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Abstract—This paper describes our methods and experi-
mental results for TRECVID 2011 SIN and MED tasks. For
SIN task, we submitted the run L_A_cs24_kobe_sin_I that
addresses the following two problems: The first one is an
expensive computation cost for constructing an SVM with a
large number of examples. To ensure the detection accuracy
and speed for each concept, we developed a method that
selects a small number of negative examples similar to positive
examples. Such negative examples are useful for characterizing
the decision boundary between shots where the concept is
present and shots where it is absent. The second problem is a
large variety of shots where the concept is present, due to varied
camera techniques and setting. Only using a single classifier is
insufficient for covering such a large variety of shots. Hence, we
used rough set theory to extract multiple classification rules, that
characterize different subsets of positive examples. Although
the evaluation result of L_A_cs24_kobe_sin_I was not very good,
we found that one main reason is overfitting of classification
rules extracted by RST.

For MED task, we aim to examine the applicability of virtual
reality techniques to event detection. It is laborious and time-
consuming to collect a sufficient number of positive examples
for an event. To overcome this, we create virtual examples using
virtual reality techniques. We developed a method that creates
virtual examples by synthesizing user’s gesture, 3D object
and background images. In order to evaluate the effectiveness
of this approach, we submitted two runms, c_real (cs24-
kobe_MED11_MEDI11TEST_MEDPart_SemiAutoEAG_c-real)
and p_virtual (cs24-kobe_MED11_MEDI11TEST_MEDPart_
SemiAutoEAG_p-virtual). c_real only uses positive examples
that are selected from training videos. On the other hand,
p_virtual uses virtual examples in addition to positive examples
used in c_real. Detection error tradeoff curves of c¢_real and
p_virtual indicate the effectiveness of virtual examples.

I. INTRODUCTION

This paper describes our methods and experimental re-
sults for Semantic INdexing (SIN) and Multimedia Event
Detection (MED) tasks in TRECVID 2011. Our method for
SIN task mainly addresses two problems:

Negative example selection: Through the collaborative
annotation effort [1], a large number of positive and negative
examples for a concept are available. They are used to
construct a classifier that detects the presence or absence of
the concept in shots. However, using all examples requires
an expensive computation cost. In particular, our method
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determines the presence of the concept by combining out-
puts of many Support Vector Machines (SVMs) [2]. The
computation cost of each SVM is O(n®) where n is the
number of positive and negative examples [3]. Note that the
classification of the SVM only requires support vectors that
are the positive or negative examples closest to the decision
boundary, and all other examples are redundant. Therefore,
for fast SVM construction, we develop a Negative Example
Selection (NES) method that can select a small number
of negative examples, which are likely to become support
vectors. Such negative examples should be visually similar
to positive examples.

Large variation of shots: Features in shots where a concept
is present significantly vary depending on camera techniques
and settings. Thus, a single classifier is not capable of
identifying such a large variety of shots. Hence, we use
Rough Set Theory (RST) that is a set-theoretic classification
method for extracting ‘rough’ descriptions of a class from
imprecise (or noisy) data [4]. The term rough here indicates
that RST does not extract a single classification rule to
characterize the entire set of examples belonging to the class.
Rather it extracts multiple rules that characterize different
subsets of examples. The class is represented as a union
of rules. We use RST to extract multiple rules, each of
which characterizes a subset of positive examples. Such rules
enables us to cover a variety of shots where the concept is
present.

Our method for MED task is used to examine the applica-
bility of virtual reality techniques to video event detection.
It is laborious and time-consuming to collect a sufficient
number of positive examples for an event. To overcome this,
virtual reality techniques are used to create virtual examples
where the event is presented by synthesizing user’s gesture,
3D object and background images. We aim to evaluate the
validity of substituting virtual examples with ‘real’ examples
that are collected from training videos.

II. SEMANTIC INDEXING

Fig. 1 shows an overview of our SIN method. First, by
applying the software developed by Sande et al. [5] to the
middle video frame in each shot, we extract six types of



local image features, SIFT, Dense SIFT, Opponent SIFT,
RGB SIFT, Hue SIFT and RGB histogram. These features are
useful for characterizing a variety of shots where a concept is
present, as they represent different color and edge properties
in local image regions [5]. Each feature is represented using
a 1, 000-dimensional bag-of-visual-words representation.
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Figure 1. An overview of our semantic indexing method.

For each concept, our method first constructs many SVMs
based on ‘bagging’. As shown in Fig. 1, an SVM is
constructed on one of the above features using randomly
selected positive examples. Based on these, negative exam-
ples are selected our NES method. Specifically, for each
feature, three SVMs are constructed using different sets of
positive and negative examples. Such SVMs characterize a
variety of shots where the concept is present, because of the
difference in examples and features. However, these SVMs
are not so accurate due to the insufficiency of positive and
negative examples. Thus, RST is used to combine SVMs into
classification rules, each of which can correctly discriminate
a subset of positive examples from the whole of negative
examples. Finally, the concept is regarded to be present in
shots that match many rules. Below, we describe the details
of our NES and RST methods.

A. Negative Example Selection

Our NES method aims to select a small number of
negative examples that are similar to positive examples.
These negative examples are likely to be support vectors,
and useful for characterizing the boundary between shots
where the concept is present and shots where it is absent.
Algorithm 1 summarizes our NES method. For a concept,
given a set of positive examples P and a set of negative
examples N, our NES method outputs a shrunken set of
negative examples similar to positive examples. As shown
in line 1 to 5 in Algorithm 1, our NES method iteratively
filters negative examples dissimilar to positive examples,
using SVMs that are built on P and N consisting of the
remaining negative examples. In what follows, this filtering
is described in more detail.

Algorithm 1 An overview of our NES method
INPUT: Set of positive examples P, Set of negative exam-
ples N, Maximum number of iterations «, Ratio between
negative examples and clusters 3, Distance threshold
gamma
OUTPUT: Shrunken set of negative examples N

ite_id =0
repeat
1. ite_id + +

2. Cluster N into |N|/( clusters
3. Obtain the set of representative negative examples
RN, each of which is closest to a cluster center
4. Build an SVM using P and RN
5. From N, filter negative examples distant from the
SVM’s decision boundary using gamma

until ite_id < a OR no negative example is filtered

return N' =N

We build an SVM on P and N where negative examples
visually dissimilar to P are those distant from the decision
boundary of the SVM. However, using all negative examples
would impose a prohibitive computation cost. In addition, if
a subset of negative examples is randomly selected from N,
negative examples located in certain regions of the feature
space may not be selected. As a result, the decision boundary
of the SVM may be incorrectly estimated, and the distance
between positive and negative examples would be incorrect.
Thus, we collect a set of representative negative examples
that characterize the distribution of all negative examples.
To this end, we group negative examples into clusters using
the k-means clustering algorithm and the Euclidian distance
measure. It should be noted that since various semantic
contents are presented in negative examples, their features
are very diverse. Hence, a large number of clusters are
necessary to capture the large diversity of features in nega-
tive examples. Therefore, we use a parameter 3 to control
the number of clusters relative to the number of negative
examples (line 2 in Algorithm 1). In our experiment, (3 is
set to 10 so that when |N| = 30,000, 3,000 clusters are
obtained.

For each cluster ¢, the most centrally located negative
example is selected as the representative example n.:

Ne = nIIélE dist(ng,n;) (1
n;EN.

where N, is the set of negative examples in ¢, n; and n; are
respectively the ¢-th and j-th negative examples in V., and
dist(n;,n;) represents their Euclidian distance. Thus, n. is
selected as the negative example having the minimum sum
of Euclidian distances to the other negative examples in N,.
A set of representative negative examples for all clusters is



denoted as RU.
Next, an SVM is built on P and RU and check whether
or not each negative example n in IV is distant from the
decision boundary of the SVM, using the following criterion:
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where the left hand side represents the distance between n
and the decision boundary. Specifically, ﬁ means that n is
projected onto w that is the normal vector of the hyperplane,
and normalized by the norm of w. %I is the offset of the
hyperplane from the origin. The distance between n and
the hyperplane is computed as the absolute value of the

subtraction between ﬁ and 2. Since w is comprised

of support vectors and their w‘e‘:liuélhts, the distance can be
computed only using the product of n and each support
vector. Thus, although a non-linear SVM projects n into
a higher-dimensional feature space, the distance between n
and the hyperplane can be computed by the ‘kernel trick’
where the product of n and a support vector is defined by a
kernel function (see [2] for more details). n is filtered if the
distance defined in equation 2 is larger than the threshold
~. This filtering is iterated until the number of iterations
reaches the maximum number « or when no further negative
examples are removed from N. The resulting N only
includes negative examples that are similar to P.

B. Concept Detection Using Rough Set Theory

RST requires features that classify positive and negative
examples imperfectly. Thus, it is not appropriate to apply
RST directly to features described at the beginning of section
II. The reason is the high-dimensionality of the bag-of-
visual-words representation having 1,000 dimensions. It is
likely that positive and negative examples can be perfectly
classified by a hyperplane in the high-dimensional feature
space. Consequently, RST only extracts a small number
of classification rules that characterize the entire set of
positive examples. Such rules are only useful for identifying
shots, where appearances of a concept and surrounding
settings are very similar to the ones in positive examples;
these rules are not useful for identifying shots where the
concept is present in a variety of appearances and settings.
Therefore, for the construction of an SVM, we use a subset
of randomly selected positive examples, and a subset of
negative examples that are selected by our NES method.
In other words, the SVM may incorrectly classify positive
and negative examples that were excluded during the SVM
construction. Such a SVM is constructed on each feature,
and its classification result is used as a feature in RST.

Although the above SVMs characterize different sets of
shots, they are not very accurate due to the insufficiency
of positive and negative examples. A simple combination
of these SVMs like majority voting can result in many
false positives. That is, a concept is wrongly regarded to be

presented in shots where a concept is absent. To overcome
this, we utilize RST to analyze SVM classification results
and extract rules as combinations of SVMs. Each rule can
correctly discriminate a subset of positive examples from
the whole set of negative examples. This enables us to
cover a variety of shots where the concept is present, by
alleviating false positives. In what follows, we summarize
the rule extraction procedure of RST. Please refer to [6] in
more detail.

For each pair of a positive example p; and a negative
example n;, we first determine SV M; ; that is a set of
SVMs useful for discriminating p; from cj. If an SVM
can correctly classify p; and n;, it is included in SV M, ;.
In other words, p; can be discriminated from n; when at
least one SVM in SV M; ; is utilized. Next, we compute
the discernibility function df;, that represents sets of SVMs,
required to discriminate p; from all negative examples. This
is achieved by using at least one SVM in SV M, ; for
all negative examples. That is, df; is computed by taking
the disjunction of SVMs in SV M, ;, and then taking the
conjunction of such disjunctions for all negative examples:

df; = N{VSVM; ;] 1 < j < N}, 3)

where N is the number of negative examples. df; is sim-
plified into the minimal disjunctive normal form, where
each conjunctive term, called reduct, represents a minimal
set of SVMs required to discriminate p; from all negative
examples'. Such a reduct forms a rule: “The concept is
regarded to be present in a shot, if all SVMs in the reduct
classify it as positive”. Shots that match many rules comprise
the detection result of the concept.

C. Experimental Results

Although we submitted the run L_A_cs24_kobe_sin_1,
this contains bugs in the parallelization process of matching
test shots with rules extracted by RST. In Fig. 2, the left and
right bars for each concept represent the average precisions
of the run with bugs (L_A_cs24_kobe_sin_I) and the bug-
fixed run, respectively. As can be seen from Fig. ??, by
fixing bugs, the performance of our run is significantly
improved. However, our method has

Fig. 3 shows a performance comparison between the case
of using negative examples selected by our NES method and
the case of using randomly selected negative examples. For
each concept, average precisions of the former and latter
cases are represented by the left and right bars, respectively.
Fig. 3 illustrates that the overall performance using negative
examples selected by our NES method is superior to the one
using randomly selected negative examples.

Regarding 23 concepts in TRECVID 2011 SIN task, Fig.
4 shows mean average precisions of our SIN method, SVMs

! Although the simplification of df; is NP-hard, an approximate solution
can be obtained using the genetic algorithm [4].
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Figure 3. Performance comparison between the case of using negative
examples selected by our NES method and the case of using randomly
selected negative examples.

constructed for individual features (i.e. these SVMs consti-
tutes rules), and methods submitted to the task. Fig. 4 val-
idates the effectiveness of RST where SVMs are combined
into classification rules. However, there is currently a big gap
between our SIN method and top-ranked methods. One main
reason is that due to the computational complexity, for each
concept, we limit the maximum number of positive examples
to 1,000. This is clearly insufficient for accurate concept
detection, since more than 10,000 positive examples are
available for some concepts like Indoor and Male_Person.
We are now conducting an additional experiment using all
of the available positive examples.
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Figure 4. Performance comparison between our SIN method, SVMs
constructed for individual features, and methods submitted to TRECVID
2011 SIN task.

III. MULTIMEDIA EVENT DETECTION

Our MED method consists of two main processes, virtual
example creation and event detection processes. In the
former process, virtual examples for an event are created
by synthesizing user’s gesture in front of a video camera,
a 3D object and background images. In the event detection
process, using virtual examples, we construct a classifier that
discriminates videos where the event occurs from videos
where it does not occur. Below, the above two processes are
described in more detail.

A. Virtual Example Creation

Fig. 5 illustrates the virtual example creation process. As
can be seen from 5 (a), a virtual example is created by
synthesizing user’s gesture in front of a video camera, 3D



object and a background image. Fig. 5 (b) shows an overview
of our virtual example creation system. To synthesize a 3D
object in synchronization of user’s gesture, we use a wireless
magnetic sensor system as shown in the bottom of Fig. 5
(b). In particular, Polhemus LIBERTY LAUTS (Large Area
Tracking Unthethered System) [7] is used. This can track
the position and orientation of a wireless magnetic marker
in the 6 degrees of freedom (i.e. x-y-z axes and the rotation
on each axis). A 3D object is placed and rotated based on
marker’s position and orientation, respectively. The reason
for using LIBERTY LATUS is its magnetic-sensing ability,
which enables us to track marker’s position and orientation
even if it is occluded by user’s body parts. In addition,
LIBERTY LATUS includes a System Developer’s Kit (SDK)
which facilitates the integration of the wireless magnetic
marker tracking into one’s own system. In our case, Solidray
Co., Ltd. and we have jointly extended the virtual 3D space
construction tool, OmegaSpace [8], to synthesize a 3D object
with user’s gesture.
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Figure 5. Illustration of virtual example creation.

A background image is synthesized with user’s gesture

and the 3D object. To this end, we conduct a background
subtraction to extract the region of the user and 3D object.
Then, the extracted region is synthesized with a background
image. As shown in Fig. 5 (b), we adopt chroma keying
technique using the green screen and lighting equipment.
Note that we tried the background image synthesis without
using chroma keying technique. However, due to the shadow
which emerged during user’s gesture, the region of his/hers
(and the 3D object) could not be accurately extracted. Thus,
we remove the shadow by lighting the user using the green
screen and lighting equipment. The extracted region of the
user and 3D object is synthesized with a background image,
so that a virtual example is created. Note that the same event
is taken by different camera techniques and settings, where
a person and an object appear in different sizes, positions
and orientations on the screen. Hence, we create various
virtual examples by synthesizing different users’ gestures,
3D objects and background images.

B. Event Detection

First of all, all videos are divided into shots using our
own shot detection method, which detects a shot boundary
as a significant change in color and edge features between
two consecutive frames. Then, from the middle frame in
each shot, Dense SIFT feature is extracted using the software
developed by Sande et al. [5], and represented using a 1, 000-
dimensional bag-of-visual-words representation. Based on
this shot representation, we develop an event detection
method.

Our event detection method focuses that an event consists
of several subevents. For example, we assume that the event
“E007: Changing a vehicle tire” consists of the following
five subevents: “Bringing a new tire”, “Putting off an old
tire”, “Putting on the new tire”, “Screwing up nuts” and
“Carrying away the old tire”. For each of such subevents,
an SVM is constructed where virutal examples are used as
positive examples. In addition, we manually select poitive
examples from training videos. Also, we regard randomly
selected shots as negative examples. Each shot in test
videos is annotated with the ‘discriminant value’, that is
propotional to the distance between the shot and the decision
boundary of the SVM. A large discriminant value indicates
a high degree of relevance of a shot to the subevent. After
annotating shots in each test video using discriminant values
of SVMs for all subevents, we examine whether the event
occurs in this test video. Specifically, we identify which shot
is the most relevant to each subevent by finding the one-
to-one matching between shots and subevents using Kuhn-
Munkres algorithm [9]. The final evaluation value of the
test video is the sum of discriminant values of shots, each
of which is matched with a subevent.



C. Experimental Results

In order to examine the effectivenss of virtual examples,
we compare the following two methods: One method is
c_real where the SVM for each subevent is constructed only
using positive examples selected from training videos. The
other method is p_virtual which uses both virtual examples
and positive examples selected from training videos. Note
that p_virtual and c_real use the same set of negative
examples that are shots randomly selected from training
videos. Fig. 6 shows detection error tradeoff curves of
p_virtual and c_real. As can be seen from this figure, the
detection error curve of p_virtual is closer to the origin than
that of c_real, that is, the former is superior to the latter.
This indicates the effectiveness of virtual examples.
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Figure 6. Performance comparison between p_virtual and c_real.

We use Fig. 7 to closely investigate the effectiveness of
virtual examples. Fig. 7 shows detection error curves of
p_virtual’s and c¢_real’s SVMs for five subevents. As shown
in Fig. 7, for Subevent 1, 4 and 5, SVMs of p_virtual are
superior to those of c_real. For Subevent 3, their SVMs
are comparable. For Subevent 2, the SVM of p_virtual is
outperformed by that of c_real. It can be seen that using
virtual examples is effective especially in a case where
only a small number of positive examples are available.
For example, we can only select five positive examples for
Subevent 1 and 5, and adding virtual examples significantly
improve the detection performance of these subevents. In

comparison, for Subevent 3 where 156 positive examples are
available, little improvement is obtained by adding virtual
examples. The reason why the performance is degraded
by adding virtual examples for Subevent 2, is that virtual
examples are too unnatural. In the future, we will investigate
the effectiveness of virtual examples for much more variety
of events.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented our methods and experimental
results for TRECVID 2011 SIN and MED tasks. For SIN
task, considering the expensive computational cost of an
SVM, we developed a method that selects a small number
of negative examples similar to positive examples. Such
negative examples are useful for characterizing the decision
boundary between shots where a concept is present and
shots where it is absent. Additionally, in order to cover a
large variety of shots where a concept is present, we used
rough set theory to extract multiple classification rules, that
characterize different subsets of positive examples. Although
the evaluation result of our run was not very good, we
found that one main reason is overfitting in RST where
extracted rules are very specific to positive examples, and
are not effective for shots in test videos. For MED task,
considering the difficulty of collecting a sufficient number of
positive examples for an event, we developed a method that
creates virtual examples by synthesizing user’s gesture, 3D
object and background images. Evaluation results indicates
the effectiveness of virtual examples.

Our future works are as follows: For SIN task, in order to
avoid extracting overfit classification rules, we plan to extend
the current RST to variable precision RST [10]. This enables
us to extract rules that discriminate subsets of positive
examples from negative examples within an acceptable error.
For MED task, in order to validate the generality of our
method using virtual examples, it needs to be examined
on many events other than the event “E007: Changing a
vehicle tire”. In addition, although object movements are
valuable cues for event detection, our current method only
uses an image feature (i.e. Dense SIFT). Thus, we aim to
incorporate a temporal feature such as 3DSIFT [11]. Since
the extraction of such temporal features seems to require
an expensive computation cost, we plan to parallelize the
extraction process using tens or hundreds of processors.
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