

An Automatic Caption Generation for video clip with reducing frames in
order to shorten processing time.

 Riiya Kondo � Takashi Yukawa

Nagaoka University of Technology, Nagaoka, Japan 940-2188, s141034@stn.nagaokaut.ac.jp

1. Introduction
The conventional method used entire frames which sampled at

regular intervals from video clip to generate text descriptions [1].
Almost generating description methods are using deep learning
techniques, such as encoder-decoder framework [2] [3]. Therefore,
a learning and text generation take a long time if video has a lot of
frames. In other words, processing time is increasing with the
length of the video clip. There is a method using keyframe of video
as conventional researches in order to reduce processing frames to
generate explanation texts. But this method does not consider time
step variation of video clips. Video is a set of consecutive images,
but it is clearly different from simple image because video has
information of time step. We assume that it is important for
shortening process time that is not only reducing processing
frames but also considering time steps in a video clip.

Humans can create explanation texts only using some of frames
not include whole of frames. In particular, we can recognize the
content using only few frames if movie is short like which is
uploaded on Vine and Twitter. For this reason, we propose a new
method for reducing process frame with sustaining semantics and
compared proposed method and conventional ones on score and
processing time with doing evaluation experiment.

2. Approach
Our approach focuses on reducing process time using fewer

frames. The system processes consecutive frames only first and
last of video clip instead of all sampled frames as the previous
studies because LSTM learns difference in each time steps [4].
More specifically, we take only consecutive 5 each of frames from
first and last of video clip to create explanation texts. Each frame
is converted to 2048-dimensional feature vector through
Inception-V3 Network [5], and these vectors are representative as

inputs. Encoder-decoder framework is constructed by two LSTM
networks and it’s training on end to end. Our encoder-decoder
framework has bidirectional LSTM encoder [6]. In general, 2
LSTM networks in bidirectional LSTM process same input data,
but processing direction is difference. However, in our proposed
method, forward and backward encoders process different inputs.
This idea is based on a thing that frames are separated temporally.
Forward encoder processes only first consecutive frames, and
opposite encoder processes last ones. The outputs what two
encoders processed are concatenated with hidden axis to compute
attention vector [7]. An attention vector expresses which time step
should decoder see. Moreover, two encoder’s final states are
summed up each other and used for decoder’s initial states. LSTM
decoder processes sentences words by words. In training, decoder
uses ground truth as inputs, but in inference, input on time step t
is output of time step t-1 because the model doesn’t know future
information at inference. Figure 1 shows outline of our proposal
system using the mentioned method.

The model uses cross entropy as loss function and implements
Adam optimizer to optimize model. A learning rate in the
optimizer is 0.001. Our model trained on mini batch training with
256 batch size.

We named our proposed system “s2s” and each run file which
is created by using our proposed system includes that name, and
in order to compare to our system, we also named conventional
method “bitr” as baseline.

3. Experimental evaluation

3.1 Datasets and Setup
We used TGIF dataset as training dataset [8]. TGIF dataset

contains about 100k gif data and 120k sentences describing visual
content of the animated gifs which are collected from Tumblr. In
addition to above, our one of run file has done transferred training

() ()

!"−1

Concatenate

()

%" !"
cross entropy

���(Time Step)

" − 1
()

(

Figure 1 – Proposed system overview

using past (2016 and 2017) VTT datasets which are collected from
Twitter and Vine. This run file includes “Transferred” in its file
name.

Our other one of run file is created by using beam search
algorithm instead of greedy algorithm. The algorithm helps the
model to create sentences more correctly. But this algorithm has
problem that the computation cost proportionally increases with
the beam length N. Moreover, there is no meaning if beam length
N is one because it is same as greedy one. Therefore, we
determined beam length is 2. This run file includes “BS” in its file
name. Table 1 shows dataset and algorithm what did each run file
use to create explanation texts.

Table 1 – Run files with dataset and algorithm
Run file name Dataset Algorithm

generation.s2s.txt.primary TGIF only Greedy
generation.s2sBS.txt TGIF only Beam search
generation.s2sTransfered.txt TGIF & VTT Greedy
generation.bitr.txt TGIF only Greedy

 When we use entire frames, we changed the model to a simple

bi-directional encoder-decoder model to consider out of memory
(OOM).

We also measured processing time how long does each run take
training not only scores. And Table 2 shows an environment of
computer which carries out our evaluation experiment.

Table 2 – Process environment
Operating System Ubuntu 18.04.3 LTS

Memory 32 GB
CPU Intel® Core™ i7-8700 CPU
GPU NVIDIA GeForce GTX 1080 Ti

Framework Tensorflow 2.0.0-alpha0 (python3)

3.2 Validation
We created video description texts using past VTT (2018)

dataset for validation. The dataset is also collected from Twitter
and Vine as well as VTT2016 and VTT2017 dataset. After that we
evaluated the scores which is calculated by using METEOR [9]
and ROUGE-L [10] metrics. These metrics are known for
automatic evaluate guidelines and used on various tasks of natural
language processing like machine translation and conversation
systems. Table 3 indicates validation scores using VTT2018 data.

Table 3 – Validation scores using VTT2018 data

Table 3 indicates that beam search algorithm shows highest score.
However, as we said, there is tradeoff between processing time
and score. A bottom one in Table 3, our baseline, indicates almost
same score as our primary run.

3.3 Processing Time
Table 4 shows how long did the models take training per batch

in the cases using a part of frames (proposed method) or entire
frames (conventional method).

Table 4 – Processing time per batch
 Processing Time(sec/batch)

The proposed method 730.787 sec/batch
The conventional method 4262.087 sec/batch

Table 4 indicates training time of our method is shorter
overwhelmingly than the case of using whole of frames. The
proposed method succeeded to shorten the time one-fifth than the
conventional one with sustaining its scores.

3.4 Evaluation Result using VTT2019 dataset
We tested our models using VTT2019 dataset and calculated

scores as well as validation. Table 5 shows the test scores of each
run in METEOR and ROUGE-L.

Table 5 – Test scores using VTT2019 data

A run of beam search one is highest like in validation. Whereas

beam search algorithm taken about 1.5 hours to generate 2054
sentences for VTT 2019 videos, but the other ones finished
generating within just 25 minutes. A run file which is created by
transferred learning shows top score in ROUGE-L metrics.
Finally, Figure 2 shows a scatterplot of relevance between meteor
score and number of frames on video clips. According to Fig.2,
there was no relationship between run and video length.

4. Discussion

According to Table 5, we found that our proposed method
achieved almost the same score as conventional one. In addition,
we also found that some efforts like a beam-search algorithm and

Run file name METEOR ROUGE-L
generation.s2s.txt.primary 0.194 0.2605
generation.s2sBS.txt 0.210 0.2646
generation.s2sTransfered.txt 0.196 0.2488
generation.bitr.txt 0.199 0.2489

Run file name METEOR ROUGE-L
generation.s2s.txt.primary 0.204 0.2783
generation.s2sBS.txt 0.221 0.2754
generation.s2sTransfered.txt 0.211 0.2821
generation.bitr.txt 0.197 0.2621

Figure 2 - Relevance in length of video and meteor score

transfer learning is effective for our method as well as previous
research. But as we said in previous section, we need to consider
tradeoff between computation cost and score although these
efforts help model to improve certainly. A score difference in
primary run and baseline run is slightly different, so we can regard
it is within the margin of error. Table 3 indicates a meteor score of
the baseline run is higher than primary one at validation. It means
there is no difference between both.

We thought our proposed method is not appropriate for long
length video because the method doesn’t use middle in frames.
Whereas the thought, we found from Fig 2 that our model created
sentence correctly in spite that video has much of frames. In other
words, easy rule base video trimming like our method is useful for
generating description in case target video length is from 6 sec to
10 sec, which is like uploaded ones in Twitter, Vine and Flickr.
Many of these videos doesn’t include scene cut, that is, majority
of frames are redundant. In particular, that is clearly when video
has consistent frames. In addition to this, an encoder in our
proposed model processes different input data bidirectionally. It is
assumed that this feature makes the model to learn start and end of
video efficiently to generate proper caption. However,
understanding video content is depending on video construction
rather than video length. Even human cannot understand content
or create proper description from limited frames if videos were
complex which is constructed by many scenes cut, only abstract
scenes and so on. So, we need to categorize videos before train the
model. More specifically, we should tell the model what type is
video. A “type” doesn’t mean video’s genre, it means that how
video construct is. Hopefully, it is the best way that model learns
which frames are useful and selects frames automatically to
generate caption. But if its training has high computation cost, it is
misplaced our priorities. Therefore, we have to find a new way
how to obtain appropriate frames for video captioning with low
computation cost. Our preprocess method, just take frame from
first and last (except converting to vector), is too simple for
generating video description. We need to change a part which we
use depending on video type.

In the future, our system will be improved by ensuring of video
preprocessing method as such as scene cut detection using color
space. Description generation from part of frames is enable but it
is importance which part of frames use. Our proposed system used
only consecutive 5 frames at each of first and last in a video,
however depending on what a type of video is, the system might
need other part like "only first", "first and middle" and so on.

5. Conclusion
We found it is effective that use some of first and last frames in

video clip in order to reduce processing frames. In particular, it’s
important each part should be input separately to the model when
using frames are separated temporally. To get further
improvements scores, we need to investigate what feature is an
effective for a model, and how many frames are appropriate to use.
In addition, as we already described, there was no big relevance
between video length and score according to Fig.2. For this reason,
we also should investigate what type of video has high or low score
in our system. In summary, this study needs further improvement

in the categorization video type. Therefore, we will clarify those
points and we also validate our dataset, data preprocessing method
and our model to improve the system.

6. References
[1] G. Awad, A. Butt, K. Curtis, Y. Lee, J. Fiscus, A.

Godil, A. Delgado, A. F. Smeaton, Y. Graham, W.
Kraaij and G. Quénot, "TRECVID 2019: An
evaluation campaign to benchmark Video Activity
Detection, Video Captioning and Matching, and
Video Search & retrieval," in Proceedings of
TRECVID 2019, 2019.

[2] A.-A. Liu, Y. Qiu, Y. Wong, N. Xu, Y. Su and M. S.
Kankanhalli, "Tianjin University and National
University of Singapore at TRECVID 2017: Video to
Text Description," 2017.

[3] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to
Sequence Learning with Neural Networks," in
NIPS'14 Proceedings of the 27th International
Conference on Neural Information Processing
Systems - Volume 2, 2014, pp. 3104-3112.

[4] F. A. Gers, J. Schmidhuber and F. Cummins,
"Learning to Forget: Continual Prediction with
LSTM," vol. 12, 2000, pp. 2451-2471.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z.
Wojna, "Rethinking the Inception Architecture for
Computer Vision," in The IEEE Conference on
Computer Vision and Pattern Recognition, 2016,
pp. 2818-2826.

[6] A. Graves, N. Jaitly and A.-r. Mohamed, "Hybrid
speech recognition with Deep Bidirectional LSTM,"
in IEEE Workshop on Automatic Speech
Recognition and Understanding, 2013.

[7] D. Bahdanau, K. Cho and Y. Bengio, "Neural
Machine Translation by Jointly Learning to Align
and Translate," arXiv:1409.0473 [cs.CL], 2014.

[8] Y. Li, Y. Song, L. Cao, J. Tetreault, L. Goldberg, A.
Jaimes and J. Luo, "TGIF: A New Dataset and
Benchmark on Animated GIF Description," in The
IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[9] S. Banerjee and A. Lavie, "Meteor: An automatic
metric for mt evaluation with improved correlation
with human judgments," in Proceedings of the acl
workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or
summarization, 2005, pp. 65-72.

[10] C.-Y. Lin, "ROUGE: A Package for Automatic
Evaluation of Summaries," in Proceedings of the
Workshop on Text Summarization Branches Out,
2004, pp. 74-81.

