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Abstract

In this paper we present an overview of our participation in TRECVID 2020 Video to Text Description Challenge [1].
Specifically, we participated in the Description Generation subtask by extending of our recent paper [21]. We address the
limitation of previous video captioning methods that have a strong dependency on the effectiveness of semantic represen-
tations learned from visual models, but often produce syntactically incorrect sentences which harms their performance on
standard datasets. We consider syntactic representation learning as an essential component of video captioning. We con-
struct a visual-syntactic embedding by mapping into a common vector space a visual representation, that depends only on
the video, with a syntactic representation that depends only on Part-of-Speech (POS) tagging structures of the video de-
scription. We integrate this joint representation into an encoder-decoder architecture that we call Visual-Semantic-Syntactic
Aligned Network (SemSynAN), which guides the decoder (text generation stage) by aligning temporal compositions of visual,
semantic, and syntactic representations. Considering different datasets for training the model, such as VATEX and TGIF, our
results represent third place by teams on the TRECVID 2020 Challenge for METEOR and CIDEvr-D metrics. We also show
that paying more attention to syntax improves the quality of generated descriptions.

1. Video to Text: Description Generation

In this year’s TRECVID Challenge [!] we extended our work [20, 21] by training and validating the model in other
datasets: VATEX, TGIF, and VTT20. We developed our method under the assumption that integrating semantic-concept
representations with syntactic representations can improve the quality of generated sentences. Now, we briefly present the
model and we refer the reader to Perez-Martin et al. [21] for details.

For tasks like video retrieval from descriptions and video descriptions retrieval from videos [5, 6, 8, 15, 16], the joint visual-
semantic embeddings have a successful application. These embeddings are constructed by combining two models: a language
model that maps the captions to a language representation vector, and a visual model that obtains a visual representation vector
from visual features. Both models are trained for projecting those representations into a joint space, minimizing a distance
function. Dong et al. [6] obtain high-performance in retrieval tasks by using the same multi-level architecture for both
models, and training with the triplet-ranking-loss function [7].

For video description generation, these embeddings have not been widely explored [10, 14, 18]. In LSTM-E [1£], a joint
embedding component is utilized to bridge the gap between visual content and sentence semantics. This embedding is trained
by minimizing the relevance loss and coherence loss simultaneously. In SibNet [14], autoencoder for visual information, and
a visual-semantic embedding for semantic information are exploited. These joint embeddings only consider the implicit
contextual information of word vectors. To improve the perplexity and syntax correctness of generated sentences, we learn a
new representation of videos with suitable syntactic information.

We propose a model to create visual-syntactic embeddings by exploiting the Part-of-Speech (POS) templates of video
descriptions. We do this by learning two functions: ¢(-) that maps videos, and w(-) that maps (POS tags of) captions,
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Figure 1. Video description generation with visual-syntactic embedding. The method computes high-level semantic and syntactic repre-
sentations from the visual representation of the video. Next, the decoder generates a sentence from them.

both into a common vector space. The learning process is based on a match and rank strategy, and ensures that videos and
their corresponding captions are mapped close together in the common space. Then, when producing features for the decoder
architecture (see the next point), we can use the function ¢(-) to map the input video and generate our desired visual-syntactic
embedding. To the best of our knowledge, this is the first approach to jointly learn embeddings from videos and (POS tags of)
descriptions. Moreover, our proposal constitutes the first instance of an effective use of a ranking model to obtain syntactic
representations of videos.

1.1. The Encoder

For encoding the input video x, we propose an architecture of three stages (Figure 1). The first stage consists in compress-
ing the video into a global representation, which combines two standard visual features extractors: 2D-CNN feature vectors
and 3D-CNN feature vectors. The second stage in our encoder consists of producing a semantic representation of the video.
To produce it, based on video captioning studies like Chen et al. [3] and Gan et al. [9], we use a standard concept detector.

1.1.1 Visual-Syntactic Embedding

The third stage in our encoder architecture produces what we call visual-syntactic embedding. We claim that cues about the
syntactic structure of the video’s descriptions can be directly extracted from a video without necessarily extracting explicit
information about the entities or objects participating. For example, there may be several videos in our dataset that, because
of their structure, share a description pattern of the form

(objectl)  (object2) (action) (object3)

as in a description like “(The dog) and (the cat) (are lying) on (the floor).” We propose to train a model to compute a suitable
syntactic representation of descriptions directly from the input video. We attack this representation learning problem as a
Part-Of-Speech template retrieval problem.

Given a pair (z,y) € D, our strategy is to learn how to map a visual representation of = and the sequence of POS tags
of y into a d-dimensional common space. Specifically, the aim is to learn two mapping functions ¢(-) and w(-) that map
from visual features and POS template vectors, respectively, to the joint embedding space. The learning process is based on
a match and rank strategy, ensuring that videos and their corresponding captions are mapped close together in the common
space. In our architecture, we use an improved version of triple-ranking loss, which penalizes the model taking into account
the hardest negative examples [6, 7, 21].

1.2. The Decoder

Given the output of our encoder, i.e., the averaged feature representation, the concept detector vector and the visual-
syntactic encoding, our decoder network generates the natural language description. We define it as a recurrent architecture
that generates the tokens each word at a time. This recurrent architecture has four components to dynamically decide when
to use visual-semantic, visual-syntactic, or semantic-syntactic temporal information in the generation process (Figure 2).

In detail, our decoder has three specialized recurrent layers based on compositional-LSTM network [3, 9], and an ad-
ditional layer to combine the outputs of the three recurrent layers defined by two levels of what we call fusion gates. The
role of this combination layer is to adaptively mix the outputs of the three recurrent layers, while the role of the recurrent
layers is to capture temporal states related to a specific pair of feature information (i.e., visual-semantic, visual-syntactic, and
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Figure 2. Proposed video captioning model. Firstly, we extract 2D-CNN and 3D-CNN visual features and a global representation p(x).
Next, the method predicts semantic and syntactic representations of the video by S(p(z)) and ¢(p(z)), respectively. Then, the decoder
generates the ¢-th word combining these three vectors in pairs. A different VNCy, layer processes each pair.

semantic-syntactic). Unlike other architectures [2, | |, 17], our recurrent layers are not deeply connected (the output of one is
not the input of another). Intuitively, each one is in charge of combining two different information channels separately. So,
we compute the three layers in parallel without increasing the execution time.

For more details about the definition of each component of the decoder we we refer the reader to Perez-Martin et al. [21].

1.3. Syntax-weighted Loss

As alanguage generation task, video description models are usually trained by the Cross-Entropy minimization (CELoss) [12].
However, the weak relationship of the CELoss function with the popular evaluation metrics of video captioning [19, 22], con-
stitutes a limitation of its use.

To overcome this limitation while aiming to consider syntactic information in the training phase, we propose the syntax-
weighted loss function. Our function improves the loss used by Chen e al. [3], considering the distance between the
syntactic representation and the POS structure of the generated description. Given a video x, the ground-truth caption
y = (y1,Y2,--.,yr) of x, and the POS tagging ¢ of the generated description, we define the weight

w =max {1, L% — (dist(¢(p(z)),w(t)) +1)"},

and we minimize
L

1
— = log pa(yily=<i), 1)
w

i=1
where 5 € [0,1] and v € [0, 1] are hyperparameters used to manage the balance between the length (conciseness) and
syntactic correctness of generated descriptions. Greater /3 implies longer captions, and greater v implies better syntax.

2. Experiments

For the visual-syntactic embedding, we set the dimension of the common space to 512. We pre-train the embedding on
the MSR-VTT dataset using the cosine distance, a learning rate of 1 x 1075 and a margin parameter of 0.1.

To extract 2D-CNN features of the video, we use ResNet-152 [13] feature extractor pre-trained on ImageNet [4, 23]. For
3D-CNN, we use ECO [25] and R(2+1)D [24] feature extractors, both pre-trained on Kinetics-400.

Table 1 shows the results we obtained in each run on the VTT20 test set. We submit four runs as following:

Run1 Training during 40 epochs on 80% of VTT20 train set and validating on the other 20%.
Run 2 and 4 Regularizing, these runs train during 29 and 46 epochs on the full VTT20 train set (without validation).

Run 3 Using VATEX dataset and the 80% of VTT20 as our training set. We trained for three epochs only and we validated
on the other 20%.



Table 1. Performance comparison of our runs on the TRECVID VTT 2020 test set.

Run Training Dataset Validation Dataset epochs BLEU-4 METEOR CIDEr CIDEr-D Spice
1 MSRVTT+VTT20(80%) VTT20(20%) 40 0.0115 0.2105 0.125 0.060 0.057
2 MSRVTT+VTT20 - 29 0.0113 0.2187 0.136 0.065 0.060
3 MSRVTT+VTT20(80%)+VATEX  VTT20(20%) 3 0.0075 0.1938 0.087 0.047 0.040
4 MSRVTT+VTT20 - 46 0.0105 0.2071 0.124 0.062 0.055

3. Conclusions

In this paper, we presented an encoder-decoder model for video description capable of generating sentences with more
precise semantics and syntax. As part of this model, we proposed a technique to retrieve POS tagging structures of video de-
scriptions while obtaining a high-level syntactic representation from visual information. We show that paying more attention
to syntax improves the quality of descriptions. There are several promising areas that we consider for future work, such as
improving visual-syntactic embedding by learning to relate syntactic information to a graph-based representation of visual
content.
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