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1. Introduction 
The conventional method used entire frames which sampled at 

regular intervals from video clip to generate text descriptions [1]. 
Almost generating description methods are using deep learning 
techniques, such as encoder-decoder framework [2] [3]. Therefore, 
a learning and text generation take a long time if video has a lot of 
frames. In other words, processing time is increasing with the 
length of the video clip. There is a method using keyframe of video 
as conventional researches in order to reduce processing frames to 
generate explanation texts. But this method does not consider time 
step variation of video clips. Video is a set of consecutive images, 
but it is clearly different from simple image because video has 
information of time step. We assume that it is important for 
shortening process time that is not only reducing processing 
frames but also considering time steps in a video clip. 

Humans can create explanation texts only using some of frames 
not include whole of frames. In particular, we can recognize the 
content using only few frames if movie is short like which is 
uploaded on Vine and Twitter. For this reason, we propose a new 
method for reducing process frame with sustaining semantics and 
compared proposed method and conventional ones on score and 
processing time with doing evaluation experiment. 

2. Approach 
Our approach focuses on reducing process time using fewer 

frames. The system processes consecutive frames only first and 
last of video clip instead of all sampled frames as the previous 
studies because LSTM learns difference in each time steps [4]. 
More specifically, we take only consecutive 5 each of frames from 
first and last of video clip to create explanation texts. Each frame 
is converted to 2048-dimensional feature vector through 
Inception-V3 Network [5], and these vectors are representative as 

inputs. Encoder-decoder framework is constructed by two LSTM 
networks and it’s training on end to end. Our encoder-decoder 
framework has bidirectional LSTM encoder [6]. In general, 2 
LSTM networks in bidirectional LSTM process same input data, 
but processing direction is difference. However, in our proposed 
method, forward and backward encoders process different inputs. 
This idea is based on a thing that frames are separated temporally. 
Forward encoder processes only first consecutive frames, and 
opposite encoder processes last ones. The outputs what two 
encoders processed are concatenated with hidden axis to compute 
attention vector [7]. An attention vector expresses which time step 
should decoder see. Moreover, two encoder’s final states are 
summed up each other and used for decoder’s initial states. LSTM 
decoder processes sentences words by words. In training, decoder 
uses ground truth as inputs, but in inference, input on time step t 
is output of time step t-1 because the model doesn’t know future 
information at inference. Figure 1 shows outline of our proposal 
system using the mentioned method.  

The model uses cross entropy as loss function and implements 
Adam optimizer to optimize model. A learning rate in the 
optimizer is 0.001. Our model trained on mini batch training with 
256 batch size.  

We named our proposed system “s2s” and each run file which 
is created by using our proposed system includes that name, and 
in order to compare to our system, we also named conventional 
method “bitr” as baseline. 

3. Experimental evaluation 

3.1 Datasets and Setup 
We used TGIF dataset as training dataset [8]. TGIF dataset 

contains about 100k gif data and 120k sentences describing visual 
content of the animated gifs which are collected from Tumblr. In 
addition to above, our one of run file has done transferred training 
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Figure 1 – Proposed system overview 



 

using past (2016 and 2017) VTT datasets which are collected from 
Twitter and Vine. This run file includes “Transferred” in its file 
name. 

Our other one of run file is created by using beam search 
algorithm instead of greedy algorithm. The algorithm helps the 
model to create sentences more correctly. But this algorithm has 
problem that the computation cost proportionally increases with 
the beam length N. Moreover, there is no meaning if beam length 
N is one because it is same as greedy one. Therefore, we 
determined beam length is 2. This run file includes “BS” in its file 
name. Table 1 shows dataset and algorithm what did each run file 
use to create explanation texts.  

Table 1 – Run files with dataset and algorithm 
Run file name Dataset Algorithm 

generation.s2s.txt.primary TGIF only Greedy 
generation.s2sBS.txt TGIF only Beam search 
generation.s2sTransfered.txt TGIF & VTT Greedy 
generation.bitr.txt TGIF only Greedy 
 
 When we use entire frames, we changed the model to a simple 

bi-directional encoder-decoder model to consider out of memory 
(OOM). 

We also measured processing time how long does each run take 
training not only scores. And Table 2 shows an environment of 
computer which carries out our evaluation experiment.  

Table 2 – Process environment 
Operating System Ubuntu 18.04.3 LTS 

Memory 32 GB 
CPU Intel® Core™ i7-8700 CPU 
GPU NVIDIA GeForce GTX 1080 Ti 

Framework Tensorflow 2.0.0-alpha0 (python3) 
 

3.2 Validation 
We created video description texts using past VTT (2018) 

dataset for validation. The dataset is also collected from Twitter 
and Vine as well as VTT2016 and VTT2017 dataset. After that we 
evaluated the scores which is calculated by using METEOR [9] 
and ROUGE-L [10] metrics. These metrics are known for 
automatic evaluate guidelines and used on various tasks of natural 
language processing like machine translation and conversation 
systems. Table 3 indicates validation scores using VTT2018 data.  

Table 3 – Validation scores using VTT2018 data 

 
Table 3 indicates that beam search algorithm shows highest score. 
However, as we said, there is tradeoff between processing time 
and score. A bottom one in Table 3, our baseline, indicates almost 
same score as our primary run.  

3.3 Processing Time 
Table 4 shows how long did the models take training per batch 

in the cases using a part of frames (proposed method) or entire 
frames (conventional method). 

Table 4 – Processing time per batch 
 Processing Time(sec/batch) 

The proposed method 730.787 sec/batch 
The conventional method 4262.087 sec/batch 

 
Table 4 indicates training time of our method is shorter 
overwhelmingly than the case of using whole of frames. The 
proposed method succeeded to shorten the time one-fifth than the 
conventional one with sustaining its scores.  

3.4 Evaluation Result using VTT2019 dataset 
We tested our models using VTT2019 dataset and calculated 

scores as well as validation. Table 5 shows the test scores of each 
run in METEOR and ROUGE-L.  

Table 5 – Test scores using VTT2019 data 

 
A run of beam search one is highest like in validation. Whereas 

beam search algorithm taken about 1.5 hours to generate 2054 
sentences for VTT 2019 videos, but the other ones finished 
generating within just 25 minutes. A run file which is created by 
transferred learning shows top score in ROUGE-L metrics. 
Finally, Figure 2 shows a scatterplot of relevance between meteor 
score and number of frames on video clips. According to Fig.2, 
there was no relationship between run and video length. 

4. Discussion 

According to Table 5, we found that our proposed method 
achieved almost the same score as conventional one. In addition, 
we also found that some efforts like a beam-search algorithm and 

Run file name METEOR ROUGE-L 
generation.s2s.txt.primary 0.194 0.2605 
generation.s2sBS.txt 0.210 0.2646 
generation.s2sTransfered.txt 0.196 0.2488 
generation.bitr.txt 0.199 0.2489 

Run file name METEOR ROUGE-L 
generation.s2s.txt.primary 0.204 0.2783 
generation.s2sBS.txt 0.221 0.2754 
generation.s2sTransfered.txt 0.211 0.2821 
generation.bitr.txt 0.197 0.2621 

Figure 2 - Relevance in length of video and meteor score 



 

transfer learning is effective for our method as well as previous 
research. But as we said in previous section, we need to consider 
tradeoff between computation cost and score although these 
efforts help model to improve certainly. A score difference in 
primary run and baseline run is slightly different, so we can regard 
it is within the margin of error. Table 3 indicates a meteor score of 
the baseline run is higher than primary one at validation. It means 
there is no difference between both. 

We thought our proposed method is not appropriate for long 
length video because the method doesn’t use middle in frames. 
Whereas the thought, we found from Fig 2 that our model created 
sentence correctly in spite that video has much of frames. In other 
words, easy rule base video trimming like our method is useful for 
generating description in case target video length is from 6 sec to 
10 sec, which is like uploaded ones in Twitter, Vine and Flickr. 
Many of these videos doesn’t include scene cut, that is, majority 
of frames are redundant. In particular, that is clearly when video 
has consistent frames. In addition to this, an encoder in our 
proposed model processes different input data bidirectionally. It is 
assumed that this feature makes the model to learn start and end of 
video efficiently to generate proper caption. However, 
understanding video content is depending on video construction 
rather than video length. Even human cannot understand content 
or create proper description from limited frames if videos were 
complex which is constructed by many scenes cut, only abstract 
scenes and so on. So, we need to categorize videos before train the 
model. More specifically, we should tell the model what type is 
video. A “type” doesn’t mean video’s genre, it means that how 
video construct is. Hopefully, it is the best way that model learns 
which frames are useful and selects frames automatically to 
generate caption. But if its training has high computation cost, it is 
misplaced our priorities. Therefore, we have to find a new way 
how to obtain appropriate frames for video captioning with low 
computation cost. Our preprocess method, just take frame from 
first and last (except converting to vector), is too simple for 
generating video description. We need to change a part which we 
use depending on video type. 

In the future, our system will be improved by ensuring of video 
preprocessing method as such as scene cut detection using color 
space. Description generation from part of frames is enable but it 
is importance which part of frames use. Our proposed system used 
only consecutive 5 frames at each of first and last in a video, 
however depending on what a type of video is, the system might 
need other part like "only first", "first and middle" and so on. 

5. Conclusion 
We found it is effective that use some of first and last frames in 

video clip in order to reduce processing frames. In particular, it’s 
important each part should be input separately to the model when 
using frames are separated temporally. To get further 
improvements scores, we need to investigate what feature is an 
effective for a model, and how many frames are appropriate to use. 
In addition, as we already described, there was no big relevance 
between video length and score according to Fig.2. For this reason, 
we also should investigate what type of video has high or low score 
in our system. In summary, this study needs further improvement 

in the categorization video type. Therefore, we will clarify those 
points and we also validate our dataset, data preprocessing method 
and our model to improve the system. 
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