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Abstract

A non-trivial, transitive and re/exive binary relation on the set
of lotteries satisfying independence that also satis8es any two of the
following three axioms satis8es the third: completeness, Archimedean
and mixture continuity (Dubra (2011)). This paper generalizes Dubra's
result in two ways: First, by replacing independence with a weaker
betweenness axiom. Second, by replacing independence with a weaker
cone-monotonicity axiom. The latter is related to betweenness and,
in the case in which outcomes correspond to real numbers, implies
monotonicity with respect to 8rst-order stochastic dominance.
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1 Introduction

Building on a theorem of Schmeidler (1971), Dubra (2011) proved that a non-
trivial, transitive and reEexive binary relation on the set of lotteries satisfying
independence that also satisHes any two of the following three axioms satisHes
the third: completeness, Archimedean and mixture continuity. In this paper
we generalize Dubra's result by replacing independence with the weaker be-
tweenness axiom.1 In addition, we show that if outcomes correspond to real
numbers (e.g., monetary prizes) then Dubra's result still holds even if instead
of independence we only assume monotonicity with respect to Hrst-order
stochastic dominance. In fact, we prove the result replacing independence
with a weaker axiom dubbed cone-monotonicity. Cone-monotonicity axiom
is weaker than monotonicity with respect to Hrst-order stochastic dominance
and independence, and is related to (but not implied by) the betweenness
axiom.
In the next section we introduce the analytical framework and the axioms

whose interrelation constitute the focal point of this work. The relations
among the continuity conditions and completeness with betweenness are an-
alyzed in section 3. In section 4 we introduce the cone-monotonicity axiom
and analyze the relations among the continuity conditions and completeness
under cone-monotonicity. In section 5 we discuss the relations between cone-
monotonicity and betweenness and the relations between cone-monotonicity
and monotonicity with respect to Hrst order stochastic dominance. Conclud-
ing remarks appear in section 6.

2 The Analytical Framework

Let X be a Hnite set of k outcomes, denote by V (X) the set of all probability
measures on X; and by aWV (X) the aXne hull of V (X). For each p; q 2
V(X) and & 2 [0; 1] deHne &p+(1% &) q 2 V(X) by (&p+ (1% &) q) (x) =
&p (x) + (1% &) q (x) ; for all x 2 X:
Let < be a binary relation on V (X) and denote by & and by ' the

asymmetric and symmetric parts of <; respectively. We list below some

1Safra (2014) studied the representations of axiomatic theories that include betweenness
and depart from the completeness axiom. Karni and Zhou (2014) examined representations
of weighted utility theory (which satis8es betweenness) without completeness.
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well-known properties that < might satisfy.
(A.1) Non-trivial partial order < is reEexive and transitive with a non-
empty asymmetric part.
The relations among the next three axioms are the focal point of our

analysis.

(A.2) Archimedean For all p; q; r 2 V(X), if p & q then there exist &; * 2
(0; 1) such that &p+ (1% &) r & q and p & *q + (1% *) r:

(A.3) Mixture continuity For all p; q; r 2 V(X) the sets

f& 2 [0; 1] j &p+ (1% &) r < qg and f& 2 [0; 1] j q < &p+ (1% &) rg

are closed.

(A.4) Completeness For all p; q 2 V(X) ; either p < q or q < p:

3 Continuity, Completeness and Betweenness

The next axiom is a weakening of the independence axiom.2

(A.5) Betweenness For all p; q 2 V(X), r 2 fp; qg and & 2 (0; 1) ;

p < q () &p+ (1% &) r < &q + (1% &) r

Clearly, this implies that similar equivalences hold for & and '.
This statement of the betweenness axiom demonstrates to what extent it

is a weakening of the independence axiom (as r is not restricted to the set
fp; qg). Moreover, Axiom (A.5) implies the following more common state-
ments of the betweenness property (see Chew 1989 and Dekel 1986): For all
p; q 2 V(X), & 2 (0; 1)

p < q =) p < &p+ (1% &) q < q

and
p & q =) p & &p+ (1% &) q & q:

2For clarity, here is the version of the independence we refer to: For all p; q; r 2 T(X)
and & 2 (0; 1);

p < q () &p+ (1% &) r < &q + (1% &) r:
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When < is complete (A.5) is implied by them.
Our Hrst result generalizes the theorem of Dubra (2011) by replacing

independence with betweenness. Formally,

Theorem 1 Suppose that < is a non-trivial partial order on V(X) satisfying
betweenness. Then any two of the three axioms (A.2)-(A.4) imply the third.

Proof (a) Suppose that < satisHes Archimedean and completeness. Let
p; q; r 2 V(X) and consider the set A = f& 2 [0; 1] j &p + (1% &) r < qg.
Without loss of generality assume that p < r (by completeness, either p < r
or r < p) and note that, by betweenness, &p + (1% &) r < *p + (1% *) r
for all 1 > & > * > 0. If A = ? then we are done. Otherwise, deHne
&! = inff& 2 Ag. If &! 2 A then, by betweenness, A = [&!; 1] and hence
A is closed. Assume that &! =2 A and note that, by deHnition, for every
"0 > 0 there exists " 2 (0; "0) satisfying (&! + ") p + (1% (&! + ")) r < q.
By betweenness, this implies [&! + "; 1] - A and hence (&!; 1] - A. Next
note that if &!p + (1% &!) r < q does not hold then, by completeness, q &
&!p+(1% &!) r and hence, by Archimedean, there exists * 2 (0; 1) such that
q & * (&!p+ (1% &!) r) + (1% *) p. But

* (&!p+ (1% &!) r) + (1% *) p = (&! + (1% *) (1% &!)) p
+(1% (&! + (1% *) (1% &!))) r

while &! + (1% *) (1% &!) 2 (&!; 1]; a contradiction.
The proof that f& 2 [0; 1] j q < &p + (1% &) rg is closed follows by the

same argument.

(b) Suppose that < satisHes mixture continuity and completeness. Let
p; q; r 2 V(X) and suppose that p & q: Mixture continuity implies that
the set Aq = f* 2 [0; 1] j q < *p + (1% *) rg is closed and p & q implies
that 1 =2 Aq. Hence, [0; 1] r Aq is a non-empty open subset of [0; 1]. Take
& 2 [0; 1)r Aq and note that, by completeness, &p+ (1% &) r & q.
The proof that there exists * 2 (0; 1) r Ap for which p & *q + (1% *) r

is similar.3

3Note that betweenness was not used in this part. Under completeness, mixture con-
tinuity is stronger than Archimedean.
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(c) Suppose that < satisHes Archimedean and mixture continuity. We
show Hrst that, for all p 2 V(X); the sets fB (p) = fq 2 V(X) j q < pg and
fW (p) = fq 2 V(X) j p < qg are closed and the sets B (p) = fq 2 V(X) j
q & pg and W (p) = fq 2 V(X) j p & qg are open relative to V(X).

Fix p 2 V(X). If fB (p) is a singleton there is nothing to prove. We
therefore assume it is not and start by showing that fB (p) is convex. Take
p1; p2 2 fB (p) and let p# = &p2 + (1% &) p1 for some & 2 (0; 1). Note that
we cannot assume that either p1 < p2 or p2 < p1 hold. If for some i 2 f1; 2g
pi ' p then, for j 6= i and by transitivity, pj < pi and hence, by betweenness,
p# < p. Otherwise, assume that pi & p, for both i = 1; 2, and consider
the set A = f* 2 [0; 1] j *p1 + (1% *) p# < pg (A 6= ? by construction).
Denote *! = inff* 2 Ag, p! = *!p1 + (1% *!) p# and note that, by mixture
continuity, *! 2 A. If p! = p# (that is, if *! = 0) then p# < p and we
are done. Assume p! 6= p# and note that, by an argument similar to one
used in part (a), Archimedean implies that p! is not strictly preferred to p.
Hence p! ' p. Finally by transitivity, both p1 < p! and p2 < p! hold and, by
betweenness, p& < p for all 3 2 [0; 1]. Hence p# < p and fB (p) is convex.
Next choose q 2 V(X) in the boundary of fB (p), let fqng - fB (p)

be a sequence that converges to q, let r belong to the relative interior of
fB (p) and let N$" (r) be an open f"-ball around r whose intersection with
aW
!
fB (p)

"
is a subset of fB (p). By construction, for a Hxed " 2 (0; f")

rn = r + "
kqn$qk (q % q

n) 2 N$" (r) \ fB (p) and, by the convexity of fB (p),

fqn =
"

"+ kqn % qk
qn +

kqn % qk
"+ kqn % qk

rn < p

Next observe that, as fqn = "
"+kqn$qkq +

kqn$qk
"+kqn$qkr, fq

n belongs to the line
segment connecting r and q and, by construction, the sequence fqn converges
to q. By mixture continuity, q < p and hence fB (p) is closed.
The proof that fW (p) is closed follows by a similar argument.

Consider next the set B (p) :4 If B (p) = ? then there is nothing to
prove. Suppose that it is not and observe that, by arguments similar to
the above, B (p) is convex. Take q 2 B (p) and r1; :::rk$1 2 V(X) such

that fri % qgk$1i=1 span aW (V (X)). By Archimedean, for each r
i there ex-

ists &i 2 (0; 1) satisfying q + &i (ri % q) & p. Next, if there exists 3i >

4In this part of the proof we follow in the footsteps of Dubra (2011).
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0 such that q % 3i (ri % q) 2 V(X) then, by Archimedean, there exists
*i 2 (0; 3i) satisfying q % *i (ri % q) & p. If such 3i does not exist (this
happens if q belongs to the boundary of V (X)) then for this i we deHne

*i = 1. Let & = min f&i; *igk$1i=1 and note that, by convexity, the convex hull

of fq + & (ri % q) ; q % & (ri % q)gk$1i=1 contains the intersection of aW (V (X))
with an open ball N" (q) around q. Hence, q is an interior point of B (p) and
B (p) is open.
By similar argument, W (p) is open.

Since V (X) is a connected topological space these observations, in con-
junction with the theorem of Schmeidler (1971), imply that < is complete.

#

4 Continuity, Completeness and Cone-monotonicity

For our second result, we replace the betweenness axiom with an axiom
dubbed cone-monotonicity. Although this axiom seems weaker than between-
ness (and indeed is satisHed by some betweenness relations), this implication
does not always hold (see the discussion below). As we explain later, all
relations that are monotone with respect to the partial relation of Hrst-order
stochastic dominance satisfy cone-monotonicity.5

(A.6) Cone-monotonicity Every p 2 intV (X) has a non-empty cone Cp -
aWV (X)%fpg, open relative to aWV (X)%fpg, such that for all r 2 V(X),

r % p 2 Cp =) r & p;
p% r 2 Cp =) p & r

and r % p 2 Cp () r % p 2 Cr

Let r >Cp p denote r % p 2 Cp.

Theorem 2 Suppose that < is a non-trivial partial order on V(X) satisfying
cone-monotonicity. Then, on intV (X), any two of the three axioms (A.2)-

5All our cones are assumed to be `nonnegative' (i.e., closed under nonnegative scalar
multiplications).
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(A.4) imply the third. If, in addition, mixture continuity holds on V(X) then
completeness holds on V(X).

Note that non-triviality is implied by cone-monotonicity. It is left in the
statement of the theorem for ease of exposition.

Proof (a) Suppose that< satisHes Archimedean and completeness on intV (X).
Let p; q; r 2 intV (X) and consider the set A = f& 2 [0; 1] j &p+ (1% &) r <
qg. If A is either empty or Hnite then we are done. Otherwise let &! be an ac-
cumulation point of A (that is, there exists a sequence f&ng - Arf&!g that
converges to &!) and denote pn = &np+(1% &n) r and p! = &!p+(1% &!) r.
Assume, by way of negation, that p! < q does not hold. By complete-
ness, q & p!. As p! 2 intV (X), cone-monotonicity implies the existence of
fp 2 intV (X) satisfying fp >Cp p!. By Archimedean, there exists * 2 (0; 1)
such that q & *fp + (1% *) p! and, since Cp is a cone, *fp + (1% *) p! >Cp
p!. By cone-monotonicity, *fp + (1% *) p! >C#!p+(1!#)p" p! and hence, by
the openness of C,$p+(1$,)p

"
, there exists an open "-ball N" (p

!) satisfying
N" (p

!) \ aWV (X) - V(X) such that *fp + (1% *) p! >C#!p+(1!#)p" p0 for all
p0 2 N" (p!) \ aWV (X). By cone-monotonicity *fp + (1% *) p! & p0 and, by
transitivity, q & p0, for all p0 2 N" (p!) \ aWV (X). But, for suXciently large
n, pn 2 N" (p!) \ aWV (X) and hence q & pn; a contradiction.
The proof that f& 2 [0; 1] j q < &p + (1% &) rg is closed follows by the

same argument.
(b) The proof that Archimedean is implied by mixture continuity and

completeness is identical to that of Theorem 1 part (b) (note that the be-
tweenness property is not needed there and that the proof holds for the entire
V (X)).
(c) Suppose that < satisHes Archimedean and mixture continuity on

intV (X). We begin by showing that, for all p 2 intV(X); the sets fBint (p) =
fq 2 intV(X) j q < pg and fW int (p) = fq 2 intV(X) j p < qg are closed
relative to intV (X), and the sets Bint (p) = fq 2 intV(X) j q & pg and
W int (p) = fq 2 intV(X) j p & qg are open relative to intV (X). Then we
use Schmeidler's theorem to derive completeness of < on intV (X). Finally,
we show that, if mixture continuity holds on V (X), < on V (X) is also
complete.

Fix p 2 intV (X) and note that, by cone-monotonicity, the intersection
of Cp and intV (X) is relatively open and non-empty and hence fBint (p)
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is not a singleton. If q is an interior boundary point of fBint (p), that is if
q 2 @ fBint (p)\intV (X) (@ denotes the boundary), then let fqng - fBint (p) be
a sequence that converges to q. By cone-monotonicity the intersection of Cq

and intV (X) is non-empty and there exists r satisfying r >Cq q. Using cone-
monotonicity again, r >Cr q and, by the relative openness of C

r, there exists
an open "-ballN" (q) satisfyingN" (p

!)\aWV (X) - V(X) such that r >Cr q0,
for all q0 2 N" (q) \ aWV (X). This implies that for n suXciently large,
r >Cr q

n. Hence, by cone-monotonicity r & qn and, by transitivity, r < p.
Since Cq is a cone, for all & 2 (0; 1], r# = &r+(1% &) q >Cq q and hence, by
similar arguments, r# < p. Therefore, the set f& 2 [0; 1] j &r + (1% &) q <
pg contains the interval (0; 1] and hence, by mixture continuity, includes 0.
Therefore q 2 fBint (p) and fBint (p) is closed in intV (X).
The proof that fW int (p) is closed in intV (X) follows by similar arguments.

Next consider the set Bint (p) and note, again, that p 2 intV (X) implies
Bint (p) 6= ?. Choose q 2 Bint (p) and r satisfying q >Cq r. By Archimedean
there exists & 2 (0; 1) such that q# = &q + (1% &) r & p. Since Cq is a
cone, q >Cq q

# which implies q >Cq& q
#. Hence there exists an open "-ball

N" (q) satisfying N" (p
!) \ aWV (X) - V(X) such that q0 >Cq& q

# for all
q0 2 N" (q) \ aWV (X). By cone-monotonicity and transitivity q0 & p. Hence
N" (q) \ aWV (X) - Bint (p) and Bint (p) is open in intV(X).
By similar arguments, W int (p) is open in intV (X).

Since intV (X) is a connected topological space, by Schmeidler (1971),
these observations imply that < is complete on intV(X).
Finally, we show that if mixture continuity holds on V (X) then com-

pleteness extends to the entire set V(X).
Let q 2 @V(X), p; r 2 intV (X) and consider the set A = f& 2 [0; 1] j

&q + (1% &) r < pg. If 1 is an accumulation point of A then, by mixture
continuity, q < p. Otherwise, by completeness on intV(X), there exists f& < 1
such that p < &q+(1% &) r; for all & 2 (f&; 1) : By mixture continuity, p < q.
Hence either q < p or p < q.
Next let q; p 2 @V(X), r 2 intV (X) and consider the set A = f& 2

[0; 1] j &q + (1% &) r < pg. If 1 is an accumulation point of A then, by
mixture continuity, q < p. Otherwise, since all points &q + (1% &) r are
interior points when & 2 [0; 1) then, by the preceding argument, there exists
f& < 1 such that p < &q + (1% &) r for all & 2 (f&; 1) and again, by mixture
continuity, p < q. Hence < is complete on V(X). #
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5 Cone-Monotonicity, Betweenness and Sto-

chastic Dominance

To analyze the relationships between cone-monotonicity and betweenness we
make the following deHnition. A binary relation < on V (X) is non-trivial at
p 2 V(X) if there exists q 2 V(X) such that either p & q or q & p hold. The
following proposition serves to clarify the relation between cone-monotonicity
and betweenness.

Proposition 1 Suppose that < is a non-trivial partial order on V(X) sat-
isfying betweenness, mixture continuity and Archimedean. Let p 2 intV (X)
and denote

C (p) = f9 (q % p) j 9 > 0; q 2 V(X) and q & pg

If < is non-trivial at p then the cone C (p) is non-empty, open relative to
aWV (X)% fpg ; and satisCes

B (p) = (p+ C (p)) \V(X)
W (p) = (p% C (p)) \V(X)

where B (p) = fq 2 V(X) j q & pg and W (p) = fq 2 V(X) j p & qg.

Proof Fix p 2 intV (X) at which < is non-trivial. First note that, by
betweenness, if p belongs to the open line segment (q0; q00) then q0 & p, p &
q00. Hence B (p) is non-empty.
It can be shown (see Safra 2014 for details) that, by betweenness, r 2

B (p) if and only if p + 9 (r % p) 2 B (p) for all 9 > 0 and p + 9 (r % p) 2
V(X). Then, from the proof of Theorem 1 part (c) it follows that B (p) is
convex and open. Hence, the equivalences

B (p) = (p+ C (p)) \V(X) ; W (p) = (p% C (p)) \V(X)

are satisHed. #

Proposition 1 implies that a partial order that satisHes betweenness,
Archimedean and is non-trivial at every p 2 intV (X) also satisHes cone-
monotonicity (just deHne Cp = C (p)). It is immediate to verify that, for such
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relations (on intV (X)), Theorem 1 is implied by Theorem 2.6 In addition,
it is easy to verify that, for non-trivial partial orders, independence implies
cone-monotonicity (independence implies that non-triviality at a given point
extends to the entire V (X) and that all cones C (p) are identical).

The next example demonstrates that non-triviality at every p 2 intV (X)
does not follow from the betweenness property.

Example Let X = f0; 1; 2g and consider the incomplete partial order satis-
fying betweenness deHned by

p < q () Vj (p) > Vj (q) for j = 1; 2

where

V1 (p) =

P
i p (i)w (i) iP
i p (i)w (i)

; w (1) = 1; w (0) = w (2) = 0:5

is a weighted utility function that ranks 2 at the top and 0 at the bottom
and

V2 (p) =
X

i

p (i) (2% i)

in an expected utility function that ranks 0 at the top and 2 at the bottom.
As can be seen in Figure 1, < is not non-trivial at p for all p 2 f&<1 +
(1% &) (0:5<2 + 0:5<0) j & 2 [0; 1]g.

Place Figure 1 here

To analyze the relationships between cone-monotonicity and monotonic-
ity with respect to Hrst-order stochastic dominance, we assume that X - R
and, without loss of generality, let x1 < x2 < 2 2 2 < xk: For each p 2 V(X) ;
we denote by pi the probability the lottery p assigns to xi, i = 1:::; k: Then
p 2 V(X) is said to strongly dominate q 2 V(X) with respect to Crst-order
stochastic dominance if, for all j=1; :::; k % 1

jX

i=1

pi <

jX

i=1

qi

6Since (given completeness) mixture continuity is stronger than Archimedean, part (b)
in the proof of Theorem 1, the only one that does not assume Archimedean, requires
neither betweenness nor cone-monotonicity.
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We denote this relation by p >1 q and say that a preference relation < on
V (X) satisHes monotonicity if, for all p; q 2 V(X) ;

p >1 q =) p & q

To see that monotonicity implies cone-monotonicity, let

C =

(
h 2 Rk j

kX

i=1

hi = 0;

jX

i=1

hi < 0; j = 1; :::; k % 1

)

and note that cone-monotonicity is satisHed for Cp 3 C; for all p 2 V(X).
Hence, when X - R, Theorem 2 applies to partial orders that satisfy
monotonicity. Note that such orders are quite common, as monotonicity
is usually assumed in most economic applications. It should also be men-
tioned that the partial relation of Hrst-order stochastic dominance satisHes
independence (indeed, this was utilized in the proof of Theorem 2, parts (a)
and (c)). More on this can be found in Dubra and Ok (2002).

6 Concluding Remarks

The implication of continuity for completeness, as appeared in the theorem
of Schmeidler (1971) is inherited by the theorem of Dubra (2011) and the
two theorems in this paper. Karni (2011) showed that, starting with a strict
preference relation, these results depend crucially on the deHnition of the
weak preference relation. In particular, if the weak preference relation is
deHned as in Galaabaatar and Karni (2013) (that is, for all q; p 2 V(x); q
is weakly preferred over p if every r 2 V(X) that is strictly preferred over
q is strictly preferred over p), then Archimedean and mixture monotonicity
no longer imply completeness, regardless of whether the preference relation
satisHes independence. If we start with a weak preference relation, as we do
in this note, a diWerent deHnition of the strict preference relation is required
to overcome the diXculty posed by incompleteness. Consider, for instance, a
reEexive and transitive preference relation < with a non-empty asymmetric
part that satisHes the independence axiom. Such preference relation has
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a representation as follows:7 For all p; q 2 V(X) ; p < q if and only ifP
x2X

u (x) p (x) 4
P
x2X

u (x) q (x) ; for all u 2 U , where U is a set of real-valued

functions on X: For each u 2 U , deHne an induced preference relation on
V (X) as follows: p <u q if and only if

P
x2X

u (x) p (x) 4
P
x2X

u (x) q (x) and

let &u be the asymmetric part of <u : Then <= \u2U <u and &̂ = \u2U &u :
For all p 2 intV(X), the set fq 2 V(X) j q&̂pg is equal to the relative
interior of fq 2 V(X) j q < pg and, as a result, Archimedean and mixture
monotonicity no longer imply completeness. Similar argument applies if the
independence axiom is replaced by betweenness or cone monotonicity.

7See, for example, Shapley and Baucells (2008).
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Figure�1�No�lottery�is�strictly�preferred�to�p.�The�betterͲthan�sets�of�
q and�r,�B(q)�and�B(r),�respectively,�are�depicted�
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