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Abstract

We show how the piecewise-smooth Mumford-Shah seg-
mentation problem [25] can be solved using the level set
method of S. Osher and J. Sethian [26]. The obtained al-
gorithm can be simultaneously used to denoise, segment,
detect-extract edges, and perform active contours. The pro-
posed model is also a generalization of a previous active
contour model without edges, proposed by the authors in
[12}, and of its extension to the case with more than two
segments for piecewise-constant segmentation [11]. Based
orn the Four Color Theorem, we can assume that in general,
at most two level set functions are sufficient to detect and
represent distinct objects of distinct intensities, with triple
Junctions, or T-junctions.

1. Introduction

In this paper, we propose a multi-phase level set formu-
lation and algorithm for the general Mumford-Shah min-
imization problem [25] in image processing, to compute
piecewise-smooth optimal approximations of a given im-
age. The proposed model follows and fully generalizes our
previous related works: in [12], we have proposed an active
contour model without edges based on a 2-phase segmen-
tation and level sets; in [10], we have extended the model
from [12] to vector-valued images; and finally, in [11]}, we
have extended the model from [12] to piecewise-constant
segmentation of images, allowing for more then two seg-
ments, triple junctions and complex topologies, using a new
multi-phase level set formulation and partition of the image-
domain.

In this paper, we further generalize these previous works
to the piecewise-smooth Mumford-Shah model, in several

*This work has been supported in part by ONR Contract N00014-96-
1-0277 and NSF Contract DMS-9973341.

directions:

1) In one dimension: for signal segmentation and denois-
ing, we show that, using only one level set function, we can
represent any signal with any number of segments in the
partition.

2) In two dimensions:

(i} we generalize the 2-phase piecewise-constant model
from [12] to piecewise-smooth optimal approximations us-
ing only one level set function: different regions of distinct
intensities can be represented and detected.

(i1) following the idea of the multi-phase level set parti-
tion from [11], we show that, in the piecewise-smooth case,
using only two level set functions, producing up to four
phases, any general case can be considered and represented
by the proposed formulation, Our main idea is based on the
Four Color Theorem.

We think that the proposed level set formulations and re-
sults based on the Mumford-Shah model {25] are new, We
would only like to mention that ideas very similar with those
from part 2(i) above have been also developed by A. Tsai,
A. Yezzi, and A. Willsky in several works (such as [33]),
independently and contemporaneously, again as a general-
ization of the model from [12].

Let @ € RY (N > 1), be open and bounded, and let
ug : {1 — R be a bounded function, representing the initial
image (here, for simplicity, we restraint our discussion to
single-valued functions u, but the vector-valued case could
be considered in a similar way). Later, we will consider
only the cases N = 1 (signals) and V = 2 (images).

LetI' C € be a closed subset, made up of a finite set of
smooth hyper-surfaces.

To solve the segmentation problem, D. Mumford and J.
Shah proposed the following minimization problem [25],
written here in any dimension N

inf {FMS(u, r) (1



= / ]u—u0|2dm+,uf |Vu]2dm+y?{N_1(I‘)},
o T

where 7% ~1(I"} stands for the (N — 1)-dimensional Hauss-
dorf measure, and ¢ > 0, ¥ > 0 are {ixed parameters, to
weight the different terms in the energy. A minimizer of the
above energy will be an “optimal” piecewise-smooth ap-
proximation of the initial, possible noisy, image ug; I' has
the role of approximating the edges in the image ug, and u
wilt be smooth only outside T', i.e, on @\ TV

It is not easy to minimize in practice the functional (1),
because of the unknown set I" of lower dimension, and also
because the problem is not convex.

A weak formulation of (1) has been proposed by G. Dal
Maso, .M. Morel and S. Solimini in [14], where I" is re-
placed by the set J,, of jumps of u, in order to prove the
existence of mintmizers. It is known that a global mini-
mizer of (1), or of the weak formulation, is not unique in
general. In [22] and [23], the anthors proposed a construc-
tive existence result in the piecewise-constant case, and in
[20], a practical algorithm based on regions growing and
merging is proposed for this case. For a general exposition
of the segmentation problem by vartational methods, both
in theory and practice, we refer the reader to [24].

L. Ambrosio and V.M. Tortorelli proposed two elliptic
approximations by I'-convergence to the weak formulation
of the Mumford-Shah functional in [2] and [3]. They ap-
proximated a minimizer {u, J,) of FM5(u, J,), by two
smooth functions (u,,v,), such that, as p —+ 0, u, — u
and v, —+ 1 in the L2(Q2)-topology, and v, is different from
1 only in a small neighborhood of J,,, which shrinks as
£ ~* 0. The elliptic approximations lead to a coupled sys-
tem of two equations in the unknowns u, and v, to which
standard PDE methods can be applied (see [21], [7], [8],
[51, 4D). In [9], A. Chambolle and G. Dal Maso provide
an approximation by I' — conwvergence based on the finite
element method.

Finally, we would like to refer the reader to other related
works on segmentation, such as: [27], [36], [34], [33], [31],
[29] and [30], [28], to a variational level set approach to
multiphase motion [35], and also to [15].

The outline of the paper is as follows. In subsection 2.1,
we consider the one-dimensional case of signal segmenta-
tion; we show here that using only one level set function,
any signal can be represented, with any number of segments
in the partition. In sebsection 2.2, we consider the two-
dimensional case, showing that, using one level set function
and the piecewise-smooth Mumford-Shah energy, we can
represent, detect and denoise different objects of different
intensities (not necessarily constant), In subsection 2.3, by
considering only one more level set function, based on the
Four Color Theorem, we propose a new multi-phase level
set formulation to the general piecewise-smooth Mumford-
Shah model, without restriction on the type of edges in the

image. Each time, we show experimental results on syn-
thetic and real images, by the proposed models. Finally, we
end the paper by a short concluding section.

2. Piecewise-smooth Mumford-Shah segmen-
tation by level sets

We describe in this section the proposed models, and we
show experimental results in each case. Let us first give
some of the main notations.

The Heaviside function H in one dimension is defined
by:

1,ifz> 0,
H(z) = { 0, if 2 < 0.

We will also use smooth regularizations and approximations
H. € CY(R) of H, as € -+ 0, and we will use the notation
8¢ = H! (see [12] for examples of such approximations),

Following the level set method, introduced by S. Osher
and J. Sethian [26], we will denote by ¢ :  — R a Lip-
schitz function, called level set function, such that, when
I' = fw, with w C £ open and bounded, then ¢(x) = Qon
T, ¢(z) >0ifx € w,and ¢(x) < 0ifz € 1\ w. In this
case, a hypersurface I" is represented by the zero level set
of ¢. This formulation has many computational advantages
for evolution of fronts and tracking interfaces; it allows for
a fixed rectangular grid, and merging and breaking of the
evolving hypersurface are done automatically.

We recall that we have the following formula [16]:
HY-YT) = [, [VH(4)|, the integral being in the sense
of measures, and this gives the cardinal of I" in dimension
one, the length of I in two dimensions, ete,

The main contribution of this paper is to propose a level
set formulation and algorithm for minimizing the Mumford-
Shah energy, in the strong formulation (1), in the general
case, with at most two level set functions, representing the
set of edges in the image. As we have mentioned, there are
many works for the weak formulation, but not for the strong
formulation.

We also follow techniques and terminology from a re-
lated work on a variational level set approach to multiphase
motion [35].

2.1. The one-dimensional case: signal denoising and
segmentation

For N = 1 and z € R, we deal with a source signal
uon ! = {a,b). The problem of reconstructing » from a
disturbed input ug deriving from a distorted transmission,
can be modeled as finding the minimum

b
min {,u/ |u']2dw+/ |u—uoizd:v+v#(P)}, (2)
{a, b\ a

«,



where I' denotes in fact the set of discontinuity points of u,
and #(I') = H°(T') denotes the cardinal of T".

WeletT' = {m € (a,b)] ¢z} = 0}, and we introduce

two functions um and u ™, such that
w(z) = ut (@) H (qﬁ(m)) +u(2) (1 -H (qﬁ(:ﬂ)) )

These two functions replace the two unknown constants
used in [12], and are such that ut € C{{¢ > 0}), and
u™ € C*({¢ < 0}). Then the energy (2) can be written in
the level set formulation as:

rmn / |{ ”}") |2H(45)dm

+u f (Y P(L— H($))de
b

~;~f [ut — ug|*H (¢)dx

b b
+ [ = wP - H@)s+v [ )
[+3 a
Minimizing this energy with respect to ut,u™, and @, and
regularizing the Heaviside function H, we obtain the asso-
ciated Euler-Lagrange equations:

ut —ug = p(ut)in {¢ > 0}, (uT) =0if ¢ =0,
u""—'u,g_ plu™) in{¢ <0}, (™) =0if¢p =0,

8e () [y(|gb’ ) —|ut —uel* + juT —ug)?
—l(w*) P+ pl ) P

‘We will discuss in the end of the paper the main steps of the
numerical algorithm for solving the above Euler-Lagrange
equations.

We remark that, in one dimension for signal segmen-
tation, only one level set function suffices to represent a
piecewise-smooth function u together with its set of jumps.

We end this subsection by an experimental result for sig-
nal denoising and segmentation. We show in Figure 1 an
original and noisy signal, together with two points, where
¢ = 0 initially. In Figure 2, we show the segmented sig-
nal, and the detected set of jumps given by ¢ = 0 at the
steady state, using the proposed level set algorithin. Note
that piecewise-smooth regions are very well reconstructed
by the model, and that the jumps are well located and with-
out smearing,

2.2. The two-dimensional case: two-phase model

In this subsection, we consider the two-dimensional case
(N = 2 and z € R?), under the assumption that the edges
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Figure 1. Original and noisy signal, together
with the set of points where ¢ = 0 initially,
represented by squares on the z--axis.

{denoted by T') in the image can be represented by one level
set function. The general case, allowing for any type of
edges, including triple junctions, will be considered in the
next subsection,

As in the 1-dimensional case, the link between the un-
knowns u and ¢ can be expressed by introducing two func-
tions w and 1™, such that

_ [ ut(z)if ¢(z} > 0,
ulz) = { u(z) if ¢(z) < 0.

We assume that T and u~ are C' functions on ¢ > 0
and on ¢ < 0 respectively (and therefore with continuous
derivatives up to all boundary points, i.e. up to the boundary
{¢ = 0}). We illustrate our formulation in Figure 3.
Then we obtain the following minimization problem
from (1)
Jof F(u u”, ),

u Su )

where
Flt,um,¢) = ] jut — o H()dz
0
uw_qu - xr wt|* x
+ ]ﬂ | 2(1 = H($))dz + p /Q |Vt 2H ($))d
5 fﬂ V21 - H($))dz + v fg VH@)

Keeping first ¢ fixed and minimizing F(u™, v, ¢) with
respect to ut and w™, we obtain the following Euler-
Lagrange equations for u" and %

+
ut —ug = pAut ong >0, BBW’ =0on{¢=0}, 3
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Figure 2, Segmentation of the noisy signal:
reconstructed signal, noisy signal, and the
set of points where ¢ = ) at the steady state.

uw” —ug = pAuT ong < 0, 88_, =0on{¢=0}, 4
where 8/87 denotes the partial derivative in the normal di-
rection 7 at the boundary {¢ = 0}, These two equations
will have a smoothing and denoising effect on the image
g, but only inside homogeneous regions, and not across
edges.

Now, keeping the functions ut and u— fixed, and min-
imizing F(u™,u ™, ¢) with respect to ¢, we obtain the fol-
lowing Euler-Lagrange equation along the curve {¢ = 0}:

T = 007 () — et — ol )

—p|Vut P o fu” = ol + V2.

Apgain, we will discuss in the end of the paper the main
steps of the numerical algorithm, in order to sotve the above
Euler-Lagrange equations.

We show in Figures 4 and 5 two numerical results using
the proposed algorithm: each time, the evolving curves are
superposed over the initial noisy image ug (top), and the
denoised versions u of ug are also shown (bottom), at dif-
ferent increasing times. In Figure 4, we see that the model
performs as active contours, denoising and edge-detection,
In Figure 3, we apply the model to a real piecewise-smooth
image,

2.3. The two-dimensional case: four-phase model

In the previous subsection, we have shown how we
can minimize the general Mumford-Shah functional for seg-

@ u=t

$<0

Figure 3. Example of partition of the image v«
in regions, with boundaries I" represented via
a single level set function {¢ = (), and with
smooth value-functions u* and u~ on each
side of the curve.

mentation in the case where the set of contours I' can be
represented by a single level set function, i.e. I' = {¢ = 0}
and ¢ has opposite signs on each side of I", By this method,
we can already detect several objects of distinct gray-levels,
but we have a constraint on the type of edges. There are
cases where the boundaries of regions forming a partition
of the image could not be represented in this way (i.e. us-
ing a single level set function). Again, the natural idea is
to use more than one level set function, as in [11] for the
piecewise-constant case with more than two segments.

We show that in the general case, the problem can be
solved using only two level set functions, and we do not
have to know a-priori how many gray-levels the image has
(or how many segments). The idea is based on the Four
Color Theorem and is as follows.

Based on this observation, we can “color” all the re-
gions in a partition using only four “colors”, such that any
two adjacent regions have different “colors”. Therefore, us-
ing two level set functions, we can identify the four “col-
ors” by the following (disjoint) sets: {¢1 > 0, ¢a > 0},
{¢1 <0, ¢ < 0}, {qﬁl <0, ¢g > 0}, {(}51 <0, ¢ < 0}
The boundaries of the regions forming the partition will be
given by {¢1 == 0} U {¢2 == 0}, and this will be the set of
curves I'. Note that, in our particular multiphase formula-
tion of the problem, we do not have the problems of “over-
lapping” or “vacuum”, (i.e. the phases are disjoint, and their
union is the entire domain (). This is an improvement over
the multi-phase formulations used in {35] and [28], where
the authors needed to add additional constraints to reinforce
the partition. Moreover, as we have already shown in [11],
triple junctions can be represented using only two level set
functions.

As in the previous subsection, the link between the func-



Figure 4. Results on a noisy image, using
our level set algorithm for the Mumford-Shah
modei. The algorithm performs as an active
contour model, denoising and edge detec-
tion.

tion » and the four regions can be made by introducing four
functions w¥,ut ™, u~F,u™~, which are in fact the re-
strictions of u to each of the four phases, as follows:

u++($)a if ¢1(£B) > 0 and ¢2(m) > 0:
wt(z), if ¢1(z) > 0and ¢a{z) < O,
uw T (z), if $1(z) < 0and ¢a(z) > 0,
w™(z), if ¢1(z) < 0and ¢a(z) < 0.

u{z) =

These notations are illustrated in Figure 6.

Again, using the Heaviside function, the relation be-
tween u, the four functions ut™, 4, u™F, u~ ™, and the
level set functions ¢1 and @2 can be expressed by a single
relation:

u = utTH($)H(ds) + ut~H(¢)(1 — H{ds)) +
(1= H{g: ))H(¢o) +u~~(1— H(d)(1 - H(42)).

Using the notation & = (¢n, ¢2), we introduce an en-
ergy in level set formulation, based on the Mumford-Shah
functional (1}

Flu,®) = fg et — g [2H (1) H () de
T f IVt P H () H () da
Q2

+ f et - woPH (d1)(1 ~ H(da))d

93
e fg IVt PH()(1 - Hgs))de
+ [ 7~ w1 - B H(G0)da

Q
+p fﬂ V(1 — Hi{g)) H($r)dz

+ [ 17 = (= H@)(1 - H(g))do
Q

Figure 5. Numerical results on a real image,
using the proposed level set algorithm with
one level set function.

o [ 190 P (1 = H@))(L~ H()dz
+v [IvE@)+v [ [VHGL

Note that, the expression [, IVH(¢1)| + f, [VH(¢2)]
is not exactly the length term, it is just an approximation
and simplification. By this approximation formula, in some
cases, some parts of the curves may count more than once.
In practice, we have obtained satisfactory results using the
above formula, and the associated Fuler-Lagrange equa-
tions are simplified.

We obtain the associated Buler-Lagrange equations as in
the previous case. If ¢ and ¢ are fixed, minimizing the

energy with respect to the functions wt+, 4=, w~+, u=",
we obtain:

utt — g = pAuTt in {¢ > 0,62 > 0},

8u++
o7 =0on {gbl = O:QSZ 2 0}3{451 Z 07052 = 0}!
wt™ —up = pAut " in {¢1 > 0,¢2 < 0},

Aut
;ﬁ =0on {p = 0,2 < 0}, {$1 > 0, = 0};
ut — Uy = [.GA’U)——*- in {()bl <0,¢2 > U}a

Su—t
;ﬁ =0on {¢1 =0,¢ > 0}, {1 <0,y = 0};
u™ T —uy = pAuT 7 in {¢ < 0,00 < 0},

6 S
e =0on {¢1 = 0,45 < 0}, {¢1 < 0,60 = O},

Now, keeping ut™, v*~, u™F, u~~ fixed, as C* func-
tions on their corresponding domains up to all boundary
points, we can formally write the Euler-Lagrange equations
associated with the minimization problem with respect to



u=u+

$1>0 $1>0

$62>0 u=u++ $2<0
U=+~

Figure 6. Example of partition of the image «
in regions, with the boundaries I represented
viatwo level set functions (¢, = 0, ¢, = 0}, and
with smooth value-functions v+, v+, w1
and »~, on each side of the curves making
up I.

@1 and ¢o, after regularization of H:

d
T = 80 [ () — e — wl T (an)

Vet P H () — [ = uo[2(1 = H(g2))
Va1 H(g)) + ut — uo H(g2)
+piVuT P H () + ju™ " - uol* (1 ~ H{¢z))

+ulVu (1= H(g2))] =0,

and

% = 6E(¢2) [VV(

SR ——

—uI VU RE (91) + [0 — uolH(g1)
+ulVutTPH ()

—lu™ — uof*(1 — H(gn)) — plVu ™ *(1 — H(40))
T~ uol (1~ H{¢n))

Ful Va1 - H )]

Finally, we show in Figure 8 numerical results on a real
noisy image (shown in Figure 7), using this four-phase
model. We show the evolution of the curves, superposed
over the initial noisy image 1o, together with the denoised
versions of u, at different increasing times. At the initial
time, the two curves given by {¢; == 0} and {¢2 == 0} are
shown in different colors (we use here the so-called seed
initialization).

it is well known that, by minimizing the Mumford-Shah
energy, steep gradients and artificial edges can be intro-

duced. This can be seen in the numerical results in Figure
8. On the other hand, the Mumford-Shah model has other
limitations, by allowing only for triple junctions with 120°,
and that edges meeting the boundary, need to be perpendic-
ular on it. This restrictions on the type of edges are due to
the length torm. In the model prosented in this subscetion,
we have slightly changed this edge-term, in order to have
less complicated equations in ¢ and ¢3. By this change,
other types of edges and junctions are allowed.

We have mentioned in the introduction existence re-
sults for the Mumford-Shah minimization problem (but the
global minimizer is not unique). We can also show, by stan-
dard techniques of the calculus of variations on the space
SBV (1) (special functions of bounded variations), and a
compactness result due to L. Ambrosio [1], that the pro-
posed minimization problems from this paper, in the level
set formulation, have a minimizer. Finally, because there
is no uniqueness of the minimizers, and because the prob-
lems are non-convex, the numerical results may depend on
the initial choice of the curves, and we may compute a lo-
cal minimum only. We think that, using the seed initial-
ization, the algorithms have the tendency of computing a
global minimum.

Figure 7. Original and noisy image.

3. Concluding remarks

We have proposed in this paper a level set algo-
rithm for the general Mumford-Shah segmentation prob-
lem, This is a functional with free boundaries and jumps.
We have shown that, in two dimensions, two level set func-
tions suffice to represent any piecewise-smooth function,
and our main idea is based on the Four Color Theorem.




Figure 8. Curves over u; and denoised u for
increasing times, by the 4-phase model.

‘We have presented numerical results using the proposed
algorithm. Finally, we can view the presented level set
formulation for the Mumford-Shah problem as a common
framework for active contours, segmentation, denoising and
edge-detection.
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Appendix: description of the algorithm

We give here the principal steps of the numerical algo~
rithm for solving the Euler-Lagrange equations (3)-(4)-(5)
from subsection 2.2. The other Euler-Lagrange equations
are solved in a similar way.

We use standard finite differences discretizations of the
equations, and similar implicit numerical scheme used in
[12], applied to (5}, and we construct the sequences of func-
tions ¢™, (u¥)" and (u )", with n > 0, as follows:

1. Let n = 0; define the initial level set function ¢°,

2. Find (4"} on ¢™ > 0 and (u™ )" on ¢™ < 0 by (3-4).

3. Extend by C" functions (u)" on ¢™ < 0 and (u™)"
on ¢™ > 0 (near the curve).

4. Solve (5) to obtain ¢!,

5. Re-initialization of ¢ to the signed distance function
to the curve, performed only locally, near the zero level set
(for more details on re-initialization to the distance function,
see [32]).

Step 3 is necessarily because, in order to solve in practice
(5), we work on a narrow band around {¢ = 0}, but ™ is
not defined on {¢ < 0} and © ™ is not defined on {¢ > 0}.

To extend u on {¢ < 0} and u™ on {¢ > 0} (at least
near the curve), we have considered several possibilities,
Let us denote by N = !%%, the normal to the zero-level
curves of ¢.

For example, to obtain a C? extension of v~ on ¢ > 0,
we can solve to the steady state the following degenerate el-
liptic linear equation: u; = VZu™ (N, N) on ¢ > 0, with
the boundary condition Ju~ /37 = 0 on 9. The right-
hand-side of the above equation is the second order deriva-
tive of %™ in the normal direction N.

A second possibility is by the “Ghost Fluid Method”,
first used in [13], then in [18], [17]: for example, for a
C? extension of u~ to ¢ > 0, solve to the steady state:
u; +N-Vu~ =0in {¢ > 0}. We can obtain higher order
interpolations, applying the same method to Uy = N Vu~
(to obtain a " interpolation in the normal direction), etc.



[151 S.-1. Bi, R. Ikota, and M. Mimura.

A third possibility is by using minimal Lipschitz exten-

sions {191, [6]. The idea is, in order to extend ™ in the
region ¢ > 0, solve V24~ (Vu—,Vu~) = 0.
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