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Abstract

Our main focus for this year was on setting up a flexible retrieval environment rather than on
evaluating novel video retrieval approaches. In this structured abstract the submitted runs are
briefly described.

High-level feature extraction

We experimented with feature detectors based on visual information only, and compared Weibull-
based and GMM-based detectors.

• LL-HF-WB-VisOnly Region-based Weibull models, visual only

• LL-HF-WBNWC-VisOnly Extended region-based Weibull models, visual only

• LL-HF-GMMQGM-VisOnly GMM-based models, query generation variant

• LL-HF-GMMDGM-VisOnly GMM-based models, document generation variant

We found large differences across topics. Some models are good for one topic other for the next.
Future research has to show whether a combined approach is useful.

Search

In the search task we focused on a seamless integration of our visual and textual retrieval system,
to allow for easy multimodal querying. We use the Nexi language for querying (see Section 3.1)
and Ram for specifying visual retrieval models (see Section 3.3).

• M-A-1-LL-ram-text-1 manual text only run

• F-A-1-LL-ram-text-2 fully automatic text only run

• M-A-2-LL-ram-text-im-3 manual text + image run

• M-A-2-LL-ram-text-feat-4 manual text + high-level feature run

• M-A-2-LL-ram-text-im-feat-5 manual text + image + high-level feature run

• F-A-2-LL-ram-text-im-6 fully automatic text + image run

• F-A-1-LL-tijahpsql-text-7 fully automatic text only run

We experimented with a generic retrieval approach that used collection specific information only for
training the high-level feature detectors. Runs making use of textual information perform around
the median, adding visual information does not influence the results.

1



1 Introduction

The main focus of our participation in this year’s Trecvid benchmarks has been on engineering rather
than on retrieval or video modeling. We aim at developing an information retrieval framework that
supports many diverse retrieval applications by means of one simple yet powerful query language that
hides the implementation details from the application developer, while still giving control over the
ranking process. Our Trecvid experiments are run using an xml retrieval system based on Mon-
etDB, an open source database system developed at CWI [2]. Experiments for other benchmarks
(Hard and Enterprise tracks at Trec and various tasks at Inex) are carried out using the same
system.

The paper is organized as follows. We start with a description of the retrieval models used in the
system in Section 2. Section 3 discusses the separate parts of the retrieval systems as they have been
used so far, as well as the integration of these parts as a step towards the development of a generic
search engine framework. Experimental results for the search and high-level feature tasks are discussed
in Section 4. The paper ends with discussion on the envisaged search engine framework.

2 Retrieval models

We use probabilistic models to describe our data. For modeling text, we use statistical language models,
visual data is modeled using either Weibull distributions or Gaussian mixture models The following
subsections introduce the various models.

2.1 Language models

We model textual information, i.e., speech transcripts and machine translation output following the
language modeling (LM) approach to information retrieval [14, 8]. For each textual segment a language
model is estimated based on the distributions of terms in the segment. The models we use are hier-
archical language models; they take the hierarchical structure of video into account. The likelihood of
a shot given a query Q = {q1, q2, . . . , qn} is estimated using an interpolation of the likelihoods of the
query terms given the language models for the shot itself, its containing scene, the containing video and
the collection:

score(shoti|Q) =
∏
q∈Q

[αP (qj |Shoti) + βP (qj |Scenei) + γP (qj |Videoi) + δP (qj |Collection)] (1)

The parameters α, β, γ and δ are mixing weights and sum to 1.

2.2 Weibull models for Visual Features

Modeling visual data heavily relies on qualitative features. Good features describe the relevant infor-
mation in an image while reducing the amount of data representing the image. To achieve this goal,
we use Wiccest features as introduced in [5]. Wiccest features combine color invariance with natural
image statistics. Color invariance aims to remove accidental lighting conditions, while natural image
statistics efficiently represent image data.

Color invariance aims at keeping the measurements constant under varying intensity, viewpoint and
shading. In [6] several color invariants are described. We use the W invariant that normalizes the
spectral information with the energy. This normalization makes the measurements independent of
illumination changes under uniform lighting conditions.

When modeling scenes, edges are highly informative. Edges reveal where one region ends and another
begins. Thus, an edge has at least twice the information content of a uniformly colored patch, since
an edge contains information about all regions it divides. Besides serving as region boundaries, an
ensemble of edges describes texture information. Texture characterizes the material an object is made
of. Moreover,a compilation of cluttered objects can be described as texture information. Therefore, a
scene can be modeled with textured regions.
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Texture is described by the distribution of edges at a certain region in an image. Hence, a histogram
of Gaussian derivative filters represents the edge statistics. Since there are more non-edge pixels then
edge pixels, the distribution of edge responses for natural images always has a peak around zero, i.e.:
many pixels have no edge responses. Additionally, the shape of the tails of the distribution is often
in-between a power-law and a Gaussian distribution. This specific distribution can be well modeled
with an integrated Weibull distribution [7]. This distribution is given by
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where r is the edge response to the Gaussian derivative filter and Γ(·) is the complete Gamma function,
Γ(x) =

∫∞
0

tx−1e−1dt. The parameter β denotes the width of the distribution, the parameter γ repre-
sents the ’peakedness’ of the distribution, and the parameter µ denotes the origin of the distribution.

To assess the similarity between Wiccest features, a goodness-of-fit test is utilized. The measure is
based on the integrated squared error between the two cumulative distributions, which is obtained by
a Cramér-von Mises measure. For two Weibull distributions with parameters Fβ , Fγ and Gβ , Gγ a
first order Taylor approximation of the Cramér-von Mises statistic yields the log difference between the
parameters. Therefore, a measure of similarity between two Weibull distributions F and G is given by
the ratio of the parameters,

W 2(F,G) =

√
min(Fβ , Gβ)
max(Fβ , Gβ)

min(Fγ , Gγ)
max(Fγ , Gγ)

. (3)

The µ parameter represents the mode of the distribution. The position of the mode is influenced by
uneven illumination and colored illumination. Hence, to achieve color constancy the values for µ may
be ignored.

In summary, Wiccest features provide a color invariant texture descriptor. Moreover, the features
rely heavily on natural image statistics to compactly represent the visual information.

2.3 Gaussian mixture models for visual features

We also experimented with Gaussian mixture models (GMMs) for modeling visual information. Here,
keyframe images (wi) are modeled as mixtures of Gaussians with a fixed number of components C:

P (x|ωi) =
NC∑
c=1

P (Ci,c) G(x,µi,c,Σi,c), (4)

where NC is the number of components in the mixture model, Ci,c is component c of class model ωi

and G(x,µ,Σ) is the Gaussian density with mean vector µ and covariance matrix Σ:

G(x,µ,Σ) =
1√

(2π)n|Σ|
e−

1
2 (x−µ)T Σ−1(x−µ), (5)

where n is the dimensionality of the feature space and (x−µ)T is the matrix transpose of (x−µ). These
Gaussian mixture models of the keyframes are used to represent the shots. The score of a shot given
an video or image example, is determined by the likelihood that the corresponding model generates the
feature vectors (X = {x1,x2, . . . ,xn}) representing the example, just like in the LM case for text, we
interpolate with a background model based on collection statistics:

score(shoti) =
∏
x∈X

[λ · P (x|ωi) + (1− λ) · P (x|ωi)] (6)

The feature space of the vectors x is based on the DCT coefficients obtained from 8x8 pixel blocks. For
more details of the features and the GMMs, see [22, 21, 20].
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3 Retrieval Systems

3.1 xml text retrieval system

Our xml text retrieval system, Tijah is based on the scored region algebra approach [11]. Each
element in an xml tree naturally represents a region in the document. The scored region algebra
provides functionality for scoring these regions (for example based on the language modeling principle),
and for combining scored regions in a principled manner. To give an idea of the kind of combinations
that this algebra is capable of it is useful to first briefly introduce the query language we use, Nexi.

Nexi (Narrow Extended XPath for Inex) is an xml query language developed for the Inex xml
retrieval benchmark [18]. The language is a modification of XPath. The only axis steps it allows are
descendant steps, but the filtering conditions are extended with about clauses. These clauses provide
information retrieval functionality and allow the user to ask for sections about xml
//Section[about(.,XML)]

or speech segments about George W. Bush
//SpeechSegment[about(.,George W. Bush)].

The latter already exemplifies one case where score combination is needed: scores for the separate query
terms George, W. and Bush have to be combined in a meaningful manner. Another kind of combining
scores comes to play when Nexi queries become more complicated and ask for contextual information.
For example, speech segments about George W. Bush in videos about transportation
//Video[about(.,transportation)]//SpeechSegment[about(.,George W. Bush)].

Given a Nexi query, the retrieval system returns a ranked list of xml elements. Performing the
required text only run using this system is relatively simple. Assuming the ASR transcripts are pre-
processed and segmented in such a manner that each shot is represented in an MPEG-7 document as
a VideoSegment element with its own piece of text1, then a simple Nexi query like
//VideoSegment[about(.,airplane taking off)]

will rank the shots in the collection.
Our xml retrieval system is a flexible framework offering a variety of retrieval models. However,

for the experiments in the present paper, we restrict ourselves to the hierarchical language modeling
approach to information retrieval as described in Section 2.1. This means each Nexi about clause
(about(x,Q)) is translated to P (x|Q) (cf. Eq. 1).

3.2 Region queries for LMs

A simple query like //VideoSegment[about(.,airplane taking off)] will be translated to one or more
scored region algebra expressions, for which the system then chooses a query execution plan, similar to
rewriting SQL queries into relational algebra expressions in relational database systems. The translation
to scored region algebra of the query above might for instance be the following:
((<VideoSegment> CONTAINING ’airplane’) CONTAINING ’taking’) CONTAINING ’off’

This will only find shots that contain all of the terms ’airplane’, ’taking’ and ’off’ but no other shots.
It is very unlikely that these shots exist, because shots are rather small, and the only way a shot could
contain the exact query words is when a voice over says: “(I see an) airplane taking off” at exactly the
same time when the video shows the airplane taking off (and the speech recognition system recognized
the words correctly). So, the query plan above will not make a very good video retrieval system.

For this reason, the translation from conceptual query language (Nexi) to logical query plan (scored
region algebra) is not fully determined in Tijah. The translation of Nexi’s about function has to be
set by the application developer. This enables flexible ranking in Tijah. For example, when developing
a web search engine, the algebra expression will contain a static ranking component such as the Google
PageRank of a page. When developing a video search engine that uses speech transcripts to retrieve
video shots, the region algebra expression should contain the components from Equation 1. That is,
the score of the shot is combined with the score of the scene that contains the shot, and combined with
the score of the video that contains the shot, and combined with a so-called background score for the

1Section 4.2.1 discusses the pre-processing steps
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term. Language modeling queries such as the one defined by Equation 1 can be processed as scored
region queries in a straight-forward manner [10] as shown in Figure 1 where α = 0.4, β = 0.4, γ = 0.02
and δ = 0.18.

R1 := <VideoSegment>;

R2 := (0.4 SCALE R1) OR (0.133 SCALE (R1 ADJ R1 ADJ R1)) OR (0.2 SCALE <Video>) OR

(0.18 SCALE <root>) ;

R3 := R1 CONTAINED_BY (R2 CONTAINING ’airplane’);

R4 := R3 CONTAINED_BY (R2 CONTAINING ’taking’);

R5 := R4 CONTAINED_BY (R2 CONTAINING ’off’);

Figure 1: Region query for LM retrieval model

We do not know where the scene boundaries are, so we glue adjacent shots together to form a virtual
scene. This is expressed by (R1 ADJ R1 ADJ R1). Because of this, scenes will overlap and shots are
contained in multiple scenes; in the example in three scenes, so we down-weighted β to 0.4/3 = 0.133.
For this reason, the results of the scored region algebra expression deviate somewhat from the results
that are defined by Equation 1.

An alternative approach would be to introduce another implementation for the CONTAINING operator
in our algebra. Different implementations of the CONTAINING operator are easily added to Tijah, for
instance to introduce alternative retrieval models and term weighting algorithms [12]. The hierarchical
language model of Equation 1 might be put completely inside a V CONTAINING operator (for ’video
containing’), such that the query is translated simply into:
((<VideoSegment> V CONTAINING ’airplane’) V CONTAINING ’taking’) V CONTAINING ’off’

However, this forces the application developer to directly operate on the physical storage structures
of the system. We believe the former approach, where the application developer only operates on logical
expressions, is more elegant and is more likely to be done by people who are no expert on the internal
workings of the system.

3.3 Ram for GMMs

For our participation to last year’s Trecvid, we implemented the GMM retrieval model for visual
information (Section 2.3) on top of MonetDB, using its native MIL query language. The resulting
MIL query processed faster than its Matlab equivalent, which we used in the past. However, a manual
writing of such complex relational queries is a difficult and error-prone task.

This year, we used Ram to realize the same retrieval model on top of MonetDB. Ram (Relational
Array Mapping) [19] is a tool developed at CWI to facilitate the implementation of scientific applications
on top of relational database systems. The basic data structure of Ram is the multi-dimensional array.
The Ram front-end provides a comprehension based array query-language, to express array-specific
queries concisely (comprehension syntax is explained in [3]). Array comprehensions allow users to
specify a new array by declaring its dimensions and a function to compute the value for each of its
cells. An optimized relational plan is internally devised for the array query at hand and this is finally
translated to an actual query, ready to be fed to the preferred relational back-end.

The main advantage of this approach is that the application developer can concentrate on the retrieval
model and express it in a declarative manner, while the physical implementation is realized by the
system. This abstraction is similar to the one provided by SQL interfaces to database systems. However,
the array paradigm can be seen as a further abstraction over the relational layer, which introduces a new
step: the array query plan is translated to an optimized relational query plan, which is then translated
to an optimized physical query plan by the relational engine, as usual.

The Ram array-query that implements the GMM retrieval model is showed in Figure 2. Notice that
no details about the physical organization of the data or the physical plan are explicit in the query,
which results in extremely compact and readable notation, close to the original mathematical formulas
(cf. Eq 4, 5 and 6). The following persistent arrays, resulting from the indexing phase, are used:
Pr=P (C), Mu=µ, S=Σ, X=x. Variables and constants start with $.
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Scores = [ avg([log((0.9*psd(s,d)) + (0.1*ps(s))) | s<$NSamples]) | d<$NDocs ]

ps(s) = avg([ psd(s,d) | d<$NDocs ])

psd(s,d) = sum([ Pr(c,d) * norm(c,d) * act(c,s,d) | c<$NComps ])

act(c,s,d) = exp(-0.5 * sum([pow(X(n,s)-Mu(n,c,d), 2) / S(n,c,d) | n<$NFeats ]))

norm(c,d) = 1 / sqrt(pow(2*$PI,$NFeats) * prod([S(n,c,d) | n<$NFeats ]))

Figure 2: Ram query for GMM retrieval model

This query was translated by Ram and executed by MonetDB/X100 [23], the new pipelined
database engine currently being developed at CWI. The satisfying performance measured (comparable
to our manual implementation of last year) was a welcome result, next to the achievement of our original
main goal: reduce the user effort in formulating the desired retrieval model on top of a DBMS.

As a next step toward this goal, we realized an integration of the Ram-powered visual retrieval in the
Tijah probabilistic framework. The integration realized is only at its first stage: limited to the GMM
retrieval model for visual information only, not flexible (it is Trecvid-specific), and not particularly
elegant. However, it served as a useful case study for our work on the parameterized search system that
we envisage for the next future: Spiegle.

3.4 Spiegle for multimedia

Spiegle is a system for generic information retrieval from a multitude of collections and data types.
The idea is that the system is flexible and easily configurable to the needs of a specific collection. The
loosely coupled integration of Tijah and Ram as used for this year’s Trecvid experiments is a first
step towards the parameterizable search engine generator that Spiegle will become.

Two main adaptations of the Tijah system are needed to handle the Trecvid collection:

• The use of the hierarchical language model instead of the commonly used two level mixture of
foreground and background probabilities.

• Mapping Tijah’s xml element identifiers to the shot identifiers as used in the Ram system (and
in Trecvid’s evaluation).

For the hierarchical language model, we need to administer the links between shots, scenes and videos.
Since no scene segmentation was available for the collection, we simply assumed each window of five
consecutive shots forms a scene. This scene information is not explicitly listed in the xml documents,
hence we need to keep tables that link shots to scenes and to videos. Based on these tables term
frequencies in shots can be aggregated to obtain scene and video statistics and to compute hierarchical
language model scores from them.

To be able to use the visual parts of the topics, i.e., the example images and example videos, we
extended the Nexi language with a special about clause: imabout(). This clause takes as arguments a
set of xml elements (like the original about clause, and an identifier of the query (e.g., topic167 7, to
refer to the 7th example in topic167). This imabout() clause is translated to a call to the GMM functions
implemented in Ram (Section 3.3. To facilitate linking from the xml elements to shot identifiers, we
stored the identifiers explicitly as attributes of the <VideoSegment> elements in the xml document.
Another prerequisite is that all visual examples are pre-processed (i.e., stored as feature vectors) and
known to the Ram module.

4 Experimental results

4.1 High-level feature extraction

For the high-level feature task, we experimented with a visual information only approach. This section
first describes how the Weibull similarity as described in Section 2.2 and the Gaussian mixture models
(Section 2.3) are used for high-level feature extraction and then discusses our results.
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4.1.1 Contextures: Regional Texture Descriptors and their Context

Building towards semantic access to video collections, we aim to express complex scenes in low-level
semantics like vegetation, water, fire, sky etc. These proto-concepts provide a first step to automatic
access to video content. Given a fixed vocabulary of proto-concepts, we assign a confidence measure
of the occurrence of the proto-concepts in a shot. Different combinations of an occurrence histogram
of proto-concepts provide a sufficient characterization of a complex scene. We introduce the notion of
contextures, where a configuration of global texture and local texture information and its context are
used to describe visual scene information.

In order to recognize concepts based on low-level visual analysis, we annotated 15 different proto-
concepts: building (321), car (192), charts (52), crowd (270), desert (82), fire (67), US-flag (98), maps
(44), mountain (41), road (143), sky (291), smoke (64), snow (24), vegetation (242), water (108), where
the number in brackets indicates the number of annotation samples of that concept. Fig. 3 shows an
example of some regional annotations. We again used the TRECVID 2005 common annotation effort
as a basis for selecting relevant shots containing the proto-concepts. In those shots, we annotated
rectangular regions where the proto-concept is visible for at least 20 frames.

Sky Building Road

Figure 3: Three examples of annotated regions in video.

The visual detectors aim to decompose an image in proto-concepts like vegetation, water, fire, sky
etc. To achieve this goal, an image is divided up in several overlapping rectangular regions. The regions
are uniformly sampled across the image, with a step size of half a region. The region size has to be
large enough to assess statistical relevance, and small enough to capture local textures in an image.
We utilize a multi-scale approach, using small and large regions. An example of region sampling is
displayed in figure 4.

A visual scene is characterized by both global as well as local texture information. For example, a
picture with an aircraft in mid air might be described as “sky, with a hole in it”. To model this type
of information, we use a proto-concept occurrence histogram where each bin is a proto-concept. The
values in the histogram are the similarity responses of each proto-concept annotation, to the regions in
the image.

We use the proto-concept occurrence histogram to characterize both global and local texture in-
formation. Global information is described by computing an occurrence histogram accumulated over
all regions in the image. Local information is taken into account by constructing another occurrence
histogram for only the response of the best region. For each proto-concept, or bin, b the accumulated
occurrence histogram and the best occurrence histogram are constructed by,

Haccumulated(b) =
∑

r∈R(im)

∑
a∈A(b)

W 2(a, r) ,

Hbest(b) = arg max
r∈R(im)

∑
a∈A(b)

W 2(a, r) ,

where R(im) denotes the set of regions in image im, A(b) represents the set of stored annotations
for proto-concept b, and W 2 is the Cramér-von Mises statistic as introduced in equation 3.

We denote a proto-concept occurrence histogram as a contexture for that image. We have chosen
this name, as our method incorporates texture features in a context. The texture features are given by
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Figure 4: An example of dividing an image up in overlapping regions. In this particular example, the
region size is a 1

2 of the image size for both the x-dimension and y-dimension. The regions
are uniformly sampled across the image with a step size of half a region. Sampling in this
manner identifies nine overlapping regions.

the use of Wiccest features, using color invariance and natural image statistics. Furthermore, context
is taken into account by the combination of both local and global region combinations.

Contextures can be computed for different parameter settings. Specifically, we calculate the contex-
tures at scales σ = 1 and σ = 3 of the Gaussian filter. Furthermore, we use two different region sizes,
with ratios of 1

2 and 1
6 of the x-dimension and y-dimensions of the image. Moreover, contextures are

based on one image, and not based on a shot. To generalize our approach to shot level, we extract 1
frame per second out of the video, and then aggregate the frames that belong to the same shot. We
use two ways to aggregate frames: 1) average the contexture responses for all extracted frames in a
shot and 2) keep the maximum response of all frames in a shot. This aggregation strategy accounts for
information about the whole shots, and information about accidental frames, which might occur with
high camera motion.

4.1.2 GMMs for high-level feature extraction

We compared the contexture based approach to a GMM based approach. This approach basically treats
feature extraction as a form of query by example searching. The only difference with the traditional
search task is that instead of one or a few examples, we now have a large set of annotated data as an
example of a given feature. For the GMM based approach we used the regional annotations described
in the previous section. Starting from this set of feature examples, we followed two strategies:

QueryGeneration Ranking of the shots is based on the likelihood that the shot’s model generates the
set of feature examples. In this approach, a GMM (ωi) is estimated for each shot in the collection;
models are ranked using Equation 6 where the set of feature vectors X is the union of the feature
vectors obtained from all annotated regions.

DocumentGeneration The process is reversed; Shots are ranked by the likelihood of being generated
by a high-level feature model. In this strategy, the roles in Equation 6 are reversed: ωi is a model
estimated from the annotated regions, and X are the shots of a shot.

4.1.3 Results

We aim to investigate the building blocks of the contexture features. Contextures may be used to
describe a visual scene by decomposing a scene in proto-concepts. Because the proto-concepts are an
important part of the contextures, we investigate the results of proto-concept detection only, where the
whole scene contextures were submitted by another group [17].

Since we use the proto-concepts only, this corresponds to the responses of single bins of the occurrence
histogram. Consequently, we could only submit results for the concepts we annotated, see section ??.
For the 3 TRECVID topics we did not annotate, we chose a prototype that was somewhat related, i.e.:
38:People walking = .crowd., 45:prisoner = .fire., sports=.vegetation..
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Table 1: AP per topic for submitted runs on high-level feature task.
run ID 38 39 40 41 42 43 44 45 46 47
LL-HF-GMMDGM-VisOnly 0.112 0.003 0.036 0.004 0.060 0.082 0.028 0.001 0.074 0.019
LL-HF-GMMQGM-VisOnly 0.068 0.002 0.097 0.003 0.012 0.005 0.011 0.000 0.001 0.022
LL-HF-WBNWC-VisOnly 0.118 0.001 0.094 0.025 0.084 0.070 0.042 0.000 0.011 0.067
LL-HF-WB-VisOnly 0.115 0.010 0.123 0.046 0.083 0.063 0.015 0.000 0.021 0.020

We submitted two versions of the visual-only features. The difference is caused by ongoing develop-
ment on the visual analysis. Specifically, we improved the Weibull fit to be more robust and we added
the proto-concept car. To compare the results between the new (LL-HF-WBNWC-VisOnly) and
the old (LL-HF-VisOnly)version, we submitted both versions.

Comparing the results of the two versions of the visual features, it shows that the newer features
are slightly better. For the seven topics where we had annotated proto-concepts for, the new features
outperform the old features for four topics. For four topics (42:Building, 43:Waterscape, 44:Moun-
tain,47:Car) the new features are better, where for three topics (39:Explosion, 40:Map, 41:US-flag) the
old features perform better.

In the GMM based variants we do not see as many differences across topics, document generation
outperforms query generation for all topics (although for some topics the difference is small). Comparing
the GMM based approach to the contextures results, again we see differences between topics. For many
topics the difference between the approaches is small, but for some topics the contexture approach is
clearly better (40:Map, 44:Mountain, 47:Car), for others the GMM based document generation approach
gives better results (43: Waterscape, 46:Sports).

Average precision scores for both contexture based and GMM based variants are listed in Table 1.
Future research will have to show whether a combination of the various models can improve results.
We also plan to investigate the combination of the proto-concepts with textual information.

4.2 Search

For the search section we experimented with the integrated Tijah and Ram systems. Simple Nexi
queries allow for easy experimentation with combinations of modalities. This section describes the
pre-processing of the textual data and the experimental runs we did.

4.2.1 Pre-processing

An intrinsic problem in video analysis is the multi modality of the data stream and the lack of alignment
between the different modalities. The original speech recognition output is typically segmented using
silence or speaker turns. Clearly these do not necessarily match shot boundaries. In previous editions
of Trecvid, the speech transcripts were cut up to match the shots. This may however not be the best
basis for text retrieval, since the coherence of the textual parts is lost. Ideally, searching in the ASR
output should be based on the speech segments, but then it is hard to combine with visual information
or to relate the results to the predefined master shot reference [13]. How to properly model retrieval
from mis-aligned resources is planned for future work.

For the present experiments however, we constructed xml documents in which the text was aligned
to the shots. Exact cutting of the speech transcripts at the shot boundaries was not possible, because
timings in the transcripts were only available at the segment level. We used an XQuery extension that
allows selecting of xml elements based on the position of the piece of data it refers to, rather than the
position of the element in the xml document [1]. This allows us to construct a document of shots,
with for each shot all overlapping speech segments. Note that this means that a speech segment on a
shot boundary gets assigned to both shots. The constructed documents are indexed using the Tijah
system and used in our retrieval experiments. Figure 5 shows a fragment of one of the documents in
the collection.
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<VideoSegment id="shot100_10" in_msec="33500" out_msec="37136">
<text record_id="7">
<timespan out_msec="35930" in_msec="32260" />car emissions
cents)</text>
<text record_id="8">
<timespan out_msec="36650" in_msec="35930" />, was</text>

</VideoSegment>
<VideoSegment id="shot100_11" in_msec="37137" out_msec="40240">
<text record_id="9">
<timespan out_msec="42840" in_msec="37250" />, "the most
memorable assignments for us to</text>

</VideoSegment>
<VideoSegment id="shot100_12" in_msec="40240" out_msec="42909">
<text record_id="9">
<timespan out_msec="42840" in_msec="37250" />, "the most
memorable assignments for us to</text>

</VideoSegment>
<VideoSegment id="shot100_13" in_msec="42909" out_msec="47113">
<text record_id="10">
<timespan out_msec="46820" in_msec="42950" />twenty seven
MSNBC</text>

</VideoSegment>

Figure 5: Example fragment of indexed document

4.2.2 Runs

The integration of the retrieval systems for the various modalities, and more importantly the adoption
of the Nexi query language allowed for easy testing of combinations of different modalities. Adding an
extra modality now boils down to adding an extra about() clause to the Nexi query. For example, the
following queries are used for some of our manual runs for topic 167 (Find shots of an airplane taking
off ).

//VideoSegment[about(.,airplane taking off)]

//VideoSegment[about(.,airplane taking off) and imabout(.,topic0167 7)]

//VideoSegment[about(.,airplane taking off) and imabout(.,topic0167 7) and featabout(.,Sky)]

As stated before, this years’ efforts were targeted more at combining systems than at comparing video
retrieval approaches. Nevertheless, the results of the various approaches are shown in Table 2. Clearly
the usefulness of the image models tested is limited. Runs that make no use of textual information
have extremely low scores, and for runs that do use textual information, using additional information
from the image models does not help. A combination of textual search and high-level feature search
(M-A-2-LL-ram-text-feat-4) is –according to the Wilcoxon signed-rank test– significantly better
than the corresponding text only baseline (M-A-1-LL-ram-text-1), but the difference is negligible.

In general, performance is relatively poor compared to the top ranked systems participating at
Trecvid. Our runs are often at or just below the median performance. We would like to stress
once more though, that this performance is achieved without any collection specific training or analysis.

5 Discussion

The shallow integration of the Tijah and Ram systems used this year for combined textual and visual
searching in the Trecvid collection, was a useful case study for our work on the parameterized search
engine Spiegle. In past Trecvid and Trec evaluations, we have used MonetDB [4] as well as
standard information retrieval software like the TNO VSM engine [9] and Lemur [15] to develop new
applications of information retrieval technology. For these Trec participations, it was often necessary
to re-implement parts of the existing system, such as reimplementing APIs, introducing new APIs, and
sometimes introducing new indexing and storage structures. Of course, the development of research
prototypes is a tedious and time-consuming job, but in our experience, deploying information retrieval

10



Table 2: MAP for submitted and supplemental runs on search task

run ID MAP
M-A-1-LL-ram-text-1 0.0346
F-A-1-LL-ram-text-2 0.0323
M-A-2-LL-ram-text-im-3 0.0331
M-A-2-LL-ram-text-feat-4 0.0347
M-A-2-LL-ram-text-im-feat-5 0.0332
F-A-2-LL-ram-text-im-6 0.0205
F-A-1-LL-tijahpsql-text-7 0.0291
F-A-2-LL-ram-im-S 0.0000
M-A-2-LL-ram-im-feat-S 0.0003
M-A-2-LL-ram-im-S 0.0003

software is a time-consuming job in any non-standard environment or application.
When deploying an information retrieval system, it is the application developer’s job to translate

the user query (usually just some keywords), to operations on inverted files and ranking operations on
the results. This is easy when the application envisaged can be handled by some standard software
components. However, standard solutions are often not good enough. General purpose retrieval com-
ponents, such as general purpose web search engines, do not provide sufficient functionality in many
scenarios. For some time now, companies like Google have started to develop special purpose search
solutions like Froogle (searching products) and Google Scholar (searching scientific articles). Today, the
development of such specialized applications is the job of information retrieval specialists, but in the
near future however, any software developer should be able to develop applications like this in pretty
much the same way as he/she would currently develop office automation applications using relational
database management systems: design a database schema; come up with SQL queries; make a nice
user interface; done! We call these search engines of the future parameterized search engines. As future
work, we will explore the possibilities for developing the parameterized search engine Spiegle: a search
engine providing a high-level query language that supports many diverse search applications, as well
as providing flexible ranking of search results. This years’ Trec [16] and Trecvid experiments are a
first step towards that goal.

References

[1] Wouter Alink. XIRAF – an XML-IR approach to digital forensics. Master’s thesis, University of
Twente, October 2005.

[2] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. Ph.d.
thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, May 2002.

[3] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD
Record, 23(1):87–96, 1994.

[4] A. P. de Vries. The Mirror DBMS at TREC-9. In Proceedings of the Nineth Text Retrieval
Conference (TREC-9), pages 171–177, Gaithersburg, MD, USA, November 2000.

[5] J.M. Geusebroek. Distinctive and compact color featuress for object recognition. In (submitted),
2005.

[6] J.M. Geusebroek, R. van den Boomgaard, A.W.M. Smeulders, and H. Geerts. Color invariance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(12):1338–1350, 2001.

[7] J.M. Geusebroek and A. W. M. Smeulders. A six-stimulus theory for stochastic texture. Interna-
tional Journal of Computer Vision, 62(1/2):7–16, 2005.

11



[8] Djoerd Hiemstra. A linguistically motivated probabilistic model of information retrieval. In Christos
Nicolaou and Constantine Stephanidis, editors, Proceedings of the Second European Conference on
Research and Advanced Technology for Digital Libraries (ECDL), volume 513 of Lecture Notes in
Computer Science, pages 569–584. Springer-Verlag, 1998.

[9] Djoerd Hiemstra and Wessel Kraaij. Twenty-one at trec-7: ad-hoc and cross-language track. In
Proceedings of the seventh Text Retrieval Conference TREC-7, pages 227–238, Gaithersburg, MD,
USA, 1999.

[10] Djoerd Hiemstra and Vojkan Mihajlovic. A database approach to information retrieval: The
remarkable relationship between language models and region models. Technical Report 05-35,
Centre for Telematics and Information Technology, 2005.

[11] J. List, V.Mihajlovic, G.Ramı́rez, A.P. de Vries, D. Hiemstra, and H.E. Blok. Tijah: Embracing ir
methods in xml database. Information Retrieval, 8(4):547 – 570, December 2005.

[12] Vojkan Mihajlovic, Henk Ernst Blok, Djoerd Hiemstra, and Peter M.G. Apers. Score region algebra:
Building a transparent xml-ir database. In Proceedings of the fourteenth International Conference
on Information and Knowledge Management (CIKM), 2005.

[13] C. Petersohn. Fraunhofer HHI at trecvid 2004: Shot boundary detection system. In TREC Video
Retrieval Evaluation Online Proceedings, TRECVID, 2004.

[14] J. M. Ponte and W. Bruce Croft. A language modeling approach to information retrieval. In Pro-
ceedings of the 21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 275–281, 1998.

[15] H. Rode and D. Hiemstra. Conceptual Language Models for Context-Aware Text Retrieval. In
Proceedings of the 13th Text REtrieval Conference Proceedings ( TREC), 2005.

[16] Henning Rode, Georgina Ramı́rez, Thijs Westerveld, Djoerd Hiemstra, and Arjen P. de Vries. The
lowlands’ TREC experiments 2005. In Proceedings of the fourteenth Text Retrieval Conference,
TREC2005, Notebook papers, 2005.

[17] C.G.M. Snoek, J.C. van Gemert, J.M. Geusebroek, B. Huurnink, D.C. Koelma, G.P. Nguyen,
O. de Rooij, F.J. Seinstra, and A.W.M. Smeulders. The mediamill trecvid 2005 semantic video
search engine. In TREC Video Retrieval Evaluation, TRECVID, Notebook papers, 2005.

[18] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed extended xpath i (NEXI). In Norbert
Fuhr, Mounia Lalmas, Saadia M alik, and Zoltan Szlavik, editors, Advances in XML Information
Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Retrieval,
INEX 2004, Dagstuhl Castle, Germany, December 6-8, 2004, Revised Selected Papers, volume
3493. Springer-Verlag GmbH, may 2005. http://www.springeronline.com/3-540-26166-4.

[19] A. R. van Ballegooij, A. P. de Vries, and M. L. Kersten. RAM: Array processing over a relational
DBMS. Technical Report INS-R0301, CWI, Amsterdam, The Netherlands, March 2003.

[20] Nuno Vasconcelos. Bayesian Models for Visual Information Retrieval. PhD thesis, Massachusetts
Institut of Technology, 2000.

[21] T. Westerveld. Using generative probabilistic models for multimedia retrieval. Ph.d. thesis, Uni-
versity of Twente, Enschede, The Netherlands, November 2004.

[22] Thijs Westerveld and Arjen P. de Vries. Generative probabilistic models for multimedia retrieval:
query generation versus document generation. IEE Proceedings - Vision, Image and Signal Pro-
cessing, 152(6):852–858, 2005.

[23] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100 - A DBMS In The CPU Cache.
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