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Abstract

In this report, the technical details of the VCL-team
submission to the Disaster Scene Description and Index-
ing (DSDI) challenge, are presented. Although the mod-
ern Deep Learning (DL) concept detection schemes can be
trained to detect, classify and index a huge variety of con-
cepts under condition of high diversity, they rely solely on
global-level information. However, the core part of LADI,
i.e. the low altitude, oblique perspective of the imagery and
disaster-related features, is quite unique in computer vision
literature, therefore it raises challenges that need to be ade-
quately addressed in the design of NN architecture. In order
to evaluate the effect that objects have in scene understand-
ing, a set of experiments/runs was conducted using different
schemes for incorporating local-level information (e.g. ob-
Jects, entities).

1. Introduction

Being at the centre of global climate change, humans
should start thinking of measures not only proactive to nat-
ural disasters but also reactive ones. Civil protection shows
particular interest in applications that help mitigate the im-
pact of such disasters by providing fast and reliable access
to information and analytics in the aftermath of them. Ma-
chine learning has been successfully applied in a plethora
of computer vision tasks (e.g. object detection, concept de-
tection, action recognition, etc.) achieving remarkable per-
formance even in case of complex, cluttered, and highly-
occluded environments. Having a closer look at the core
part of LADI, it consists of low altitude images taken in
various disaster-related environments, comprising a fairly
unique benchmark in computer vision literature. This work
addresses the Trecvid 2020 evaluation [1] in the Disaster
Scene Description and Indexing (DSDI) subtask.

The purpose of this task is the application of computer
vision capabilities on natural disasters response. More

specifically, the teams were asked to develop systems that
can label video clips with the correct disaster related fea-
tures. These features are split in 5 high-level concept cat-
egories (namely damage, environment, infrastructure, vehi-
cle, and water), being further divided in low-level sub cate-
gories giving in total 32 features. It was the first time that
this task was included in the Trecvid evaluation. The DSDI
dataset consists of over 20000 annotated images, based on
the presence of the disaster related features in each im-
age and was based on the Low Altitude Disaster Imagery
(LADI) dataset [6]. In order to evaluate their submissions,
teams were given 5 hours of video from a recent natural
disaster event, split in small clips of 60 seconds maximum
duration and were asked to give for each feature, a list of the
clips that contained this feature. This list had to be ranked
based on the confidence that the feature was present in a
clip.

2. Preparing the Dataset

As mentioned in the previous section, the DSDI dataset
contains approximately 20000 images. To ensure the
quality of the annotations, only images with file size over
4M B were included in the dataset.This choice was made
based on the assumption that images with larger size
and therefore higher resolution are more likely to contain
clearer concepts that may lead to better manual annota-
tion. As a pre-processing step, the selected images were re-
sized/downsized (224x244) to meet the computational con-
straints set by convolutional neural networks (CNNs)

Another issue that we faced with the provided dataset
was the conflicting labels given by the annotation workers.
In those cases we assumed the feature was present if at least
1 worker annotated it.

2.1. Object-based Annotations

The annotations provided by the dataset of the DSDI
track included 32 concepts of interest. Given the high chal-
lenges posed by this dataset, we argue that the integration of



local-level features into the analysis and more specifically,
the localization and classification of core image elements,
would lead to improved performance in overall scene un-
derstanding. Based on this hypothesis, we trained an object
detection model to detect entities within the images pro-
viding their bounding boxes and class. Given the lack of
ground truth information for this task, we opted to annotate
a small portion of the dataset ourselves. We plan to provide
our annotations in the immediate future to aid the teams
participating in the DSDI challenge in the coming years.
Our annotations concern only features in the ‘vehicle’ and
‘infrastructure’ categories as the features in the other cate-
gories can not be precisely localized with bounding boxes
in an image. The output of the object detection model was
utilized in some of our submissions.

2.2. Frame Extraction

Given that the evaluation was on videos, we decided
to classify them based on multiple frames that were sub-
sampled from each video. In order to have a limited but
descriptive set of images for evaluation, we had to create a
frame export strategy that would adjust to the diverse size
and frame rate of the clips. This included the following
steps: first we extracted 1 out of 3 frames if clip had less
than 10 fps, 1 out of 100 frames if the clip had less than 20
and 1 out of 200 frames if the clip had more or equal to 20
fps. With this approach we ended up having 2 - 4 frames
per given video clip to feed to our networks. We assume
that a clip is characterized by the predictions exported from
the model for each of the individual images that compose it.

3. Our Submissions

To address the challenges posed by the DSDI dataset,
several CNN-based approaches have been investigated. The
first two submissions are utilizing only the provided anno-
tation during the training phase, while the rest also exploit
the object-based annotation performed by the team.

In the following paragraphs we give a detailed overview
of the implemented architectures, highlighting the impor-
tant parts of each as well as the considerations made during
the training phase.

Five Independent ResNet101 Classifiers (L_-VCL_I):
In the first submission, five different Resnet101 [4] clas-
sifiers were employed, one for each category. During train-
ing, the original dataset was split into 5 smaller parts, each
one used to train a different classifier. Each of the smaller
datasets contained only images along with their annotations
for one of the 5 categories. The classifiers were pretrained
on ImageNet [3] and fine-tuned on the 5 smaller datasets.
Due to its simplicity, we regard this approach as our base-
line with which to compare the other submissions. A draw-
back of this method lies in its inference speed as the predic-

tion on one image requires running 5 ResNet101 networks.

A multi task classifier (L_-VCL_5): In the second sub-
mission, to mitigate the drawback of the first one, we built
a network with a common ResNet101 backbone and 5 sep-
arate classifier heads on top, one for each separate task n.
We made 5 dataset loaders so we could iterate over them
to generate batches separately and calculate the loss £,, for
only that task head of the network. The backbone was ex-
tracted from a pretrained on ImageNet Resnet101 classifier.
We were only perform back propagation once. We run each
dataset’s batch through and calculate the loss £,, for each
task n. Once we have the all the auxiliary losses computed,
we aggregate them on a global loss £ and perform back

propagation.
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With this approach we assumed that the backbone can ex-
tract common features that can be utilized by the different
classifier heads. This has the advantage that during the in-
ference on an image, the ResNet101 backbone, which has
many more parameters than the classifier heads, has to be
forward passed only once, which significantly speeding up
the process compared to the first submission. However, the
average precision drops substantially using this approach.

Classifiers for concept / Object Detection for objects
(O_VCL_3): In this we begin to utilize the formed object
localization annotations, based on the observation that tar-
geted features (e.g. objects) can make a significant contri-
bution the the final classification result. The aim here is to
apply object detection networks to detect features from the
vehicle and infrastructure categories consisting of 13 fea-
tures in total. To achieve this we fine-tuned a commonly
used object detector, Faster R-CNN [7], using the object-
specific annotations. The original network was trained on
the COCO dataset [S]. The input for this network is an im-
age and the output are bounding boxes coordinates for each
category with a confidence score for each box. However
since we want to know only if an image contains a feature
or not and do not care for the localization task, where the
feature is located in the image, we had to convert the output
of Faster R-CNN to predict only the presence or absence
of a category. To achieve this we extracted the class proba-
bility array .S from trained Faster R-CNN network and ini-
tialize an image class probability vector P = 0. Where S
a 100 x n array, P a n dimension vector and n the num-
ber of classes for 100 best predicted ROIs. Let (7, j) be the
coordinates of the first maximum value of S

(1,4) = {2, 5)[Si; = maz(9)}
We store the value to image class probability vector P,

P; = maz(S)



Algorithm 1: Convert ROISs to class labels

input : Scores Array S. A 100 x n array
output: Vector P

P <« 0,;

for k£ < 1tondo
m < max(S) ;
i,] < positionof min S';
S, j1+0;
Sli,: 1+ 0;
Plj] < m;
end

Then we set zero whole ith row an jth column of S array.
We repeat the process until P vector is full constructed as
shown in Algorithm (1] If this score P; is over a threshold
we assume that the feature is present in the image. For the
features in the other three categories we use the classifiers
implemented in L_VCL_1.

Classifiers over Faster R-CNN Features Map
(O_VCL_6): This is similar to submission O_VCL_5 where
we have Resnetl01 backbone and 5 classifier heads on
top. However, instead of using a pretrained ResNet101
on ImageNet like in O_VCL_5, we use the trained Faster
R-CNN from O_VCL_3, keeping only it’s Resnet backbone
while removing the region proposal network and classifier
heads. Like O_-VCL_.5 we made 5 dataloaders to iterate
over datasets separately and calculate the auxiliary loss £,,
for only the task head of the network. We back-propagate
5 times, once per task. The weights of the backbone were
kept frozen during the training of this submission and only
the five classifier heads were being updated.

Classifiers over Faster R-CNN Features Map with at-
tention (O_VCL_2): In the previous approach, we do not
take advantage of the bounding boxes detected by the Faster
R-CNN and only use it’s backbone network to extract base
features map, which in turn are passed to the classifier
heads. Here, we intend to create attention masks from the
detected bounding boxes and then apply these on masks
on the base features map extracted from the Faster R-CNN
backbone.

Inspired by the Cascade R-CNN [2] learning approach,
the proposed network intend to achieve increased concept
detection performance by simultaneously training local-
level (object detection) and global-level (concept detection)
classifiers. In particular, an object detection classifier is
trained to refine its input regions in such a way that high-
lights salient areas which then were fed as an attention mask
to a second task classifier.

Let B be the extracted base features map from the cas-

cade stage 1, forming a 1024 x 14 x 14 tensor and the pro-
posed normalized attention mask M, .y, is a 14 x 14 array.
The goal is to highlight regions in the features where Faster
R-CNN has detected vehicle or infrastructure objects, as-
suming that “highlighting” these regions would boost the
classification performance of the classifier heads.

In order to create the normalized attention mask M, i,
for each ROI prediction bl¥ with confidence level greater
than 0.5

bm = [‘Tgft]m’ yv[f;]in7 x%}rmv yv[”ﬁ,]ax’ SCOTB[Z]}
we calculate the set of the coordination pairs of the mask
array covered by the ROI

A[e] = {(l’j)‘yifz]zn S i S y%]aazvxgjin S ] S x%]ax}

and we compute the normalized attention mask

1
Mnorm =— M
max (M)

where,

M= Z Z (Oij + scorem)

¢ \(i.j)eal

Finally we apply the attention mask to base features map
using Hadamard product to each one of 1024 base features
map layers k

Bk = Bk o (Mnorm + J14)

new

where Jy4 the 14 x 14 all-ones matrix. Features map and
attention mask visuals can be found in Figure

Exactly like O_VCL_6 we made 5 dataloaders to iterate
over datasets separately and calculated the 5 losses £,, for
every task head of the network. We back-propagate 5 times,
once per task. The weights of the backbone are kept frozen
during the training of this submission and only the five clas-
sifier heads are being trained.

Five Independent ResNet101 Classifiers with atten-
tion (O_VCL_4): Similarly to L_VCL_1, in this submission
we have used 5 different classifiers, one for each category.
The only difference from L_VCL_1 is that we apply the nor-
malized attention mask from O_VCL_2 over base features of
the 37 layer C3 of the ResNet101 backbone. However this
method did not perform as expected.

4. Results and analysis

In this section we analyze the performance achieved by
our submissions in terms of mean average precision (mAP).
In figure [2| the mAP achieved by our submissions on the
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Figure 1. Base Features Map before and after normalized attention
mask application.

[ [L-VCL_1JO_VCL2[O_-VCL3[O.VCL4]L_.VCL5[O_VCL_6|

damage (misc)| 0.198 0.144 0.198 0.013 0.035 0.125
flooding 0.629 0.512 0.629 0.135 0.266 0.512
landslide 0.066 0.274 0.066 0.061 0.045 0.116

road washout 0 0.001 0.001 0.001 0.006

rubble / debris | 0.236 0.262 0.236 0.029 0.048 0.224

smoke / fire 0.064 0.02 0.064 0.001 0.007 0.2

[=]

dirt 0.744 0.689 0.744 0.471 0.494 0.686
grass 0.991 0.977 0.991 0.922 0.842 0.944
rocks 0.242 0.267 0.242 0.154 0.12 0.183
sand 0.006 0.001 0.006 0.003 0.002 0.002

shrubs 0.253 0.208 0.253 0.195 0.148 0.247
snow/ice 0.088 0.034 0.088 0.013 0.02 0.114
trees 0.978 0.954 0.978 0.862 0.807 0.965
bridge 0.167 0.187 0.227 0.047 0.057 0.178
building 0.731 0.718 0.792 0.558 0.502 0.698
dam / levee 0.035 0.095 0.168 0.033 0.091 0.165
pipes 0.035 0.085 0.14 0.03 0.016 0.007
power lines 0.1 0.205 0.346 0.041 0.085 0.237
railway 0.067 0.036 0.256 0.057 0.015 0.036

radio towers 0.021 0.057 0.191 0.008 0.012 0.018
water tower 0.032 0.049 0.082 0.005 0.024 0.025

aircraft 0013 | 0.048 | 0.163 | 0267 | 0.016 | 0.056
boat 0247 | 0333 | 0414 | 0017 | 0089 | 0.95
car 0442 | 03438 | 0539 | 0026 | 0.109 | 0.382
truck 0335 | 0225 | 0375 | 0012 | 0.066 | 0215
flooding 05 | 0246 | 05 0.177 | 0418 | 0.169
lake/pond | 0.14 | 0207 | 0.4 | 0.092 | 0.8 | 0223
ocean 0003 | 0.04 | 0003 | 0.03 | 0.006 | 0.038
puddle 0041 | 0.168 | 0.041 | 0031 | 0.098 | 0.5
river/stream | 0.591 | 0.643 | 0591 05 | 0577 | 068
road 0.77 | 0809 | 0.865 | 0.606 | 0537 | 0383
[ maAp 0283 | 0285 | 0333 | 0.176 | 0.185 | 0275 |

Table 1. mAP for every feature for each of our submissions. In
bold the mAP achieved was the highest in the competition. For
features not in the infrastructure and vehicle categories L_VCL_1
and O_VCL_3 have identical mAP.

test video clips provided by the DSDI task for evaluation
is presented. It can be seen in the figure that the third
submission (O_VCL_3), which utilized the formed object

localization annotations, surpassed by large margin the rest.
L_VCL_5 and O_VCL_4 performed substantially worse than
the other submissions. O_VCL_6 and O_VCL_2 achieve
more or less the same performance with L_VCL_1. As men-
tioned in section 3, the first submission would be a bench-
mark to compare against. Submission 3 managed to sig-
nificantly outperform submission 1 achieving 5% higher
mAP. For this reason our analysis will focus on this sub-
mission. As mentioned before, submission 3 uses Faster R-
CNN to detect features belonging in the infrastructure and
vehicle categories and then checks for each feature whether
at least one bounding box with sufficient confidence score
is is found. For the other three categories these submissions
are identical. In ﬁgurethe test precision for the features
in the vehicle and infrastructure for submission 1 and 3 is
shown. Object detection based submission 3 outperforms
classification based submission 1 for all the features in these
categories. This occurs despite the fact that the images we
annotated to train Faster R-CNN are by far less than the la-
beled images provided in the original dataset. The LADI
dataset consists of aerial images that have a very high in-
formation content. For example an image may contain a
very large number of buildings, cars, trees etc. As such, we
hypothesize that it is quite challenging for the classification
network to locate the required features in the image based
only on label annotations. For this reason we believe that
more dense annotations with bounding boxes are superior
for such datasets even if we are only interested in classifi-
cation and not object detection as was the case in the DSDI
task. An extension of this idea would be to use semantic
segmentation networks and annotations to handle other fea-
ture categories like environment and water that can be seg-
mented in an image. However, due to the high annotation
cost of semantic segmentation we were not able to pursue
this avenue. Compared to the competition O_VCL_3 per-
formed the best for 10 out the 32 total features, with 7 out
these 10 belonging to the infrastructure and vehicle cate-
gories, where O_VCL_3 is very competitive. For two more
features in these categories, and specifically the “building”
and “truck” objects, the mAP achieved is very close to the
best of the competition. We believe that the provided results
validate the object-guided approach for the vehicle and in-
frastructure features. These results are demonstrated in fig-
ure[d] where the mAP of O_VCL_3 for the features in these
2 categories is compared against the highest achieved mAP
by any team for these features. The mAP of our submissions
for each of the 32 features is shown in table[T]

5. Conclusion

To conclude, we relied on CNN classification networks
and specifically ResNet101. We tried a) 5 different classi-
fiers one for each feature category and b) one classifier with
a common ResNet101 backbone and 5 different classifier
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Figure 2. mAP achieved on the test videos by our submissions.
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Figure 3. mAP comparison for submissions 1 and 3 for features in
infrastructure and vehicle categories.

0.5
0.4 mO_VCL 3
0.3 m Best
0 l
$ & & Q&

& >

‘6 S \\‘\'5\’ Gxg’ o-rg' @‘“ &
o N &

¥ &€

mAP

Figure 4. mAP of submission 3 vs best mAP for each feature in
the infrastructure and vehicle categories.

heads on top. The first approach performed much better
and we used it as a baseline with which to compare our next
efforts. Following that, we decided to employ object de-
tection using the Faster R-CNN network. This however re-
quired extra annotations with bounding boxes from our side.
Object detection was applied only on features in the infras-
tructure and vehicle categories as features from the other
categories can not be precisely located in an image with
bounding boxes. A combination of the Faster R-CNN and 3
of the 5 classifiers for the other 3 categories from our initial
approach yielded the best results among our submissions.
This submission performed very competitively among all

teams on infrastructure and vehicle features, highlighting
the effectiveness of object detection for this kind of fea-
tures. Next, we utilized the Faster R-CNN backbone as a
feature extractor and 5 classifier heads on top. Finally the
features extracted from the Faster R-CNN backbone were
refined with masks formed by the Faster R-CNN detected
bounding boxes, before passing them to the classifier heads.
However, these did not manage to surpass our best submis-
sion and performed more or less equally with our baseline.
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