The domination number of Cartesian product of two directed paths

Michel Mollard*

Institut Fourier 100, rue des Maths 38402 St martin d'hères Cedex FRANCE

michel.mollard@ujf-grenoble.fr

 ${f Abstract}$

2

10

12

14

16

18

20

22

26

28

Let $\gamma(P_m \Box P_n)$ be the domination number of the Cartesian product of directed paths P_m and P_n for $m, n \geq 2$. In [13] Liu and al. determined the value of $\gamma(P_m \Box P_n)$ for arbitrary n and $m \leq 6$. In this work we give the exact value of $\gamma(P_m \Box P_n)$ for any m, n and exhibit minimum dominating sets.

AMS Classification[2010]:05C69,05C38.

Keywords: Directed graph, digraph, Cartesian product, Domination number, Paths.

1 Introduction and definitions

Let G = (V, E) be a finite directed graph (digraph for short) without loops or multiple arcs.

A vertex u dominates a vertex v if u = v or $uv \in E$. A set $S \subset V$ is a dominating set of G if any vertex of G is dominated by at least a vertex of G. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set. The set V is a dominating set thus $\gamma(G)$ is finite. These definitions extend to digraphs the classical domination notion for undirected graphs.

The determination of domination number of a directed or undirected graph is, in general, a difficult question in graph theory. Furthermore this problem has connections with information theory. For example the domination number of Hypercubes is linked to error-correcting codes. Among the lot of related works ([7], [8]) mention the special case of domination of Cartesian product of undirected paths or cycles ([1] to [6], [9], [10]).

^{*}CNRS Université Joseph Fourier

For two digraphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, the Cartesian product $G_1 \square G_2$ is the digraph with vertex set $V_1 \times V_2$ and $(x_1, x_2)(y_1, y_2) \in E(G_1 \square G_2)$ if and only if $x_1y_1 \in E_1$ and $x_2 = y_2$ or $x_2y_2 \in E_2$ and $x_1 = y_1$. Note that $G \square H$ is isomorphic to $H \square G$.

The domination number of Cartesian product of two directed cycles have been recently investigated ([11], [12], [14], [15]). Even more recently, Liu and al.([13]) began the study of the domination number of the Cartesian product of two directed paths P_m and P_n . They proved the following result

Theorem 1 Let $n \ge 2$. Then

• $\gamma(P_2 \square P_n) = n$

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

64

- $\gamma(P_3 \square P_n) = n + \lceil \frac{n}{4} \rceil$
- $\gamma(P_4 \square P_n) = n + \lceil \frac{2n}{3} \rceil$
- $\gamma(P_5 \square P_n) = 2n + 1$
- $\gamma(P_6 \square P_n) = 2n + \lceil \frac{n+2}{3} \rceil$.

In this paper we are able to give a complete solution of the problem. In Theorem 2 we determine the value of $\gamma(P_m \Box P_n)$ for any $m, n \geq 2$. When m grows, the cases approach appearing in the proof of Theorem 1 seems to be more and more complicated. We proceed by a different and elementary method, but will assume that Theorem 1 is already obtained (at least for $m \leq 5$ and arbitrary n). In the next section we describe three dominating sets of $P_m \Box P_n$ corresponding to the different values of m modulo 3. In the last section we prove that these dominating sets are minimum and deduce our main result:

Theorem 2 Let $n \geq 2$. Then

- $\gamma(P_{3k} \Box P_n) = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$ for $k \geq 2$ and $n \neq 3$
- $\gamma(P_{3k+1} \square P_n) = k(n+1) + \lceil \frac{2n-3}{3} \rceil$ for $k \ge 1$ and $n \ne 3$
- $\gamma(P_{3k+2}\square P_n) = k(n+1) + n \text{ for } k \ge 0 \text{ and } n \ne 3$
- $\gamma(P_3 \square P_n) = \gamma(P_n \square P_3) = n + \lceil \frac{n}{4} \rceil$.

We will follow the notations used by Liu and al. and refer to their paper for a more complete description of the motivations. Let us recall some of these notations.

We denote the vertices of a directed path P_n by the integers $\{0, 1, \ldots, n-1\}$. For any i in $\{0, 1, \ldots, n-1\}$, P_m^i is the subgraph of $P_m \square P_n$ induced by the vertices $\{(k, i) \mid k \in \{0, 1, \ldots, m-1\}\}$. Note that P_m^i is isomorphic to P_m . Notice also that $P_m \square P_n$ is isomorphic to $P_m \square P_m$ thus $\gamma(P_m \square P_n) = \gamma(P_n \square P_m)$. A vertex $(a, b) \in P_m^b$ can be dominated by (a, b), $(a - 1, b) \in P_m^b$ (if $a \ge 1$), $(a, b - 1) \in P_m^{b-1}$ (if $b \ge 1$).

2 Three Dominating sets

We will first study $P_{3k} \square P_n$ for $k \ge 1$ and $n \ge 2$. Consider the following sets of vertices of P_{3k} .

- $X = \{0, 1, 3, 4, \dots, 3k 3, 3k 2\} = \{3i/i \in \{0, 1, \dots k 1\}\} \cup \{3i + 1/i \in \{0, 1, \dots k 1\}\}$
 - $Y = \{2, 5, 8, \dots, 3k 1\} = \{3i + 2/i \in \{0, 1, \dots k 1\}\}\$
 - $I = \{0, 3, 6, \dots, 3k 3\} = \{3i/i \in \{0, 1, \dots k 1\}\}$
 - $J = \{1, 4, 7, \dots, 3k 2\} = \{3i + 1/i \in \{0, 1, \dots k 1\}\}$
 - $K = \{0, 2, 5, 8, \dots, 3k 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots k 1\}\}.$

Let D_n (see Figure 1) be the set of vertices of $P_{3k} \square P_n$ consisting of the vertices

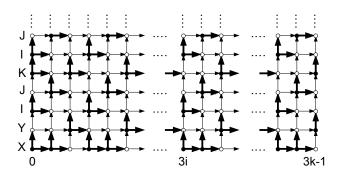


Figure 1: The dominating set D_n

• (a,0) for $a \in X$

68

70

72

74

76

78

80

82

84

86

- (a,1) for $a \in Y$
- (a,b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in I$
 - (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 1 \mod 3$ $(4 \le b < n)$ and $a \in K$.

Lemma 3 For any $k \geq 1$, $n \geq 2$ the set D_n is a dominating set of $P_{3k} \square P_n$ and $|D_n| = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

Proof: It is immediate to verify that

- All vertices of P_{3k} are dominated by the vertices of X
- The vertices of P_{3k} not dominated by some of Y are $\{0, 1, 4, \dots, 3k-2\} \subset X$
- The vertices of P_{3k} not dominated by some of I are $\{2, 5, \ldots, 3k-1\} = Y \subset K$
 - The vertices of P_{3k} not dominated by some of J are $\{0, 3, 6, \dots, 3k-3\} \subset I$

• The vertices of P_{3k} not dominated by some of K are $\{4,7,\ldots,3k-2\}\subset J$.

Therefore any vertex of some P_{3k}^i is dominated by a vertex in $P_{3k}^i \cap D_n$ or in $P_{3k}^{i-1} \cap D_n$ (if $i \geq 1$). Furthermore |X| = 2k, |Y| = |I| = |J| = k, and |K| = k+1 thus $|D_n| = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

Let us study now $P_{3k+1} \square P_n$ for $k \ge 1$ and $n \ge 2$. Consider the following sets of vertices of P_{3k+1} .

- $X = \{0, 2, 4, 5, 7, 8, \dots, 3k 2, 3k 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots k 1\}\} \cup \{3i + 1/i \in \{1, \dots k 1\}\}$
- $I = \{0, 3, 6, \dots, 3k\} = \{3i/i \in \{0, 1, \dots k\}\}$

88

90

92

94

100

102

104

106

108

- $J = \{1, 4, 7, \dots, 3k 2\} = \{3i + 1/i \in \{0, 1, \dots k 1\}\}$
- $K = \{0, 2, 5, 8, \dots, 3k 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots k 1\}\}.$

Figure 2: The dominating set E_n

Let E_n (see Figure 2) be the set of vertices of $P_{3k+1} \square P_n$ consisting of the vertices

- (a,0) for $a \in X$
- (a,b) for $b \equiv 1 \mod 3$ $(1 \le b < n)$ and $a \in I$
- (a,b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in K$.

Lemma 4 For any $k \ge 1$, $n \ge 2$ the set E_n is a dominating set of $P_{3k+1} \square P_n$ and $|E_n| = k(n+1) + \lceil \frac{2n-3}{3} \rceil$.

Proof: It is immediate to verify that

• All vertices of P_{3k+1} are dominated by the vertices of X

- The vertices of P_{3k+1} not dominated by some of I are $\{2, 5, \dots, 3k-1\} \subset K$ $\subset X$
- The vertices of P_{3k+1} not dominated by some of J are $\{0,3,6,\ldots,3k\}=I$
- The vertices of P_{3k+1} not dominated by some of K are $\{4,7,\ldots,3k-2\}\subset J$.

Therefore any vertex of some P^i_{3k+1} is dominated by a vertex in $P^i_{3k+1} \cap E_n$ or in $PP^{i-1}_{3k+1} \cap E_n$ (if $i \geq 1$). Furthermore |X| = 2k, |I| = |K| = k+1, and |J| = k thus $|E_n| = k(n+1) + \lceil \frac{2n-3}{3} \rceil$.

The last case will be $P_{3k+2} \square P_n$ for $k \ge 0$ and $n \ge 2$. Consider the following sets of vertices of P_{3k+2} .

- $X = \{0, 1, 3, 4, \dots, 3k, 3k+1\} = \{3i/i \in \{0, 1, \dots k\}\} \cup \{3i+1/i \in \{0, 1, \dots k\}\}$
- $Y = \{2, 5, 8, \dots, 3k 1\} = \{3i + 2/i \in \{0, 1, \dots k 1\}\}\$
- $I = \{0, 3, 6, \dots, 3k\} = \{3i/i \in \{0, 1, \dots k\}\}$
- $J = \{1, 4, 7, \dots, 3k + 1\} = \{3i + 1/i \in \{0, 1, \dots k\}\}$
- $K = \{0, 2, 5, 8, \dots, 3k 1\} = \{0\} \cup \{3i + 2/i \in \{0, 1, \dots k 1\}\}.$

124 .

110

112

114

116

118

120

122

126

128

130

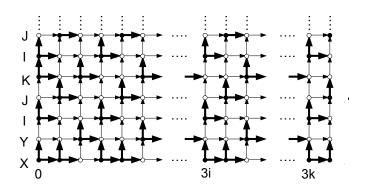


Figure 3: The dominating set F_n

Let F_n (see Figure 3) be the set of vertices of $P_{3k+2} \square P_n$ consisting of the vertices

- (a,0) for $a \in X$
- (a,1) for $a \in Y$
- (a,b) for $b \equiv 2 \mod 3$ $(2 \le b < n)$ and $a \in I$
- (a,b) for $b \equiv 0 \mod 3$ $(3 \le b < n)$ and $a \in J$
- (a,b) for $b \equiv 1 \mod 3 \ (4 \le b < n)$ and $a \in K$.

Lemma 5 For any $k \ge 0$, $n \ge 2$, the set F_n is a dominating set of $P_{3k+2} \square P_n$ and $|F_n| = k(n+1) + n$.

Proof: It is immediate to verify that

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

- All vertices of P_{3k+2} are dominated by the vertices of X
- The vertices of P_{3k+2} not dominated by some of Y are $\{0,1,4,\ldots,3k+1\}\subset X$
- The vertices of P_{3k+2} not dominated by some of I are $\{2,5,\ldots,3k-1\}=Y\subset K$
- The vertices of P_{3k+2} not dominated by some of J are $\{0,3,\ldots,3k\}=I$
- The vertices of P_{3k+2} not dominated by some of K are $\{4, 7, \ldots, 3k+1\} \subset J$.

Therefore any vertex of some P^i_{3k+2} is dominated by a vertex in $P^i_{3k+2} \cap F_n$ or in $P^{i-1}_{3k+2} \cap F_n$ (if $i \geq 1$). Furthermore |X| = 2k+2, |Y| = k and |I| = |J| = |K| = k+1, thus $|F_n| = k(n+1) + n$.

3 Optimality of the three sets

The structure of $P_m \square P_n$ implies the following strong property.

Proposition 6 Let S be a dominating set of $P_m \square P_n$. For any $n' \le n$ consider

$$S_{n'} = \bigcup_{i=0,\dots,n'-1} P_m^i \cap S.$$

Then $S_{n'}$ is a dominating set of $P_m \square P_{n'}$.

Notice that the three sets D_n , E_n , F_n satisfy, for example, $(D_n)_{n'} = D_{n'}$ therefore we can use the same notation without ambiguity.

If S is a dominating set of $P_m \square P_n$, for any i in $\{0,1,\ldots,n-1\}$ let $s_i = |P_m^i \cap S|$. We have thus $|S| = \sum_{i=0}^{n-1} s_i$.

Proposition 7 Let S be a dominating set of $P_m \square P_n$. Let $i \in \{1, 2, ..., n-1\}$ then $s_{i-1} + 2s_i \ge m$.

Proof: Any vertex of P_m^i must be dominated by some vertex of $P_m^i \cap S$ or of $P_m^{i-1} \cap S$. A vertex in $P_m^i \cap S$ dominates at most two vertices of P_m^i and a vertex in $P_m^{i-1} \cap S$ dominates a unique vertex of P_m^i .

Lemma 8 Let $k \ge 0$ and $n \ge 2$, $n \ne 3$, then $\gamma(P_{3k+2} \square P_n) = k(n+1) + n$.

Proof: The case n=2 is immediate by Theorem 1.

Let S be a dominating set of $P_{3k+2} \square P_n$ with $n \ge 4$.

By Proposition 7, $s_i \leq k$ implies $s_{i-1} + s_i \geq m - s_i \geq 2k + 2$. Therefore for any $i \in \{2, \ldots, n-1\}$ we get $s_i \geq k+1$ or $s_{i-1} + s_i \geq 2(k+1)$.

Apply the following algorithm:

```
I:=\emptyset;\ J:=\emptyset;\ i:=n-1; while i\geq 5 do if s_i\geq k+1 then I:=I\cup\{i\};\ i:=i-1 else J:=J\cup\{i,i-1\};\ i:=i-2 end if end while
```

If n=4 or n=5 the algorithm only sets I and J to \emptyset . In the general case, the algorithm stop when i=3 or i=4 and we get two disjoint sets I, J with $\{0,1,\ldots,n-1\}=\{0,1,2,3\}\cup I\cup J$ or $\{0,1,\ldots,n-1\}=\{0,1,2,3,4\}\cup I\cup J$. Furthermore $\sum_{i\in I}s_i\geq |I|(k+1)$ and $\sum_{i\in J}s_i\geq |J|(k+1)$. We have thus one of the two inequalities

$$|S| - (s_0 + s_1 + s_2 + s_3) \ge (n - 4)(k + 1)$$

or

172

174

176

178

180

182

184

186

188

190

192

194

$$|S| - (s_0 + s_1 + s_2 + s_3 + s_4) \ge (n - 5)(k + 1).$$

In the first case by Proposition 6 and Theorem 1 we get $s_0 + s_1 + s_2 + s_3 \ge \gamma(P_{3k+2} \square P_4) = \gamma(P_4 \square P_{3k+2}) = 3k + 2 + \lceil \frac{6k+4}{3} \rceil = 5k + 4$. Thus $|S| \ge (n+1)k + n$. In the second case we get $s_0 + s_1 + s_2 + s_3 + s_4 \ge \gamma(P_5 \square P_{3k+2}) = 6k + 5$. Thus again $|S| \ge (n+1)k + n$.

Therefore for any $n \geq 4$ we have $\gamma(P_{3k+2} \square P_n) \geq k(n+1) + n$ and the equality occurs by Lemma 5.

Notice that, by Theorem 1, $\gamma(P_{3k+2} \square P_3) = 3k + 2 + \lceil \frac{3k+2}{4} \rceil \neq 4k + 3$ for $k \geq 1$.

Lemma 9 Let $k \ge 1$ and $n \ge 2$, $n \ne 3$, then $\gamma(P_{3k+1} \square P_n) = k(n+1) + \lceil \frac{2n-3}{3} \rceil$.

Proof: Consider some fixed $k \ge 1$. Notice first that by Theorem 1, $\gamma(P_{3k+1} \square P_2) = 3k+1$, $\gamma(P_{3k+1} \square P_4) = 5k+2$ and $\gamma(P_{3k+1} \square P_5) = 6k+3$ thus the result is true for n < 5.

We knows, by Lemma 4, that for any $n \geq 2$ the set E_n is a dominating set of $P_{3k+1} \square P_n$ and $|E_n| = (n+1)k + \lceil \frac{2n-3}{3} \rceil$.

We will prove now that E_n is a minimum dominating set.

If this is not true consider n minimum, $n \ge 2$, such that there exists a dominating set S of $P_{3k+1} \square P_n$ with $|S| < |E_n|$. We knows that $n \ge 6$.

For $n' \le n$ let $S_{n'} = \bigcup_{i=0,\dots,n'-1} P_{3k+1}^i \cap S$ and $s_{n'} = |P_{3k+1}^{n'} \cap S|$.

Case 1 $n = 3p, p \ge 2$.

Notice first that $|E_n| - |E_{n-1}| = k$ and $|E_n| - |E_{n-2}| = 2k + 1$. We have also by hypothesis $|S| \leq |E_n| - 1$. By minimality of n, E_{n-1} is minimum thus $|S_{n-1}| \geq |E_{n-1}|$. Therefore $s_{n-1} = |S| - |S_{n-1}| \leq |E_n| - 1 - |E_{n-1}| = k - 1$. On the other hand, by Proposition 7, $s_{n-2} + 2s_{n-1} \geq 3k + 1$ thus $s_{n-2} + s_{n-1} \geq (3k+1) - (k-1) = 2k + 2$. This implies $|S_{n-2}| \leq |S_n| - 2k - 2 \leq |E_n| - 2k - 3 < |E_n| - 2k - 1 = |E_{n-2}|$, thus E_{n-2} is not minimum in contradiction with n minimum.

Case 2 $n = 3p + 1, p \ge 2$.

In this case we have $|E_n| - |E_{n-1}| = k+1$ and $|E_n| - |E_{n-2}| = 2k+1$. We have also by hypothesis $|S| \leq |E_n| - 1$. By minimality of n, E_{n-1} is minimum thus $|S_{n-1}| \geq |E_{n-1}|$. Therefore $s_{n-1} = |S| - |S_{n-1}| \leq |E_n| - 1 - |E_{n-1}| = k$. On the other hand, by Proposition 7, $s_{n-2} + 2s_{n-1} \geq 3k+1$ thus $s_{n-2} + s_{n-1} \geq 2k+1$. This implies $|S_{n-2}| \leq |S_n| - 2k-1 < |E_n| - 2k-1 = |E_{n-2}|$, thus E_{n-2} is not minimum in contradiction with n minimum.

Case 3 $n = 3p + 2, p \ge 2$.

In this case, $|E_n| - |E_{n-2}| = 2k + 2$ and we cannot proceed like case 1 and case 2. Hopefully, by Lemma 8, $\gamma(P_{3k+1} \square P_{3p+2}) = \gamma(P_{3p+2} \square P_{3k+1}) = p(3k+2) + 3k + 1 = k(3p+3) + 2p+1$. Therefore, since n+1=3p+3 and $\lceil \frac{2n-3}{3} \rceil = 2p+1$, E_n is minimum.

Lemma 10 Let $k \geq 2$ and $n \geq 2$, $n \neq 3$ then $\gamma(P_{3k} \square P_n) = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

Proof:

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

Case 1 $n = 3p + 1, p \ge 1$.

By Lemma 9, $\gamma(P_{3k} \Box P_{3p+1}) = \gamma(P_{3p+1} \Box P_{3k}) = p(3k+1) + 2k - 1 = k(3p+2) + p - 1$. We obtain the conclusion since 3p + 2 = n + 1 and $\lfloor \frac{n-2}{3} \rfloor = p - 1$.

Case 2 $n = 3p + 2, p \ge 0$.

By Lemma 8, $\gamma(P_{3k} \square P_{3p+2}) = \gamma(P_{3p+2} \square P_{3k}) = p(3k+1) + 3k = k(3p+3) + p$. We obtain again the conclusion since 3p+3=n+1 and $\lfloor \frac{n-2}{3} \rfloor = p$.

Case 3 $n = 3p, p \ge 2$.

We knows, by Lemma 3, that the set D_n is a dominating set of $P_{3k} \square P_n$ and $|D_n| = k(n+1) + \lfloor \frac{n-2}{3} \rfloor$.

If D_n is not a minimum dominating set let S be a dominating set with $|S| < |D_n|$. For $n' \le n$ let $S_{n'} = \bigcup_{i=0,..,n'-1} P_{3k}^i \cap S$ and $s_{n'} = |P_{3k}^{n'} \cap S|$.

Because n=3p and $p \geq 2$ we get $|D_n|-|D_{n-1}|=k$ and $|D_n|-|D_{n-2}|=2k+1$. We have also by hypothesis $|S| \leq |D_n|-1$. Notice that, by Lemma 8, $\gamma(P_{3k} \square P_{n-1})=\gamma(P_{3p-1} \square P_{3k})=(p-1)(3k+1)+3k=kn+\lfloor \frac{n-3}{3}\rfloor=|D_{n-1}|$ thus D_{n-1} is minimum and $|S_{n-1}| \geq |D_{n-1}|$.

Therefore $s_{n-1} = |S| - |S_{n-1}| \le |D_n| - 1 - |D_{n-1}| = k - 1$. By Proposition 7, $s_{n-2} + 2s_{n-1} \ge 3k$ thus $s_{n-2} + s_{n-1} \ge 2k + 1$. This implies $|S_{n-2}| \le |S| - 2k - 1 < |D_n| - 2k - 1 = |D_{n-2}|$. On the other hand, by Lemma 9, $\gamma(P_{3k} \Box P_{3p-2}) = \gamma(P_{3p-2} \Box P_{3k}) = (p-1)(3k+1) + 2k-1 = k(n-1) + \lfloor \frac{n-4}{3} \rfloor = |D_{n-2}|$ thus D_{n-2} is minimum, a contradiction.

Notice that, by Theorem 1, $\gamma(P_{3k} \Box P_3) = 3k + \lceil \frac{3k}{4} \rceil \neq 4k$ for $k \geq 3$.

4 Conclusions

Putting together Lemma 8, Lemma 9, Lemma 10 and the case m = 3 or n = 3, we obtain $\gamma(P_m \Box P_n)$ for any m, n (Theorem 2).

As a conclusion, notice that the minimum dominating sets we build for $P_5 \square P_n$ and

 $P_6 \square P_n$ are different than those proposed by Liu and al.([13]). An open problem would be to characterize all minimum dominating sets of $P_m \square P_n$.

References

238

240

242

244

246

248

250

252

254

256

258

268

- [1] T.Y. Chang, W.E. Clark: "The Domination numbers of the $5 \times n$ and $6 \times n$ grid graphs", J. Graph Theory, 17 (1993) 81-107.
 - [2] M. El-Zahar, C.M. Pareek: "Domination number of products of graphs", Ars Combin., 31 (1991) 223-227.
 - [3] M. El-Zahar, S. Khamis, Kh. Nazzal: "On the Domination number of the Cartesian product of the cycle of length n and any graph", *Discrete App. Math.*, **155** (2007) 515-522.
 - [4] R.J. Faudree, R.H. Schelp: 'The Domination number for the product of graphs", Congr. Numer., 79 (1990) 29-33.
 - [5] S. Gravier, M. Mollard: "On Domination numbers of Cartesian product of paths", *Discrete App. Math.*, **80** (1997) 247-250.
 - [6] B. Hartnell, D. Rall: "On dominating the Cartesian product of a graph and K_2 ", Discuss. Math. Graph Theory, **24(3)** (2004) 389-402.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater: Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
 - [8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater eds.: *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc. New York, 1998.
- [9] M.S. Jacobson, L.F. Kinch: "On the Domination number of products of graphs I", Ars Combin., 18 (1983) 33-44.
- [10] S. Klavžar, N. Seifter: "Dominating Cartesian products of cycles", *Discrete App. Math.*, **59** (1995) 129-136.
- [11] J. Liu, X.D. Zhang, X. Chen, J.Meng: "The Domination number of Cartesian products of directed cycles", *Inf. Process. Lett.*, **110(5)** (2010) 171-173.
- [12] J. Liu, X.D. Zhang, X. Chen, J.Meng: "On Domination number of Cartesian product of directed cycles", *Inf. Process. Lett.*, **111(1)** (2010) 36-39.
- [13] J. Liu, X.D. Zhang, X. Chen, J.Meng: "On Domination number of Cartesian product of directed paths", *J. Comb. Optim.*, **22(4)** (2011) 651-662.
 - [14] R.S. Shaheen: "Domination number of toroidal grid digraphs", *Utilitas Mathematica* **78**(2009) 175-184.
- [15] M.Mollard: "On Domination of Cartesian product of directed cycles", submitted (2011). Manuscript available on line: http://hal.archives-ouvertes.fr/hal-00576481/fr/.