the first constructive example of CA in the residual class.
As described in [18], a CA on an infinite support can be:

e injective and surjective (invertible);
e 1ot injective and not surjective (nonsurjective); or
e surjective but not injective (properly surjective).

It is impossible for a CA to be injective but not surjective [13]. When the
local map is considered on a finite support, the three classes listed above
have the following behaviors (see Figure 5):

e ICAs remain invertible;
e nonsurjective CAs remain nonsurjective; and

e properly surjective CAs can yield either invertible or nonsurjective
finite CAs.

The class of CAs that are invertible on every finite support but noninvertible
on an infinite support is called the residual class. The residual class cannot
be empty [18] but no examples of CAs in this class have been shown until
now.

4.1 A specific noninvertible cellular automaton

Using the set of tiles defined in section 3, we construct a CA in the residual
class.

We tag each passage of the tiles 7 with a binary digit; let us consider the
CA having as states these modified tiles and performing, at each step, the
XOR between bits of adjacent cells along the path induced by the passages.
Formally we have Definition 4.1.

Definition 4.1. The two-dimensional CA Ak is defined by the following.

States: Each state consists of two components: a tilet € 7% (tile component)
and one bit (0 or 1) for each passage of t (bit components).

Neighborhood: Moore.
Local function: The local function does not change the tile component.
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O bits at time ¢+ 1

SRRt

QO bits at time ¢

Figure 6: Bits along a path.

e [fthere is no tiling error in the neighborhood of a cell, then the function
performs the XOR between the bit of each passage of the cell and the
bit of the corresponding next passage in the path (see Figure 6).

e [f there is a tiling error, the bits remain unchanged.

Agk is noninvertible and has an interesting property that is stated in
Lemma 4.1.

Lemma 4.1. [10] The CA Ak

1) is noninvertible on the infinite support Z?; and

2) for each pair of distinct configurations ¢, and ¢y having the same image
under the update function (i.e., F(¢;) = F(c2)), the tile component of
both ¢, and ¢y constitutes a correct tiling of the plane (this property
has been called almost injectivity in [10]).

Proof. From Lemma 3.1 we can choose two configurations ¢; and ¢, with
the tile components constituting a correct tiling of the plane; thus the local
function performs the XOR between each bit and the next bit in the space
covering path. If the bit components are set to 0 in ¢y and to 1 in ¢;, the
images of both configurations under the update function coincide with ¢
itself; hence Ag is not invertible.

If ¢; # ¢p and F(c;) = F(ca), there must be a cell & whose states ¢; and
@2, respectively in ¢; and ¢, are different. The local function f must change
at least one of ¢; and ¢o; however, the tile components of these states must
be the same, since they are not changed by f. According to Definition 4.1,
there cannot be a tiling error in the neighborhood of & (otherwise the bits
would remain unchanged), f computes the XOR between bits of adjacents
passages, thus also the bits in the cell that follows # along the path, must have
different states. By iterating such a process, since a correct path visits every
cell (Lemma 3.2), we see that there cannot be any tiling errors anywhere.
Thus the tile component of ¢; and ¢, must constitute a correct tiling of the
plane. m

4.2 From infinite to finite support

Here we prove that the noninvertible CA Ak in Definition 4.1 becomes invert-
ible when considered on finite toroidal supports. Thus Ak is a constructive
example of a CA in the residual class.
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The noninvertibility of Ax on an infinite support comes from the non-
injectivity of the XOR operator; if the path, defined by the passages, is an
infinite one, we cannot know the predecessor of a configuration (see Figure
6). Nonetheless, if we could know the predecessor of at least one cell then we
could also determine the predecessor of the cell that follows in the path, and
iteratively determine all the other cell predecessors. The CA then becomes
invertible.

The invertibility of Ak on a finite support follows from the fact that, on
a torus, the set of tiles 7 always leads to a tiling error (Lemma 3.3): from
a given configuration, we can reconstruct the previous one starting from a
cell (there is at least one) where the local function does not change the state
since the tiling is not correct. Formally we have Theorem 4.1.

Theorem 4.1. The two-dimensional CA Ak is in the residual class.

Proof. We still call Ak the toroidal CA obtained from the local map of Ak
in Definition 4.1. From Lemma 3.3, for any n, for any configuration of Ag
on the toroidal support Z,* there must be a tiling error due to the tile
component of the states. From the second property of Lemma 4.1, given two
configurations ¢; and ¢, such that F(c;) = F(cz), it must be that ¢; = ¢,
otherwise the tiling would be correct. Thus Ax is injective on any toroidal
support. ®

The proper surjectivity of Ax (see Figure 5) follows from the the fact
that Ak is noninvertible on infinite support and becomes invertible on finite
supports. Independent of this result, Theorem 4.2 can be proved.

Theorem 4.2. The two-dimensional CA Ay is properly surjective.

Proof. By Lemma 4.1, Ak is not injective on the infinite support Z%. How-
ever, Ak is surjective; indeed, let ¢ be a configuration of Ax and n be a
positive integer; on any path p = (p1,...,p,) of length n (passing through
the cells ¢ = 1,...,n) we denote as (z},...,z%) the bits associated with the
passages in p at time ¢; then, all possible situations can be easily reduced to
the following two cases.

1. The cells « = 1,...,n — 1 have no tiling errors and cell n has a tiling
error; then, in the predecessor of ¢, x,, must have the same value of that
in ¢ (see Definition 4.1). Moreover, for any ¢t > 0 and i = 1,...,n — 1,
in the XOR function

PR P |
;= T

the value z:* is uniquely determined by ¢ and x¥71. From these facts,
by a backward-iterative procedure, it is easy to correctly define all the
bit values of p in the predecessor of c.



244 A. Clementi, P. Mentrasti, and P. Pierini

2. None of the cells i = 1,...,n have tiling errors; then, by Theorem
3.2, the path p continues into a cell n + 1 having a bit z,4; associated
with the passage pn41. Then, for any value of x,44, it is not hard to
determine all bit values of p in the predecessor of ¢ by making use of
the same procedure mentioned in the first case.

The proof is completed by observing that the local function f¥ (and
thence the global one) is different from the identity only on the bits of pas-
sages. H

5. Unbounded neighborhood

Here we define a class of ICAs for which the neighborhood of the inverse is
not bounded by any recursive function (nonreciprocal property). From [18]
we have Theorem 5.1.

Theorem 5.1. [18] There cannot exist a recursive function f(A) defined on

the local maps of the two-dimensional CAs and bounding the neighborhoods
of all the ICAs.

Proof. If this function existed, given a local map A we could sequentially
generate all the local maps with a radius bounded by f(A), and by Lemma
2.1 we could check if one of these maps is the inverse of A. On reaching f(\),
either we found an inverse or we can conclude that A is not invertible. But
this contradicts the undecidability of CA invertibility (Theorem 2.3). ®

This result can be easily extended to any class of CAs for which it is
undecidable whether a CA is invertible. Thus, the class of CAs used in [10]
to prove Theorem 2.3 has the nonreciprocal property.

Showing a class that is “small” and still has the nonreciprocal property
is useful in understanding the nature of the theoretical result of Theorem
5.1. We give a different proof, without using the result in Theorem 2.3, of
the nonreciprocal property for the class introduced in [10], emphasizing the
reason of this property. Let us now define such a class in a formal way.

Definition 5.1. For any tile set 7, we consider the CA Ax" defined in the
following way.

States: Fach state is a pair (t,q) where t € T and q Is an element of the state
set defined in Definition 4.1.

Neighborhood: Moore.

Local function: The local function operates as the function of Ak except
that, when checking for tiling errors, it also considers the state component
given by the set T.

It can be easily proved, as done in [10] for different goals, that if a tile
set Tewor does not admit a correct tiling for the plane Z? (that is, it is a
NO-instance of the tiling problem), then the corresponding CA Ag™™" is
invertible.
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Lemma 5.1. For any NO-instance T.o of the tiling problem, the corre-
sponding CA Ag™ " is invertible.

Proof. If we suppose, by contradiction, that Ax™™" is noninvertible, by the
same reasoning used for proving the second statement of Lemma 4.1, we can
prove that 7., admits a correct tiling of the plane. But this is false, and
thus the lemma is proved. ®m

If we consider any possible NO-instance 7o 0f the tiling problem and we
construct the corresponding CA Ax™" ", we then obtain the following class:

INV = {AK™™" : Tepor 18 a NO-instance of the tiling problem}.

From Lemma 5.1, the class INV consists of CAs that are invertible. How-
ever, in order to explicitly obtain the predecessor of a cell ¥ we must follow
the path originating from & until a tiling error is encountered. When we find
a tiling error in a cell ¢/, since the local function in 7 is the identity, we know
the predecessor of ¥; by going backwards along the path, we can find the
predecessor of #. This is the only way to construct the inverse; it follows
that the radius of the neighborhood must be large enough to recognize the
nearest tiling error (this last property will be formally proved in Theorem
5.2). But the tiling error generated by an arbitrary NO-instance Teyo, of the
tiling problem cannot be bounded by a recursive function. Indeed, for the
tiling problem we have a result similar to that of Theorem 5.1.

Lemma 5.2. There cannot exist a recursive function g(7) defined on the
set of instances of the tiling problem and bounding the maximum distance
between two errors (or, equivalently, bounding the distance between one point
and its nearest tiling error) in a Tepop-tiling of any possible NO-instances Topror-

Proof. The proof is by contradiction. if this function existed, given any tile
set 7 we would then be able to decide the tiling problem by generating all
possible 7-tiling of size at most g(7). m

Since, by Lemma 5.2, we cannot predict where a tiling error eventually
occurs, the radii of the inverses of the CAs in INV cannot be bounded by
any recursive function. Theorem 5.2 formalizes this result.

Theorem 5.2. The radius |[N7}| of the inverses of the CAs in INV cannot
be bounded by any recursive function.

Proof. Let us denote by f~* the local function of the inverse of a CA in INV,
By Lemma 5.2, it is sufficient to prove that N~ must always contain at least
one tiling error; that is, every cell, in the backward evolution, must have at
least one tiling error in its neighborhood in order to compute its next state.
Indeed, let us assume by contradiction that N~ does not always contain a
tiling error (with respect to the 7 component or the ey, component). Thus,
there exists a configuration in which a cell # has a correct tiling (for both 7«
and Teqor components) in its neighborhood. For simplicity we call N=! the
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Figure 7: A tiling error in the neighborhood of the inverse.

neighborhood of #. By Lemma 3.2, the path passing on ¥ must leave this
neighborhood and reach a cell & which is adjacent to N=!. Without loss of
generality, let us suppose that there is a tiling error (there must always exist
one) in the cell ¥ (more precisely, in the part of its neighborhood which is
outside N~1); thus the bits in ¢ are not changed by the local function. Let us
consider the configuration in which all bits in N~! are 0. The predecessor of
in the forward evolution of the CA is f~1(N~1); let us suppose that this value
is 0 and consider the configuration in which the bit in 7 is 1 (see Figure 7).
Under these conditions, all the bits that preceed 7 in the path that goes from
7/ to Z must be 1, also, bits in & must be 1, but this is a contradiction. Similar
arguments can be applied if we suppose f~{(N71)=1. m

6. Conclusions

The existence of families of invertible toroidal CA having an inverse local
map with large and complex interactions could determine a set of one-way
functions having practical applications in cryptography. Indeed, knowledge
of the direct local map (the cryptor) does not give sufficient information (to
the cryptoanalyst) on the inverse local map (the decryptor) (e.g., [7]). In
terms of dynamical system theory, the results shown in this paper imply the
existence of reversible dynamical systems having local and simple interactions
but whose inverses have almost-global interactions.
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Appendix A. Kari’s tiling technique

Here we describe the basic structure of the tiles in the set 7 defined by Kari
and used in our results. We will thus follow the terminology and notations
adopted in [10].

Arrows Different kinds of arrows (see section 3) are distinguished by drawing
them in different ways and by labelling them with different tags. Thus



Some Results on Invertible Cellular Automata 247

XYEBXY xy@ @xy JEEBJW JEEBJW xyg %xy NWBT__]NE SWEE

Slngle cross |7 Slngle arms M;Lxed arms

@X\.« xv% %XY JE@JW JE%

XY
Double cross ; Double arms 4]

Figure 8: Labelled arrows.
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Figure 9: The diagonal arrows on (a) horizontal arms, (b) vertical

arms, and (c) crosses (X,Y € {Hor,Ver}).

we have the set of labelled arrows shown in Figure 8. Each of these tiles
also has two diagonal arrows as shown in Figure 9. This set permits
the recursive construction of correct tilings for arbitrarily large squares
(see Figure 10). The diagonal arrows force the horizontal and vertical
arms to alternate on each diagonal row of tiles.

Passages If we denote a tile by the label of its arrow; we have the following.

e Double crosses must have the passages

{(NW NE),(NE,SE), (SE.SW),(SW NW)}.

e Single crosses must have one of the following six passage sets:
{(XY,XY)} such that
XY € {NE,NW,SE,SW};
{(NW,SE),(SE,NW)}; or
{(NE,SW), (SW,NE)}.

e No passage for any type of arms.

In Figure 11 the path induced by a correct tiling on a square of dimension
7 is shown.

Ina (2" —1) x (2™ — 1) square correctly tiled by the recursive costruction
sketched in Figure 3, the tile in the middle is always a double cross (see
Figures 3 and 10); we denote this square by (2" — 1)-XY-square where XY
is the label of the central double cross.

The set 7k is such that, given a (2™ — 1)-square tiled correctly, the tiles
immediately outside the square are the ones that allow the correct tiling to
be extended to a (2" — 1)-square.
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Figure 10: Correct tiling. Arms are drawn without secondary arrows
and without labels.
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Figure 11: A correct path. The path is drawn without direction.
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In a correct tiling every 2 x 2 block of tiles contains a single cross. Thus,
if we consider each final tile consisting of one of all possible correct 2 x 2
blocks of elementary tiles, we obtain a path visiting the entire plane (Lemma
3.1); the following technical lemma proves this result.

Lemma A.1. [10] Let t be a single cross on the plane. Consider the path
that goes via t. Suppose that there are no tiling errors in any of the 4™ tiles
that precede and the 4™ tiles that follow t on this path. Then t belongs to a
XY-(2" — 1)-square (XY can be as usual, NE, NW, SE, or SW) whose single
crosses are all visited by the path.

Note that Lemma A.1 implies that if there are no tiling errors in the plane,
there is an unique, infinite covering path. A formal proof of this consequence
can be found in [10].
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