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ABSTRACT

Next-generation sequencing technologies produce a large number of noisy reads from the
DNA in a sample. Metagenomics and population sequencing aim to recover the genomic
sequences of the species in the sample, which could be of high diversity. Methods geared
towards single sequence reconstruction are not sensitive enough when applied in this setting.
We introduce a generative probabilistic model of read generation from environmental
samples and present Genovo, a novel de novo sequence assembler that discovers likely
sequence reconstructions under the model. A nonparametric prior accounts for the un-
known number of genomes in the sample. Inference is performed by applying a series of hill-
climbing steps iteratively until convergence. We compare the performance of Genovo to
three other short read assembly programs in a series of synthetic experiments and across
nine metagenomic datasets created using the 454 platform, the largest of which has 311k
reads. Genovo’s reconstructions cover more bases and recover more genes than the other
methods, even for low-abundance sequences, and yield a higher assembly score. Supple-
mentary Material is available at www.liebertoinline.com/cmb.
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1. INTRODUCTION

The goal of metagenomic sequencing is to produce a sequence-based summary of the genomic

material in a genetically diverse environmental sample. Examples of such environments include

biomes of systems such as human gut (Gill et al., 2006; Qin et al., 2010), honey bees (Cox-Foster et al.,

2007), or corals (Vega Thurber et al., 2008; Meyer et al., 2009) and also larger ecosystems (Venter et al.,

2004; Tyson et al., 2004). These studies advance our systemic understanding of biological processes

and communities. In addition, the recovered sequences can enable the discovery of new species (Venter

et al., 2004) or reveal details of poorly understood processes (Warnecke et al., 2007). Another set of

examples include cancer tumor cells (Warren et al., 2009) and pathogen populations such as HIV viral

strains (Wang et al., 2007), where the genetic diversity is associated with disease progression and

impacts the effectiveness of the drug treatment regime. Finally, the genetic structure of microbial

populations may yield insight into evolutionary mechanisms such as horizontal gene transfer, and enable

determination of genetic islands carrying functional toolkits necessary for survival and pathogenicity

(Qu et al., 2008).
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Such studies are made possible through the use of next-generation sequencing technologies, such as the

Illumina Genome Analyzer (GA), Roche/454 FLX system, and AB SOLiD system. Compared to older

sequencing methods, these sequencers produce a much larger number of relatively short and noisy reads of

the DNA in a sample, at a significantly lower cost.

Automatic tools such as MG-RAST (Meyer et al., 2008) can analyze the reads in a metagenomic sample

by comparing them to known genomes, protein families, and functional groups in order to grossly cate-

gorize the reads and discover genes. Giving these tools a list of assembled sequences, rather than the shorter

and noisier individual reads, helps extract more information from the reads and leads to the discovery of

more genes and better functional annotation, as demonstrated by the study of Meyer et al. (2009).

Hence our goal is to accurately reconstruct, given a set of reads, a likely set of DNA sequences that

generated these reads. In other words, we are looking for the optimal assembly of the reads. While there are

a few de novo assemblers aimed at single sequence reconstruction from short reads (Chaisson and Pevzner,

2008; Zerbino and Birney, 2008; Hernandez et al., 2008; Butler et al., 2008), there are no such tools

designed specifically for metagenomics. The specific challenges in this setting stem from uncertainty about

the population’s size and composition. Additionally, coverage across species is uneven and affected by the

species’ frequency in the sample. Analysis of the complete populations require methods that can recon-

struct sequences even for the low-coverage species. Given the lack of methods designed for a metagenomic

environment, researchers resort to methods geared towards single sequence reconstruction.

Such single sequence reconstruction tools commonly frame the problem of sequence assembly as that of

finding a path through the read set. A crucial requirement for these algorithms’ success is summarized by

Chaisson et al. (2009): ‘‘[this] approach works best for error-free reads and quickly deteriorates as soon as the

reads have even a small number of base-calling errors.’’ To satisfy this requirement, a large computational

effort is devoted to detect and correct read errors before any assembly is even attempted. This becomes even

harder in 454, as the average read length is above 100 (and can reach 400b) and the error rate is 0.4% per base

(Quinlan et al., 2008), so that a large portion of the reads have an error. This leads to removal of infrequent

reads which correspond to poorly sequenced reads or a read from a low frequency species. In the latter case,

the assembler’s ability to reconstruct a low frequency species is adversely affected.

Our approach to the problem is different. First, we introduce a probabilistic model of a read set. Our

model associates a probability to each possible list of sequences that could have given rise to this readset.

The formulation of the model takes the form of a generative process that constructs a number of sequences

and samples reads from these sequences. Such an assembly of sequences can be seen as a reasonable

summary of the read set. We do not a priori assume the number of sequences or their length. The model

does, however, favor compact assemblies. Second, we describe an algorithm that reconstructs a likely

assembly from a read set. The algorithm accomplishes this by seeking the most probable assembly in an

iterative fashion, moving between increasingly likely assemblies via a set of moves designed to increase the

probability of the assembly. Intuitively, a move rearranges reads into a more compact assemblies that still

accurately represent the whole read set. For example, a prototypical move is one that brings a read that

overlaps with a sequence into that sequence. Crucially, the moves are not all greedy, thus allowing some

undoing of potential erroneous moves. Convergence is achieved when no reasonable move is available. At

this point, we report the assembly with the best probability. This is the assembly that best trades off the

compactness and read set representation from among the assemblies that the algorithm explored, thus being

a likely candidate for the true set of sequences that generated the reads.

Unlike the other methods, our method does not throw away reads and hence is able to extract more

information from the data, which contributes to the discovery of more low-abundance sequences. The joint

denoising and assembly of the reads enables us to postpone the decision about which bases are noise and

make those decisions based on an assembly rather than in a preprocessing step, thus in principle enabling

better assembly, albeit at a higher computational cost. The assembly returned by our algorithm is a full

description of the original DNA sequences and how each read maps to them. Hence, Genovo does not only

provide a reconstruction of the originating sequences, but also performs read denoising and multiple

alignment that scales up to the order of 3 � 105 reads.

The accurate and sensitive reconstruction of populations has been tackled in restricted domains, such as

HIV sequencing, both experimentally (Wang et al., 2007) and computationally ( Jojic et al., 2008; Eriksson

et al., 2008; Zagordi et al., 2009). A probabilistic model, partly similar to ours, was also used in the recent

work of Zagordi et al. (2009). However, their approach is applicable only to a very small-scale (103) set of

reads already aligned to a short reference sequence.
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We compare the performance of our algorithm to three state of the art short read assembly programs in

terms of the number of GenBank bases covered, the number of amino acids recognized by PFAM profiles,

and using a score we developed, which quantifies the quality of a de novo assembly using no external

information. The comparison is conducted on 9 metagenomic datasets (Qu et al., 2008; Biddle et al., 2008;

Breitbart et al., 2009; Cox-Foster et al., 2007; Vega Thurber et al., 2008; Dinsdale et al., 2008) and one

single sequence assembly dataset. Genovo’s reconstructions show better performance across a variety of

datasets. In addition, synthetic tests show that the our method consistently outperforms other methods

across a range of sequence abundances and thus is robust to diminishing coverage. Genovo is publicly

available online at http://cs.stanford.edu/genovo.

2. RESULTS

2.1. Algorithm overview

Each environmental sample originates from an unknown population of sequences. The number, length,

and content of these sequences are uncertain. In order to cope with this uncertainty, we formulate a

probabilistic model that represents a potentially unbounded set of DNA sequences, also called contigs, of

unknown length. In addition, we model the reads obtained from the environmental sample as noisy copies

of contiguous parts of these contigs. Thus, different components of our probabilistic model account for the

generation of contigs, the locations from which the reads are copied, and the errors in the copy process.

The detailed probabilistic model that captures this precisely is given in the Methods section. This model is

the basis for our metagenomic sequencing method, as well as the score we propose for de novo recon-

structions.

The dataset of reads obtained from an environmental sample serves as an input to our sequence assembly

algorithm. Our model-based approach uses this data to infer the number and the content of the contigs used

to ‘‘generate’’ the reads, as well as the reads’ location. We call the output of such inference an assembly of

the reads (Fig. 1A).

Our algorithm is an instance of the iterated conditional modes (ICM) algorithm (Besag, 1986), which

maximizes or samples local conditional probabilities sequentially, in order to reach the assembly with the

maximum probability. Starting from an initial random assembly, Genovo performs a random walk on states

corresponding to different assemblies. The steps are designed to guide the walk into regions of high

probability. The available arsenal of steps includes deterministic hill-climbing steps (that are guaranteed to

increase the probability) and stochastic steps (where the next assembly is sampled from a distribution over

candidate assemblies, some of them with lower probability), which are necessary in order to avoid getting

stuck in a local maximum. We run our algorithm until convergence (200–300 iterations), and then we

output the assembly that achieved the highest probability thus far. Running the algorithm multiple times

with different random seeds showed no significant influence on the resulting assembly. This suggests that

while our algorithm has some stochastic elements, the variability of the output is low.

In Figure 1B–E, we illustrate the four types of steps we use to enable an efficient and correct traversal in

the assembly space. One step type, illustrated in Figure 1B, samples a letter for a position in a contig.

Another type of step (Fig. 1C), moves a single read either to an already existing contig or to a new one. A

single read move involves local alignment, which effectively denoises the read. A third type of step (Fig.

1D) takes even larger steps in the probability space by merging entire contigs. A fourth step type (Fig. 1E)

is used to fix indels based on the consensus of the reads.

2.2. Methods compared

While many sequencing technologies are gaining popularity, most of the short-read metagenomic da-

tasets currently available have been sequenced using 454 sequencers (probably due to their longer reads),

hence we focus on this technology. Throughout this manuscript, we compare the performance of our

algorithm to three other tools: Velvet (Zerbino and Birney, 2008), EULER-SR (Chaisson and Pevzner,

2008), and Newbler, the 454 Life Science de novo assembler. We chose Velvet and Euler due to their high

popularity and as representatives of the state of the art. Both these tools were designed for the shorter

Illumina reads, but support 454 reads as well and are freely available. Newbler was specifically designed

for 454 reads, is extremely popular, and is provided with the 454 machine. As far as we know, this is the

only assembler that was designed specifically to meet the assembly needs of the 454 technology. However,
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the source code for Newbler is unavailable. We also tested SOAPdenovo, as well as ABySS (Simpson et al.,

2009), two relatively new assembly programs, but we did not include a detailed comparison with them in

the paper because they did not work well on 454 reads.

Running on a set of reads, each method outputs the list of contigs (sequences) that it was able to assemble

from the reads. As done in previous studies (Chaisson and Pevzner, 2008; Margulies et al., 2005; Qin et al.,

2010), we evaluate only contigs longer than 500bp.

2.3. A single sequence dataset

Before testing the methods on the metagenomic datasets, we benchmarked them on a single sequence

assembly task. We used run [SRR:024126] from NCBI short read archive, which contains 110k reads taken

from E. coli (length 4.6Mb), sequenced using 454 Titanium. Even though Genovo was not optimized for

the single sequence assembly task, it performed on par with the other methods, as Table 1 shows (Newbler

achieved a slightly better coverage than Genovo). Genovo and Newbler report much longer contigs than

Velvet and Euler (see also Figure 1 in Supplementary Material, available at www.liebertonline.com/cmb).

2.4. Metagenomic datasets

We proceeded to compare the methods in a metagenomics setting. The comparison is conducted on eight

datasets from six different studies (Table 2), and one synthetic dataset (see Additional File in Supple-

FIG. 1. (A) An assembly. Thick lines represent contigs, thin lines represent reads. The reads are aligned to match the

contigs base-for-base. For clarity, the reads are colored by the contig they map to (green for top contig, purple for

bottom). (B) Contig letters are updated from left to right. For each position, count how many letters of each type are

aligned to it. These counts induce the distribution from which we sample the letter (red histogram on the right). (C)

Updating a location for a single read. A read (dotted line) is removed from the assembly. Likelihood scores are

computed for all potential locations of the read (including putting it in a new, empty, contig). These scores induce a

discrete distribution (marked by the red histogram). A location is sampled (the red arrow) and the read is aligned to it

and added to the assembly. (D) Merge contigs. The ends of two contigs are detected to show high similarity. Likelihood

scores are computed for all potential merge locations. The merge with the highest likelihood is performed, provided that

it improves the probability of the current assembly. (E) A contig letter might be deleted if many reads are aligned to it

with an insertion, thus removing that insertion from their new alignment and introducing a deletion (the red dot) to the

alignment of the reads that did not have an insertion in that location. An analogous move for is applied for deletions.
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mentary Material). The datasets were chosen so as to reflect common types of population sequencing

studies. The first type are studies of viral and bacterial populations inside of another organism; Bee, Fish,

Chicken, and Coral were selected as examples of such studies. The second type are studies of environ-

mental samples; The Peru and Microbes dataset are open water samples represent such samples.

2.4.1. Evaluation metrics. Since for non-simulated data we do not have the actual list of genomes

(the ‘‘ground truth’’) that generated it, exact evaluation of de novo assemblies in metagenomic analysis is

hard. We utilize three different indicators for the quality of an assembly. For the first indicator, we

BLASTed the contigs produced by each method. Our goal was to estimate both the number of genome

bases that the contigs cover, and the quality of that coverage. For each dataset, we used the BLAST hits of

all the methods to compile a pool of genomes (downloaded from GenBank) that best represents the

consensus among the methods (see Methods). We threw away all the BLAST hits to sequences that did not

make it to the pool. We evaluated the quality of the remaining BLAST hits, by computing the BLAST-

score-per-base (Bspb) of each hit (the BLAST alignment score divided by the length of the aligned

interval). We were then able to show the quantity vs. the quality of the pool bases covered by each method,

by asking ‘‘How many pool bases were covered by a BLAST hit with a Bspb greater than x?,’’ and plot it in

a graph which we call the BLAST profile. If a method has two BLAST hits that cover the same pool base,

we count it only once, and use the higher Bspb value.

The value of the reconstructed sequences lies in the information they carry about the underlying pop-

ulation, such as is provided by the functional annotation of the contigs. Our second indicator evaluated the

assemblies based on this information. We decoded the contigs into protein sequences (in all six reading

frames) and annotated these sequences with PFAM profile detection tools (Finn et al., 2008). We denote by

score
pfam

the total number of decoded amino acids matched by PFAM profiles.

Table 1. Comparing the Methods on a Single Sequencing Task

No. contigs Total contig length (kb) N50 (kb) N90 (kb) Coverage (%) Identities (%)

Genovo 129 4693 76.9 25.9 88.4 98.5

Newbler 150 4645 60.4 17.6 88.9 98.5

Velvet 621 4496 10.5 3.6 87.6 98.6

Euler 828 4493 7.6 2.6 86.9 98.6

Contigs were mapped using BLAST to the E. coli reference strand [GenBank:NC_000913.2]. Coverage was computed by taking the

union of all matching intervals with length of >400 b. Identities are exact base matches (i.e., not including gaps and mismatches). Nx is

the largest value y such that at least x% of the genome is covered by contigs of length of �y.

Table 2. Metagenomic Datasets

Name (#reads) Description (source)

Bee1 (19k), Bee2 (36k) Samples from two bee colonies. Data obtained by J. DeRisi Lab. (Cox-Foster et al., 2007)

Coral (40k) Samples from viral fraction from whole Porites compressa tissue extracts [SRR:001078].

(Vega Thurber et al., 2008)

Tilapia1 (50k),

Tilapia2 (64k)

Samples from Kent SeeTech Tilapia farm containing microbial [SRR:001069] and viral

[SRR:001066] communities isolated from the gut contents of hybrid striped bass.

(Dinsdale et al., 2008)

Peru (84k) Marine sediment metagenome from the Peru Margin subseafloor [SRR:001326]. (Biddle

et al., 2008)

Microbes (135k) Samples from the Rios Mesquites stromatolites in Cuatro Cienagas, Mexico

[SRR:001043]. (Breitbart et al., 2009)

Chicken (311k) Samples of microbiome from chicken cecum. Dataset at http://metagenomics.nmpdr.org,

accession 4440283.3 (Qu et al., 2008)

Synthetic (50k) Metagenomic samples of 13 virus strains, generated using Metasim (Richter et al., 2008),

a 454 simulator. See details in Additional file 1.

Accession numbers starting with ‘‘SRR’’ refer to NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi). All

real datasets were sequenced using 454 GS20, with an average read length of 100–104.
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The above two indicators can be easily biased when exploring environments with sequences that are not

yet in these databases, and hence our third indicator is a score that uses no external information and relies

solely on the reads’ consistency. Our proposed score, denoted scoredenovo, is derived based on the same

intuitions as our probabilistic model, which balances the desire to have an assembly with minimal read

errors with the desire to have no redundant contigs. For a full description, see Methods.

2.4.2. Performance evaluation. Figure 2 compares the different methods across datasets using

scoredenovo. Genovo wins on every dataset, with as high as 366% advantage over the second best method.

On the synthetic dataset, Genovo assembled all the reads (100.0%) into 13 contigs, one for each virus. The

assemblies returned by the other methods are much more fractured—Euler, Velvet, and Newbler returned

33, 47, and 38 contigs, representing only 88%, 36%, and 68% of the reads, respectively. The real datasets

with highest scoredenovo were Bee1, Bee2, and Tilapia1. Genovo was able to assemble in large contigs 60%,

80%, and 96% of the reads in these datasets, respectively, compared to 30%, 25%, and 59% achieved by the

second best method. The low scoredenovo values for the other datasets reflect a low or no overlap between

most reads in those datasets. Such reads almost always lead to assemblies with many short contigs,

regardless of the method used, which drive the score to 0. An example of such dataset is Chicken—all

methods produced assemblies which ignored at least 97% of the reads.

Figure 3 shows the BLAST profile for each method. On the synthetic dataset, Genovo covered almost all the

bases (99.7%) of the 13 viruses. Other methods did poorly: Newbler, Euler, and Velvet covered 72.4%,

63.4%, and 39.3% of the bases, respectively. As for the real datasets, in Bee1, Bee2, Tilapia2, and Chicken,

many contigs showed a significant match in BLAST (E< 10�9), and the BLAST profiles provide a good

indication for the assembly quality. In those cases, not only does Genovo discover more bases, but it also

produces better quality contigs, since Genovo’s profile dominates the other methods even on high thresholds

for the Bspb value (except on Tilapia2). These differences could also translate to more species. For example,

in Bee1, none of Euler’s and Newbler’s contigs matched in BLAST to Apis mellifera 18S ribosomal RNA

gene, even though Genovo and Velvet had contigs that matched it well. On the other datasets most of the

contigs did not show a significant match, and hence the genome pools compiled for those datasets are

incomplete in the sense that they do not represent all the genomes in the (unknown) ground truth.

Figure 4 compares the methods in terms of the number of amino acids matched by a protein family

(PFAM), as measured by scorePFAM. In all datasets, Genovo has the highest score (with the exception of

Bee1, where Newbler wins by 260aa), indicating that Genovo’s contigs hold more (and longer) annotated

regions. For example, in the highly fractured Chicken dataset, our BLAST and PFAM results are markedly

higher: 65% more bases were significantly (E< 10�9) matched in BLAST and 36% more amino acids

recognized in PFAM compared to the second best method (Newbler). The difference is also qualitative—

the contigs reconstructed by our method were recognized by 84 distinct PFAM families, compared to 67 for

Newbler’s contigs. It is important to note that in our assembly, the length of matched regions ranged from

54 to 1206aa, with average region length 0f *289aa. Similar performance on PFAM matching was

achieved on the Tilapia2 dataset, where the number of matched families was 47 (compared to Newbler’s

33), and the range of matched regions was 60–1137aa. Such long matched regions could not be recovered

from a read-level analysis.

FIG. 2. The numbers above the

bars represent the improvement (in

percentages) between Genovo and

the second-best method. To com-

pute scoredenovo, we had to com-

plete each list of contigs to a full

assembly, by mapping each read to

the location that explains it best.

Reads that did not align well to any

location were treated as single-

tons—aligned perfectly to their own

contig. We could not run EULER-

SR on Coral, and the corresponding

entry is missing from all figures.

Bee1 Bee2 Coral Tilapia1 Tilapia2 Peru Microbes Chicken Synthetic
0

0.2

0.4

0.6

0.8

1

sc
or

e de
no

vo +285.3% +366.2%

+20.4%

+104.3%

+10.4%
+89.7% +55.8%

+21.5%

+35.7%
Genovo
Velvet
Euler
Newbler

434 LASERSON ET AL.



The BLAST and PFAM results should not be taken as the ultimate measure of the reconstruction quality,

or the dataset quality, since environmental samples may contain uncultured species that are phylogeneti-

cally distant from anything sequenced before. An example of such a dataset is Tilapia1, where almost all

the contigs did not match significantly, as shown by the BLAST profiles and scorePFAM, even though they

had significant coverage (one of our contigs, with no significant BLAST match, had a segment of 3790

bases with a minimal coverage of ·85 and a mean coverage of ·177). Notably, scoredenovo does not suffer

from the same problems since it is based on the quality of the read data reconstruction, rather than the

presence of a ground truth proxy.

2.5. Robustness tests

We were interested to know how sensitive the model is to sequences that have a low abundance. To

check that, we conducted a series of synthetic experiments, each corresponding to increasingly unbalanced

population in terms of sequence abundance. In each experiment 50k reads were drawn from 10 sequences,

with an exponential drop-off in the abundance of each sequence. Figure 5 shows the average coverage of

the two least abundant sequences (i¼ 9, 10), across the 10 experiments. In the first (leftmost) experiment all

sequences had an equal abundance, while at the last one (rightmost) the drop off was 90%. As the

abundance gets lower, all methods show reduction covering the sequences (justifiably so, as the fewer reads

may no longer cover the entire sequence), but Genovo is able to retain the most coverage of the rare

sequences. In the covered regions, the accuracy levels of the reconstruction were the same for all methods,

99.8%. See full details and results in Additional File 1 in Supplementary Material.
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FIG. 3. For each dataset we compiled a pool of GenBank sequences approximating the true sequences. We BLASTed

all the contigs of all the methods against the pool. For each method, The curve shows the trade off between the number

of the pool bases that its contigs covered (y-axis), and the quality of that coverage (x-axis, measured by BLAST-score-

per-base). As we increase the threshold on the quality of the BLAST hits that are included, less bases are covered. The

dashed vertical line represents the BLAST-score-per-base of an exact match.The dashed horizontal line represents the

total number of bases in the pool covered by at least one method.

GENOVO 435



3. DISCUSSION

Metagenomic analysis involves samples of poorly understood populations. The sequenced sets of reads

approximate that population and can yield information about the distribution of gene functions as well as

species. However, due to fluctuations of the genomes’ coverage, these distributions may be poorly esti-

mated. Furthermore, a read-level analysis may not be able to detect motifs that span multiple reads. Finally,

a detailed analysis of events such as horizontal gene transfer will necessitate obtaining both the transposed

elements and the genetic context into which they transposed. All of these concerns, in addition to a desire to

obtain sequences for novel species, motivate development of sequence assembly methods aimed at

problems of population sequencing.

Uncertainty over the sample composition, read coverage, and noise levels make development of methods

for metagenomic sequence assembly a challenging problem. We developed a method for sequence as-

sembly that performs well both on biologically relevant scores (based on BLAST and PFAM matches) and

on a score that uses no external information. One advantage of our approach is that our probabilistic model

is modular, permitting changes to the noise model without the need to modify the rest of the model. Thus,

the extensions to other sequencing methodologies, as they are applied to metagenomic data, should be

fairly straightforward.

There are two possible causes for variation in the reads: the true biological variation and the sequencing

noise. A systematic approach to separating these two sources of variation is predicated on a reasonable

model of the measurement noise. We utilize such a noise model based on probabilities of indels and

mutations that are in accordance to measured 454 noise profile (Quinlan et al., 2008). This noise model

enables us to trade off the two mentioned hypotheses: The measurement noise hypothesis that a set of reads

with the same mutation are simply caused by measurement noise vs. the new variant hypothesis that the

mutation is genuine and all those reads belong in another sequence (a new variant). These hypotheses have

different probabilities that depend on the number of reads and the number of mismatches between the reads

and the existing sequences. For example, if the base-mutation rate is 0.1%, and a read length is 100 bases, a

relatively simple calculation shows that it takes 20 reads with the same mutation for a new variant

hypothesis to be more likely than measurement noise hypothesis.

FIG. 4. The contigs were trans-

lated to proteins in all 6 reading

frames. scorePFAM measures how

many amino acids were recognized

by protein families profilers. Due

to the scale difference, results are

divided into two figures with the

datasets on the right figure having an order of magnitude more annotated amino acids. The numbers above the bars

show the change between Genovo and the best of the other methods.
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Extensions of our model can incorporate prior information on the composition of the sequences and would

lead to an even more sensitive method that can require a lower coverage to outweigh the measurement noise

hypothesis. For example, instead of a uniform prior over the genome letters one can use a prior based on a

reference genome. Such a prior will boost the model’s sensitivity in detecting variants of that genome, which

can be useful when sequencing viral populations or transcriptome. An even more elaborate model will

incorporate a model of phylogenetic sequence evolution, allowing us to better distinguish small variations due

to local organism evolution. These extensions, although very useful, are outside the scope of this work.

We use a model of 454 noise based on the recent work of Quinlan et al. (2008). We opted not to use

quality scores to avoid biases inherent in different base-callers, which vary across software versions of 454

and platforms (GS20 and FLX). Custom base callers and quality scores for 454 and Illumina have been

designed by several groups. Assessing the impact of the use of different base callers on the sequence

assembly in low coverage scenarios is an interesting problem but out of scope of our paper.

Recently, Illumina reads have been gaining popularity, even for metagenomic studies (Qin et al., 2010).

The read quality is increasing and more importantly the reads are getting longer, almost to the level that the

original 454 reads were. However, during the writing of this manuscript there were no available Illumina

metagenomic datasets, so we had to leverage the available metagenomic datasets for development and

assessment of our method, which were and still are predominantly 454 reads. Extending our model to

Illumina reads is an important extension of our work, and we believe that the modular structure of our

probabilistic model allows replacement of the noise model that was suitable for 454 assembly with the one

tuned to Illumina sequencers.

All the methods showed a large range of performance across the different metagenomic datasets. An

interesting yet challenging question to ask is what characteristics of a dataset can predict performance. We

have found that assemblers universally attained low scores on datasets that had low coverage and a large

number of non-overlapping contigs. This suggests that the high diversity in the sample and consequently low

coverage significantly impact the maximum achievable score. Some indicators like the diversity of 16 s/18 s

sequences may be predictive of the dataset difficulty. Estimation of these frequencies is also challenging as it

would require means to compute variant frequencies, estimates from our assemblies being prime candidates.

However, a larger number of distinct datasets would be needed for this analysis to be conclusive.

The running time required to construct an assembly can range from 15 minutes on a single CPU for a

dataset with 40 k reads up to a few hours for a dataset with 300 k 454 reads, depending not only on the size

but also on the complexity of the dataset. Newbler, Velvet and Euler typically provide their results on the

order of minutes. Our increase in computational time is on the same scale with the time spent on a next

generation sequencing run and it is worthwhile considering the higher quality of the results. Scaling to

increasing orders of magnitude is indeed a challenge for next generation assemblers. The largest dataset we

tackled was composed of 30 Mbp and did not require parallelization or excessive amounts of memory.

While binning algorithms, for example, Wu and Ye (2010), can be used to produce chunks of data and

distribute the task of assembly across multiple machines, the datasets we tackled did not require such

subdivisions. Further, recently Dirichlet process inference has been shown to be amenable to parallelization

(Newman et al., 2009). However this remains a future research direction.

4. CONCLUSION

The promise of metagenomic studies lies in their potential to elucidate interactions between members of an

ecosystem and their influence on the environment they inhabit. In order to begin answering questions about

these populations, systematic sequence level analysis is necessary. With advances in sequencing technology

and increases in coverage, methods which can explore the space of possible reconstructions will become even

more important. The model and method introduced in this paper are well suited to meet these challenges.

5. METHODS

5.1. Probabilistic model

To assist the reader, Table 3 summarizes the notation used in the following sections. An assembly

consists of a list of contigs, and a mapping of each read to a contiguous area in a contig. The contigs are
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represented each as a list of DNA letters {bso}, where bso is the letter at position o of contig s. For each read

xi, we have its contig number si, and its starting location oi within the contig. We denote by yi the alignment

(orientation, insertions and deletions) required to match xi base-for-base with the contig. Bold-face letters,

such as b or s, represent the set of variables of that type. The subscript �i excludes the variable indexed i

from the set.

One way to assign a probability to every possible assembly is to describe the full process that generated

the reads, from the creation of the originating sequences up to the sequencing noise copying the reads from

the sequences. Such model is called a generative model. In this model, the observed variables are the reads

xi, and the hidden variables are the sequences bso and the location from which each read was copied si, oi

plus the alignment yi. An assembly is hence an assignment to the hidden variables of the model, and once

we have a full assignment we can plug it into the model and get a probability.

In our generative process, we first construct a potentially unbounded number of contigs (each has

potentially unbounded length), then assign place holders for the beginning of reads in a coordinate system

of contigs and offsets, and finally copy each read’s letters (with some noise) from the place to which it is

mapped in the contig. We deal with the challenge of unbounded quantities by assuming that we have

infinitely many of them. Since the number of reads is finite, only a finite number of infinitely many contigs

will have any reads assigned to them, and these are the contigs we report. Hence, instead of first deciding

how many contigs there are and then assigning the reads to them, we do the opposite—first partition the

reads to clusters, and then assign each cluster of reads to a contig. Hence the number of reported contigs

will be determined by the number of clusters in the partition generated for the reads.

In order to randomly partition the reads we need a prior over partitions. The Chinese Restaurant Process

(CRP) (Aldous, 1983) is such a prior. CRP(a, N) can generate any partition of N items by assigning the

items to clusters incrementally. If the first i� 1 items are assigned to clusters s1::si� 1, then item i joins an

existing cluster with a probability proportional to the number of items already assigned to that cluster, or it

joins a new cluster with a probability proportional to a. The assignment probability for the last item, given

the partition of the previous items is hence given by:

p(sN ¼ s j s�N)¼ 1

N � 1þ a
� Ns s is an existing cluster

a s represents a new cluster

�

where Ns counts the number of items, not including item N, that are in cluster s. One property of the CRP

is that the likelihood of a partition under this construction is invariant to the order of the items, and thus

this last conditional probability is true for any item i, as we can assume that it is the last one. This

conditional probability illustrates another desired property of the CRP, in which items are more likely to

join clusters that already have a lot of items. The parameter a controls the expected number of clusters,

which in our case represent contigs. In Supplementary Material (Additional File 1), we show how to set it

correctly.

The same idea is used to deal with the unbounded length of the contigs. We treat the contigs as infinite

in length, stretching from minus infinity to infinity, and then draw the starting points of the reads from a

distribution over the integers. The length of the contig is then simply determined by the distance between

Table 3. Notation Table

Variables

xi vector of letters of read i (observed)

yi alignment (insertions/deletions) of read i

si contig index of read i

oi starting offset of read i within contig

bso DNA letter in offset o of contig s

rs controls contig s length

Other parameters

a controls the number of contigs

pins, pdel, pmis probability for base insertion, deletion, mismatch

N number of reads

Ns number of reads in contig s

B the DNA letters alphabet (typically {A, C, G, T})
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the two most extreme reads. Since we cannot put a uniform prior over a countably infinite set, and since

we want the reads to overlap with each other, we chose to use a symmetric geometric distribution G over

the integers that pushes the reads towards the arbitrary ‘‘zero.’’ This center has no meaning except for

marking the region of the integer line where reads are more likely to cluster. Formally, this is defined as

follows:

G(o; q)¼ 0:5(1� q)jot jq o 6¼ 0

q o¼ 0

�

The parameter r controls the length of the region from which reads are generated.

The full generative model is described as:

1. Infinitely many letters in infinitely many contigs are sampled uniformly:

bso~Uniform(B) 8s¼ 1 . . .1,8o¼ �1 . . .1

where B is the alphabet of the bases (typically B¼fA, C, G, Tg).

2. N empty reads are randomly partitioned between these contigs:

s~CRP(a, N)

3. The reads are assigned a starting point oi within each contig:

qs~Beta(1, b) 8s
oi~G(qs) 8i¼ 1::N

The distribution Beta(1, b) is over [0, 1] and has mean 1/(1þ b). We set b¼ 100.

4. We assume that the lengths li of the reads are already given. The read letters xi are copied (with some

mismatches) from its contig si starting from position oi and according to the alignment yi (encoding

orientation, insertions and deletions):

xi, yi~A(li, si, oi, b, pins, pdel, pmis) 8i¼ 1::N

The distribution A represents the noise model known for the sequencing technology (454, Illumina, etc.).

In particular, if each read letter has a pmis probability to be copied incorrectly, and the probabilities for

insertions and deletions are pins and pdel respectively, then the log-probability log p(xi, yijoi, si, li, b) of

generating a read in a specific orientation with nhit matches, nmis mismatches, nins insertions and ndel

deletions is

log 0:5þ nhit log (1� pmis)þ nmis log
pmis

jBj� 1

� �
þ nins log (pins)þ ndel log (pdel)

assuming an equal chance (0.5) to appear in each orientation and an independent noise model. Given an

assembly, we denote the above quantity as scorei
READ, where i is the read index.

This model includes an infinite number of bso variables, which clearly cannot all be represented in the

algorithm. The trick is to treat most of these variables as ‘‘unobserved,’’ effectively integrating them out

during likelihood computations. The only observed bso letters are those that are supported by reads, i.e.,

have at least one read letter aligned to location (s, o). Hence, in the algorithm detailed below, if a contig

letter loses its read support, it immediately becomes ‘‘unobserved.’’

5.2. Algorithm

Our algorithm starts from any initial assembly and takes steps in the space of all assemblies. Recall that

each assembly is an assignment to the hidden variables in our model, namely the mapping of every read to

the set of contigs (oi, si and yi for all i¼ 1::N) and the contig letters bso in the locations that are supported by

at least one read. The steps we take are designed to lead us to high probability regions in the space of

assemblies. Each step either maximizes or samples a local conditional probability distribution over some
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hidden variables given the current values for all the other hidden variables. We list below the moves used to

explore the space:

5.2.1. Consensus sequence. This type of move (Fig. 1B) updates the sequence letters bso by max-

imizing p(bsojx, y, s, o, b�so) sequentially for each letter. Let ab
so be the number of reads in the current

assembly that align the letter b 2 B to location (s, o). Since we assumed a uniform prior over the contig

letters, it is easy to see that the above conditional probability is maximized by setting bso¼ arg maxb2B ab
so

(ties broken randomly), or in other words, by setting the sequence to be the consensus sequence of the reads

in their current mapping.

5.2.2. Read mapping. This move (Fig. 1C) updates the read variables si, oi, yi, sequentially for each i,

by sampling from the probability p(si¼ s, oi¼ o, yi¼ yjx, y�i, s�i, o�i, b, r). First, we remove read i

completely from the assembly. The above conditional probability decomposes to:

p(si¼ s, oi¼ o, yi¼ y j �) / p(si¼ s j s� i)p(oi¼ o j si¼ s, qs)p(xi, yi¼ y j si¼ s, oi¼ o, b)

In order to make the sampling tractable, we reduce the space by considering for every location (s, o) only

the best alignment y�so as a possible value for yi:

y�so¼ arg max
y

p(xi, yi¼ y j si¼ s, oi¼ o, b):

We compute y�so using the banded Smith-Waterman algorithm, applied to both read orientations. This

includes locations where the read only partially overlaps with the contig, in which case aligning a read

letter to an unobserved contig letter entails a probabilistic price of 1=jBj per letter. Given the vector y*, we

can now sample from a simpler distribution over all possible locations (s, o):

p(si¼ s, oi¼ o j y�, � ) / p(si¼ s j s� i)p(oi¼ o j si¼ s, qs)p(xi, y�so j si¼ s, oi¼ o, b)

/ Ns � G(o; qs) � p(xi, y�so j si¼ s, oi¼ o, b)

The weights {Ns}, which count the number of reads in each sequence, encourage the read to join large

contigs. As dictated by the CRP, we also include the case where s represents an empty contig, in which case

we simply replace Ns with a in the formula above. In that case, the p(xi, y�so j �) term also simplifies to

1=jBjli , where li is the length of the read. We set yi¼ y�sioi
.

As bad alignments render most (s, o) combinations extremely unlikely, we significantly speed up the

above computation by filtering out combinations with implausible alignments. A very fast computation can

detect locations that have at least one 10-mer in common with the read. This weak requirement is enough to

filter out all but a few locations, making the optimization process efficient and scalable. A further speedup

is achieved by caching common alignments.

5.2.3. Merge. During the run of the algorithm, as contigs grow and accumulate more reads, it is

common to find two contigs that have overlapping ends. Even though the assembly that merges two such

contigs into one would have a higher probability, it could take many iterations to reach that assembly if we

rely only on the ‘‘Read Mapping’’ step. Reads are likely to move back and forth between the two contigs,

especially if they contain a similar number of reads, although eventually chance will make one contig have

many more reads than the other, and then the CRP will push the rest of the reads of the smaller contig to the

larger one. To speed up this process, we designed a global move (Fig. 1D) where we detect such cases

specifically and commit a merge if it increases the likelihood. Specifically, if there are more than 15 k-mers

in common between the end of one contig and the beginning of another (we include all possible orien-

tations), we align those ends, re-align the reads in the overlapping interval, and continue with this merged

assembly if the overall likelihood had increased.

5.2.4. Fix indels. If the first read that mapped to a previously unsupported area of a contig has an

insertion error, then that error is going to propagate into the contig representation. Hence, the ‘‘Read Map-

ping’’ step will make all the other reads that map to the same location align with an unnecessary insertion. In

such locations, this step will propose to delete the corresponding letter in the contig and realign the reads, and

accept the proposal if that improves the likelihood (Fig. 1E). We have a similar move for deletions.
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5.2.5. Geometric variables. The only hidden variables that are not represented specifically in the

assembly are the rs parameters that control the length of the contigs. We set rs to the value that maximizes

the probability p(rsj � ) (see Supplementary Material, Additional File 1, for details). Also, any shift by a

constant of the starting locations oi of the reads in a particular contig does not change the assembly. Hence

we simply use the shift that maximizes the overall probability. Both the above updates are local optimi-

zation moves that do not effect the current assembly.

5.2.6. Chimeric reads. Chimeric reads (Lasken and Stockwell, 2007) are reads with a prefix and a

suffix matching distant locations in the genome. In our algorithm, these rare corrupted reads often find their

way to the edge of an assembled contig, thus interfering with the assembly process. To deal with this

problem we occasionally (every 5 iterations) disassemble the reads sitting in the edge of a contig, thus

allowing other correct reads or contigs to merge with it and increase the likelihood beyond that of the

original state. If such a disassembled read was not chimeric, it will reassemble correctly in the next

iteration, thus keeping the likelihood the same as before.

5.3. Computation of scoredenovo

We adopt a view of the metagenomic sequence assembly problem in which two competing constraints

are traded off. First, we wish a compact summary of the read dataset. The reconstructed sequences should

be reasonably covered and small in number. Second, each read should have a reasonable point of origin in

our assembly. scoredenovo coherently trades off these constraints.

Given an assembly, denote by S the number of contigs, and by L the total length of all the contigs. We

measure the quality of an assembly using the expressionX
i

scorei
READ� log (jBj)Lþ log (jBj)V0S:

The first term in the above score penalizes for read errors and the second for contig length, embodying

the trade off required for a good assembly. For example, the first term will be optimized by a naive

assembly that lays each read in its own contig (so that it is an exact copy of it), but the large number of total

bases will incur a severe penalty from the second term. These two terms interact well since they represent

probabilities—the first term is the (log) probability for generating each noisy read from the contig bases it

aligns to, and the second term is the (log) probability for generating (uniformly) each contig letter. In other

words, if you put a read in a region that already has the support of other reads, you pay only for the

disagreements between the read and the contig. But if you put that read in an unsupported region, that is,

the read is the first one to cover this contig region, then you pay log(0.25) for generating each new letter. If

the read does not align well to any supported region in the current assembly, it will be more beneficial to

use the read to extend existing contigs or create new contigs than to pay the high ‘‘disagreement’’ cost due

to bad alignment.

The third term in the score ensures a minimal overlap of V0 bases between two consecutive reads. To

understand this, assume two reads have an overlap of V bases. If you split the contig into two at this

position, the third term gives you a ‘‘bonus’’ of log (jBj)V0, while the second term penalizes you for

log (jBj)V for adding V new bases to the assembly. Hence, we will prefer to merge the sequences if V>V0.

We set V0 to 20.

To be able to compare the above score across different datasets, we normalized it by first subtracting

from it the score of a naive assembly that puts each read in its own contig, and then dividing this

difference by the total length of all the reads in the dataset. We define scoredenovo to be this normal-

ized score. See Supplementary Material, Additional File 1, for another derivation of scoredenovo, based on

our model.
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