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ABSTRACT 

  
This paper presents a system for shot-level camera motion analysis via the estimation of global motion 
from image sequences. An affine model is used to parameterize the global motion resulting from motion 
of a camera (e.g. pan, zoom, tilt, rotation). A singular value decomposition (SVD) based gradient descent 
is executed to minimize the prediction error. To assure the convergence of the gradient descent algorithm, 
we employ a modified -step search matching to estimate initial translation and apply the gradient de-
scent over a pyramid of input images. M-estimator is used to remove the influence of outliers derived 
from local object motion. The recovered parameters can be tied to the qualitative analysis of physically 
meaningful camera motion by simple transformation. Towards the shot-level characterization of camera 
motion, several simple rules are carried out to condense the series of transformed parameters extracted 
from a whole shot. Those rules mainly concern the magnitudes and temporal persistency of each mean-
ingful parameter. We submit seven runs to TRECVID 2005. Their run-ids are D

n

0, D1, …, D6. They use 
the same set of algorithms with different parameters tuned for the rules described above. Based on the 
results, we have the findings: 1) the design of rules and related parameters’ tuning is significant but diffi-
cult to cover many cases from diverse scene contents, 2) various sizes of camera shots (e.g. close-up, me-
dium shot, long shot) makes it infeasible to secure a proper parametric assumption of camera motion as 
the global motion in large amounts of video data, and 3) the context dependent training could improve 
application performance wherein the context information may include video genre, shot size, and shot 
categories according to a priori knowledge of a scene. 
 
 
1. INTRODUCTION 
Motion characterization plays a critical role in video indexing. Camera movements and mobile objects are 
two main sources of dynamic information contained in the video. Motion content can be used as a power-
ful cue for structuring video data, similarity-based video retrieval, and video abstraction. As motion fea-
tures are of key significance in video indexing, MPEG-7 has selected a set of motion descriptors includ-
ing motion activity, camera movement, mosaic, trajectory, and parametric motion [1]. Shot-level camera 
motion estimation is one of five tasks in TRECVID 2005. This paper discusses our system on performing 
camera motion analysis on a large news video corpus used in TRECVID 2005 evaluation. 
 
Generally speaking, motion in a sequence of images results from motion of a camera and from displace-
ment of individual objects. The former is often referred to as global motion and the latter as local motion. 
Various global motion models have been used: six-parameter affine model, eight-parameter quadratic 
model, eight-parameter perspective model, etc. As the motion model cannot account for local motion, 
local object motion may create outliers and therefore bias the estimation of global motion parameters. M-
estimates are usually the most relevant class of model fitting, which is insensitive to small departures 
from the idealized assumptions for which the estimator is optimized. We use M-estimator to remove the 
influence of outliers derived from local object motion.  



The recovery of a linear or non-linear parametric motion model is the problem of data modeling. That is, 
given a set of observations, one often wants to condense and summarize the data by fitting it to a “model” 
that depends on adjustable parameters. A figure-of-merit function is designed to measure the agreement 
between the data and the model with a particular choice of parameters. The parameters of the model are 
then adjusted to achieve a minimum in the merit function, yielding best-fit parameters. The adjustment 
process is thus a problem in minimization in many dimensions [2]. When the model (e.g., eight-parameter 
perspective model) depends nonlinearly on the set of unknown parameters, the minimization must pro-
ceed iteratively. Given trial values for the parameters, a gradient descent procedure is repeated to improve 
the trial solution. At each iteration step, singular value decomposition (SVD) is employed to calculate the 
parameter increments that, added to the current approximation, give the next approximation [2]. 
 
It is not uncommon in fitting data to discover that the merit function is not uni-modal, with a single 
minimum. In order to assure the convergence of the gradient descent procedure and a much better fit, we 
employ a modified -step search matching to estimate initial translation and apply the gradient descent 
over a pyramid of input images. The gradient descent is carried out at each level of the pyramid starting 
from the coarsest level. The gradient descent at the current level is initialized with the parameters pro-
jected from the last level. The motion parameters from one level are projected onto the next one simply 
by multiplying or dividing a value (say 2). Due to the coarse initial estimation and the hierarchical im-
plementation, the method is very fast. 

n

 
In order to associate those parameters with the physically meaningful camera motion patterns (i.e. Pan, 
Tilt, Zoom, and Rotation), we utilize several simple transformations introduced in [3] for qualitative in-
terpretation of 2D velocity field and 3D motion parameters. The transformations are applied to the series 
of motion parameters calculated between pairs of consecutive frames within a shot. The resulting series 
quantitatively indicating Pan, Tilt, and Zoom is required to be appropriately condensed for modeling hu-
man perception of camera motion at the shot level. It is hard to extract a uniform set of features to charac-
terize the patterns of time series aiming at shot-level camera motion. Finally, a set of simple rules is ex-
perimentally determined to accomplish the mapping from frame-level to shot-level. Since there is no 
common set of training data, the rules are designed according to our experience on a limited set of labeled 
data (we have manually labeled about 24 video files from the training set). 
 
Our work is closely related to that of [3] and [4]. 
 
2. OVERVIEW OF THE SYSTEM COMPONENTS 
 
 

Master Shot 
Ref Files *.xml File Parser 

News Video MPEG-1 Decoder
Global Motion 

Estimation 
Transformation of 
Model Parameters 

Rules-based Camera Motion 
Pattern Classifiers at the 

Shot Level   

Image 
sequences 

Construct the image 
pyramid  n-step search matching 

Gradient descent iteration 
at the coarsest level  

Gradient descent iteration 
at the finest level  

Gradient descent iteration 
at the mid-level  

Fig.1. Block diagram of the proposed system with a three-level hierarchical implementation 

(Pan, Tilt, Zoom)

 



Fig.1 illustrates our system with a three-level hierarchical implementation. Three major modules are in-
cluded: global motion estimation, transformation of model parameters, and rules-based camera motion 
pattern classifiers at the shot level. An MPEG-1 decoder is developed using MS DirectShow. A *.xml file 
parser is programmed to extract the shot boundary information from the master shot references by [5].  
 
2.1 Global Motion Estimation 
2.1.1 Camera Motion Model 
We consider eight-parameter perspective motion model defined as follows: 
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where  are the motion parameters,  denotes the spatial coordinates of the ith pixel in 

the current frame and  denotes the coordinates of the corresponding pixel in the previous frame. 
Various motion models can be derived from this model. For example, in the case of , it is re-
duced to an affine model; in the case of 
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zoom-rotation model. 
 
2.1.2 Gradient Descent 
The global motion estimation is designed to achieve a minimum of the sum of squared differences be-
tween the current frame and the motion compensated previous frame. The model to be fitted is  

);,( aii yxρρ =                                                                              (2) 

and the merit function is 2χ
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where  is the number of pixels within image boundaries, a denotes the motion parameters 
, 

N
( 710 ,,, aaa K ) iσ  denotes the known standard deviations of each data point iρ . 
 
It is well known that, by taking some particular point p  as the origin of the coordinate system with coor-
dinates , any function  can be approximated by its Taylor series z f
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The matrix whose components are the second partial derivates matrix of the function is called the Hes-
sian matrix of the function at [2]. 
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In the approximation of (5), the gradient of is easily calculated as f

bA −⋅=∇ zf                                                                           (7) 
In Newton’s method we set  to determine the next iteration point: 0=∇f
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Instead of calculating the left-hand side of (8), one solves the set of linear equations 
( ) )( ii zfz −∇=−⋅ zA                                                                    (9) 

The gradient of  with respect to the parameters a, which will be zero at the  minimum, has com-
ponents 
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Taking an additional partial derivative gives 
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It is conventional to remove the factors of 2 by defining  
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making A
2
1][ =a in equation (6), in terms of which that equation can be rewritten as the set of linear 

equations 
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In the context of least squares, the matrix , equal to one-half times the Hessian matrix, is usually 
called the curvature matrix. 
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SVD is finally utilized to solve the overdetermined set of linear equations (13). 
 
2.1.3 Initial Estimation and Robust Estimation 
In terms of minimization or maximization of functions, an extremum can be either global or local. Find-
ing a global extremum is, in general, a very difficult problem. In order to select a suitable start point to 
initiate the iteration process describe above, it is necessary to perform initial motion modal estimation. 

P

 
A three-step search (TSS) algorithm [6] is utilized to accomplish block-based searching at the coarsest 
level of the pyramid of the image. The search range is set to ±4, ±2, and ±1 in the first, second, and third 
step. The knowledge of the displacement (motion vector) of each block is used to estimate the translation 
components  in equation (1). TSS is used for its simplicity and also robust and near optimal 
performance. To further improve robustness and efficiency, a hierarchical scheme is implemented. A 
three-level pyramid of the image is built by using a three-tap filter with coefficients 

),( 10 aa

[ ] . The 
estimated motion parameters at a give level is projected onto the level of higher resolution and serves as 
an initial value to compute some more increments. 
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M-estimator is employed to augment robustness against outliers. Tukey’s biweight function is selected as 
the weighting function: 
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The more deviant point, the greater is the weight. Very deviant points (the true outliers) are not counted at 
all in the estimation of the parameters. In practice, we take 7=C . 



 
 
2.2 Transformation of Model Parameters 
In [3], any vector field is approximated by a linear combination of a divergent field, a rotation field, and 
two hyperbolic fields. The relationship between motion model parameters and symbol-level interpretation 
is established: 
                                                                             0aPan = 1aTilt =  
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With equation (15), a series of  are derived for each video shot. 
In the context of TRECVID’05 low-level feature extraction task, we concern 
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To determine the presence of Pan, Tilt, or Zoom, we have to decide whether those estimated values 

 are significant or not. The reasons are twofold: 1) due to noise, estimator errors, and 
the use of an approximate model, these quantities cannot be strictly equal to zero even if it should be the 
case; 2) human perception of global motion is related to the association of magnitude and duration over 
the temporal dimension. A likelihood ratio test has been proposed in [3] to avoid the delicate and unstable 
threshold selection. Despite the claimed better control of thresholds on a likelihood ratio, our implementa-
tion resorts to direct thresholding since the shot-level decision requires magnitudes rather than symbols 
only. Moreover, the additional computation introduced by likelihood ratio tests is considerable for proc-
essing a large video corpus. 

( ZoomTiltPan ,, )

 
2.3 Rule-based Camera Motion Pattern Classifiers 
Several rules have been discussed in [7] to deal with the ambiguities of creating the truth data. The subset 
used for evaluation is a collection of samples culled from the test set by dropping those unreliable or un-
certain samples, which are derived from handheld camera, lack of background, complexity of motion in 
multiple dimensions at once, blending in of digital effects, etc. 
 
We resort to a set of simple rules as follows: 

1) Accumulate the duration of estimated pan rate with the magnitude above a threshold when 
the pan is in a consistent direction and reset the duration to zero when the pan direction is changed. 
PAN is declared once the persistent process’s duration is more than a threshold . 

panMag

panDuration K  

Instants with a threshold less than are allowed for each accumulation process. panMag 2=K . 
2) One special kind of PAN is also declared that one can easily perceive: larger rate (greater than 3 

times ) with short duration (longer than panMag panDuration×3.0 ). 
3) Rules 1 and 2 do not count the instants when the magnitude of zoom rate is greater than  times 

the magnitude of pan rate. . 
L

4=L
4) Accumulate the duration of estimated zoom rate with the magnitude above a threshold for 

two directions Zoom-in and Zoom-Out, respectively. If any duration is greater than , 
then ZOOM is declared. 

zoomMag

zoomDuration

5) Similarly, Rules 1 and 2 are applied to detect TILT by simply replacing the pan rate with the tilt 
rate. Two thresholds  and  are predefined. tiltMag tiltDuration

 



3. EXPERIMENTAL RESULTS 
We have manually labeled 24 video files in training set as the ground truth. Accordingly, seven groups of 
parameters are adjusted to favor different recall/precision settings over the training data. Table I lists the 
parameters corresponding to our submitted seven runs . Table II lists the results. The best 
performances in F1 measure have been highlighted in Table II for PAN, TILT, ZOOM, and MEAN, 
respectively. 

610 ,,, DDD K

  
TABLE I 

PARAMETERS OF SEVEN RUNS 
 

panMag  panDuration  zoomMag  zoomDuration  tiltMag  tiltDuration  

0D  45 38 48 40 41 30 

1D  20 30 41 35 30 35 

2D  60 21 35 45 20 40 

3D  40 35 60 55 40 45 

4D  40 25 40 40 55 35 

5D  48.2 24 48.2 31 39 33 

6D  46.8 32 48.4 35 50 35 

 
TABLE II 

RESULTS OF SEVEN RUNS 
 

0D  1D  2D  3D  4D  5D  6D  

Recall 0.724 0.874 0.838 0.707 0.840 0.826 0.770 
Precision 0.998 0.961 0.970 0.995 0.970 0.976 0.991 

PAN 

F1 0.839 0.915 0.899 0.826 0.900 0.894 0.867 
Recall 0.510 0.533 0.548 0.481 0.543 0.490 0.424 

Precision 0.991 0.982 0.966 0.990 1.00 0.99 0.989 
TILT 

F1 0.673 0.691 0.699 0.647 0.704 0.656 0.593 
Recall 0.695 0.761 0.689 0.560 0.716 0.771 0.738 

Precision 0.978 0.973 0.981 0.990 0.973 0.970 0.977 
ZOOM 

F1 0.813 0.854 0.809 0.715 0.825 0.859 0.841 
Recall 0.643 0.723 0.692 0.583 0.700 0.696 0.644 

Precision 0.989 0.972 0.972 0.992 0.981 0.979 0.986 
MEAN 

F1 0.779 0.829 0.808 0.734 0.817 0.814 0.779 
 
The measures are defined as: 
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4. CONCLUSIONS 
We have introduced our work on TRECVID’05 low-level feature extraction task. A parametric approach 
is employed to discover camera motion patterns. Compared with nonparametric methods, parametric 
models have the advantage of simplicity. That is, there is no need to manually label many samples of mo-
tion field for supervised training. Although the achieved performance of 0.704 − 0.915 is not bad, it is 
worthwhile to mention that the subset used for evaluation is not a random sample from the whole test set. 
Quite a number of ambiguous samples have been dropped. In real video processing, one doesn’t know 
which shot is reliable for camera motion estimation. The evaluation results thus cannot well reflect the 
performance in practice. 
 
Shot-level camera motion pattern is considered as a low-level feature in TRECVID’05. According to our 
experiences learned from manual labeling, the precise decision on camera motion is related to context 
such as shot sizes, shot categories, dynamic scene content, etc. The assumption of global motion as cam-
era motion is sometimes impractical. Camera motion is not a complete low-level feature. A robust solu-
tion has to rely on certain context. Learning is an approach to incorporate context information. Moreover, 
the mapping from frame-level to shot-level such as the selection of thresholds and durations is not an easy 
job. It is difficult to cover all cases derived from dynamic scene contents by summarizing a limited set of 
rules. It may be necessary to establish a common set of labeled data to seek the relationship between fea-
ture-level temporal behaviors and human perception in terms of shot-level camera motion.   
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