Compositional Reverification of Probabilistic
Safety Properties for Large-Scale Complex IT
Systems

Radu Calinescu®, Shinji Kikuchi? and Kenneth Johnson'

L Department of Computer Science
University of York, Deramore Lane, York YO10 , UK
{radu.calinescu,kenneth. johnson}@york.ac.uk
2 Fujitsu Laboratories Limited
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan
skikuchi@jp.fujitsu.com

Abstract. Compositional verification has long been regarded as an ef-
fective technique for extending the use of symbolic model checking to
large, component-based systems. This paper explores the effectiveness of
the technique for large-scale complex IT systems (LSCITS). In particu-
lar, we investigate how compositional verification can be used to reverify
LSCITS safety properties efficiently after the frequent changes that char-
acterise these systems. We identify several LSCITS change patterns—
including component failure, join and choice—and propose an approach
that uses assume-guarantee compositional verification to reverify prob-
abilistic safety properties compositionally in scenarios associated with
these patterns. The application of this approach is illustrated using a
case study from the area of cloud computing.

1 Introduction

A variant of symbolic model checking termed compositional verification has
proved particularly effective in extending the applicability of formal verifica-
tion to large, component-based systems [1,2,14,21,25,27,29]. This technique
analyses the components of a system independently, and derives global system
properties through verifying a composition of its component-level properties. The
state-transition models verified in both steps of the technique are often orders
of magnitude smaller than a monolithic model of the same system.

However, traditional compositional verification is less effective for a class
of IT systems of growing practical importance, namely large-scale complex IT
systems (LSCITS). LSCITS are affected by regular component failures, joins
and departures, and by frequent modifications in environment and requirements
[9,28,31]. This continual change has the effect of quickly invalidating the result
of any compositional verification, which is based on a set of models that are
accurate for only a short period of time.

Recent research has used (quantitative) model checking techniques at run-
time, to ensure that IT systems continue to comply with their requirements

after changes similar to those experienced by LSCITS [5,6,12,17,20,24]. The
approach proposed in this work involves monitoring the running system, and
verifying an updated model of its behaviour whenever an environment or system
change is identified. If the runtime verification confirms that the system contin-
ues to comply with its requirements, no further action is required. Otherwise,
the verification results are used to guide a self-adaptation process through which
the system adjusts its parameters to reinstate the compliance with its require-
ments. While the approach proved effective in applications ranging from dynamic
power management [4,11,12] to quality-of-service optimisation in service-based
systems [5, 6, 17], none of the systems in these applications was an LSCITS.

This paper presents the results of our work to integrate techniques from the
areas of compositional verification and runtime model checking. We envisage that
a successful integration of the two types of techniques will extend the benefits
of our recent work on runtime model checking [5,6,8,10,12] to larger systems,
and ultimately to certain classes of LSCITS.

The rest of the paper is organised as follows. In Section 2, we overview exist-
ing compositional verification techniques, focusing on the probabilistic assume-
guarantee approach used in our work. In Section 3, we identify several LSCITS
change patterns, and we explain how assume-guarantee compositional verification
can be used reverify compliance with safety properties incrementally in scenar-
ios associated with these patterns. A running example from the area of cloud
computing is used to illustrate these results throughout this section. Finally,
Section 4 summarises the contributions of our work and discusses a number of
future research directions.

2 From monolithic to compositional verification

2.1 Running example

We will illustrate the concepts and verification techniques discussed in the paper
using the three-tier software service whose deployment on cloud infrastructure
is depicted in Figure 1. Several instances of each of the three components (or
functions) of this service—Web, Application and Database—are run on different
virtual machines (VMs) that are located on four physical servers.

Note that while the system in Figure 1 is not a large system, it can be easily
scaled up to become one by using standard cloud infrastructure functionality
to increase the number of servers, virtual machines and “function” instances,
potentially by many orders of magnitude. Indeed, some of the discussion later in
the paper assumes this to be the case. Likewise, running a scaled-up version of
the service across multiple cloud data-centres (an increasingly common practice
for some users of cloud infrastructure [16,33]) can augment the system with
LSCITS-specific characteristics.

2.2 Background

Model checking a component-based system involves verifying if the parallel com-
position of n > 1 interdependent models of the system components and environ-

{ Service (logical) configuration

’ Service ‘

_— T

Application

Database

Web 1 Web 2 App 1 ’ App 2] Web 3 ‘ Web 4 ‘ App 3 H App 4 ‘ DB1] DB 2 ‘
VM,; || VM, || VM, s l VM, l VMg, l VM, l VMg 5 ‘ l VMg, ‘ VM, l VM, ‘

[[[[[[[[\
Server A ‘ ’ Server B ‘ ’ Server C ‘ ’ Server D ‘

Cloud infrastructure configuration

Fig. 1. Three-tier service deployed on cloud infrastructure

ment My, Mo, ..., M, satisfies a set of requirements R:
My | Mz ... | M, = R (1)

Each model M;, 1 < ¢ < n, comprises a finite set of states S; and a state
transition relation T; C S; x S; with the property that for every state s € S;
there is at least a state s’ € S; such that (s, s") € T;. The states in S; correspond
to possible states of the modelled real-world component or environment element,
and T; encodes the possible transitions between these states. A labelling function
L; : S; — AP; is used to associate each state with a set of atomic propositions
that are true in that state, and s{ € S; denotes the initial state of M;. Formally,

M; = (Si, s}, Ti, Li), 1<i<m, (2)

is termed a Kripke structure over the set of atomic propositions AP;.

The requirements R are formulae defined over U}*_; AP; and expressed in ex-
tensions of propositional logic that support reasoning about the timing of events
in the system. These temporal logics are used to specify desirable sequences of
transitions between system states without referring to time explicitly. In par-
ticular, temporal logic formulae can specify safety properties (e.g., “the server
failure state is never entered”) and liveness properties (e.g., “the VM is eventu-
ally migrated to an operational server”).

These concepts are illustrated in Figure 2, which depicts a model of a single
physical server from our running example from Figure 1. We assume that the
server has initially Npjsx disks, Nopy CPUs and Njpy memory blocks that
are operational, but that each of these components can fail over time. To ensure
that such component failures do not lead to failures of the VMs running on the
server, the server is provided with a hardware failure detection mechanism. When
multiple failures of components of the same type make the server “unsafe”, this
mechanism triggers the migration of the VMs to another physical server.

{disks = Np1sk, {disks = Nprsi —1, {disks = Nprsx—2, {disks=2, {disks = 2, {disks = 2, {disks = 1
cpus = Nepu, cpus = Nepu, cpus = Nepu, cpus = Nepy, Pus = NCPU, cpus = Nopy, cz;u; ~ Nopu
= NuEM = NuEM = NyEM = Nyeym) ™em=NMEM mem = Ny g; ° T erys
mem MEM} mem MEM} mem MEMY} mem MEMY} detect} mem MEM} mem = NMEM}

{disks = OV
cpus = 0V
mem = 0}

{disks > 0,cpus = 1, {disks >0,
mem = Ny m cpus =1,
detect} mem = Nyrga }

{disks > 0, *
cpus = Ncpu, @
mem = Nypa}

{disks >0, {disks >0,
{disks>0,cpus>0, cpus > 0, cpus > 0,
mem = 2, detect} mem = 2} mem = 1}

{disks > 0,

cpus > 0, ’
mem = Nprpar}

{disks > 0,
cpus > 0,

mem > 0} U

Fig. 2. State transition model of a physical server. The states labelled with the atomic
proposition detect are reached if multiple component failures render the server “unsafe”
and the failure detection mechanism operates correctly. For our running example, the
server is deemed unsafe when it is left with only two disks or one CPU or two memory
blocks that are operational.

The model in Figure 2 supports the verification of safety properties such as
“it is never the case that the failure of all server components of the same type
(i.e., all disks or all CPUs or all memory blocks) is not detected” over a fixed
time period (e.g., one year). The state transitions of this model correspond to:

— individual components failures (e.g., the transition (sp,s1) corresponds to
the failure of the first disk within the analysed time period);

— individual components being operational at the end of the considered time
period (e.g., the transition (sg, s2) is taken if the first disk is operational
throughout the considered time period);

— the failure detection mechanism operating correctly (i.e., the three transi-
tions depicted using thick lines in the transition graph from Figure 2);

— if applicable, the incorrect operation of the failure detection mechanism (i.e.,
the three transitions represented with dotted lines).

To keep the model small, the first two types of state transitions are included for a
component only when the failure or correct operation of that component has an
impact on the safety properties that we are interested in. For instance, state sy is
reached if at least one of the disks remains operational throughout the considered
time period. Therefore, the model does not include any transitions leaving s, or
a state reachable from s, and modelling the failure or correct operation of a
disk; and all these states are labelled with the atomic proposition “disks > 0”.
Choosing the right level of abstraction for the model in this way is essential in
order to reduce the size of its state space.

The safety property “it is never the case that the failure of all disks or all
CPUs or all memory blocks is not detect-ed” can be expressed formally using
the G (globally) and U (until) linear-time temporal logic (LTL) operators:

G[-(—detect U disk =0V cpu =0V mem = 0)]. (3)

This property is satisfied by the server model if and only if the state transitions
represented with dotted lines in Figure 2 are not present. We make this observa-
tion by examining every single path (i.e., sequence of transitions) from the initial
state sy to the state labelled with the atomic proposition “disk =0V cpu =0V
mem = 07, and noting that it includes a state labelled “detect” if and only if
the dotted-line transitions are not part of the model.

Various modelling formalisms support the verification of reliability, perfor-
mance and cost-related properties by additionally annotating the model tran-
sitions and/or states with probabilities, transition rates and costs/rewards, re-
spectively. For instance, annotating the state transitions from our server model
in Figure 2 with probabilities allows the verification of probabilistic safety prop-
erties such as “the probability that the failure of all server components of the
same type is detected is at least 0.999”. This property can be expressed formally
in probabilistic computation tree logic (PCTL) as

P>0.999[G[~(—detect U disk =0V cpu = 0V mem = 0)]], (4)

where P is the probabilistic PCTL operator.

Finally, component interactions are modelled by annotating the state tran-
sitions of the models M; = (S;,s?, T;, L;) from (2) with actions from an action
alphabet o;, 1 < i < n. When a transition (s, s’) € T; is annotated with action
a € oy, it can be taken when model M; is in state s only at the same time with
an a-annotated transition in every other model M; # M; whose action alphabet
also includes a, 1 < j < n.

Figure 3 shows a variant of the server model in which transitions are anno-
tated with both probabilities and actions. The former support the verification
of the probabilistic safety property (4). The latter enable the modelling of the
interaction between the server and the other components of the system in Fig-
ure 1, e.g., through the parallel composition of the server model Mgepyer With
the model Myeptapp Of the two Web and two App(lication) instances running
on Server A or on Server B. This model (shown in Figure 4) comprises state
transitions annotated with the actions “server_down”, “warn” and “server_up”
that also belong to the action alphabet for the server model. The Myep+qpp state
transitions corresponding to the actions shared between the two models are not
annotated with probabilities like all the other Myt qpp state transitions, as
these probabilities depend on the server behaviour and are unknown until the
two models are composed.

The way in which we established the safety property (3) by examining every
path starting at the initial state sy of the model in Figure 2 is applicable only
to models that are relatively small or have a particularly regular structure. Ad-
vanced model checking techniques including symbolic model checking and partial

{disks = Npysk, {disks = Nprsx—1, {disks= Nprsix—2, {disks=2, {disks = 2, {disks = 2, {disks = 1,
cpus = Nopu, cpus = Ncpu, cpus = Ncpu, cpus = Nepy, — PUS CPU> cpus = Ncpu, cpus= Ncpu,

mem = Nyrpar} mem = Ny} mem = Narpar} mem = Nypa} Mem T NMEM mem = Nypa} mem = Nyjpar}
detect

995 : -
0.995 {disks > 0, cpus = 1, {disks >0, (ii;jisgo(i)/
mem = Ny Em cpus =1, mem = 0}

{disks >0, {disks >0,
{disks>0,cpus>0, cpus >0, cpus >0, | 002
mem = 2, detect} mem = 2} mem = 1}

{disks >0,
cpus > 0,
mem_op

mem_op

0.998

{disks > 0,
cpus > 0,

@,
mem > 0}
I.OU server_up

Fig. 3. Model M erper for the running example: annotating the state transitions of the
server model with probabilities and actions enables the verification of probabilistic
safety properties and the modelling of component interactions, respectively.

order reduction overcome this limitation by avoiding the exhaustive enumeration
and analysis of all such paths through the model [13].

2.3 Compositional verification

Even though symbolic model checking extends the applicability of formal ver-
ification to some very large models, this is still insufficient for many models
associated with today’s IT systems. A complete model of our service from Fig-
ure 1, for instance, requires the parallel composition of:

— Four instances of the server model Mepyer from Figure 3 (one for each of
Servers A, B, C and D). These model instances—denoted Mervery, Mservers s
Mserverc and Mgeryer,—are obtained from the model Meryer in Figure 3 by
subscripting all its actions and atomic proposition parameters with a, g, ¢
and p, respectively (e.g., server_downp or diskg).

— Two instances of the “Web-Application” model Myeptapp from Figure 4
(corresponding to the web and application instances deployed on Server A
and Server B, and denoted Myep+apps a0d Myeb+apps)-

— Two instances of the “Database” model My, from Figure 5 (Mgp. and Mgy,
corresponding to the Database instances on Servers C and D, respectively).

— The three-tier architecture model M epyice from Figure 6.

We implemented this composition as a monolithic model

M = MserveTA H Mserveng || Mserverc || Mservem || Mweb+appA || (5)
Mweb+app3 ” Mdbc H MdbD ” Mservice

{web =2, {web =0, 1.0

=9 =0)
p) app b ’ web_down
server_down
(1.0
I’Vc’lp web = 2,
n — app-down
ar =2} 15 (e > 0,
weo >
s " vm_migrate {web >0, app > 0 1.0
erp 0.85 app = 2} web_up
‘ 0.95 ‘ 0.95 ‘
{web=2, ~/ 0.05 app_u
app = 2} vIm_op -Ue pp-up
b >0
0.05 {web >0,
“ VI-op app =0} |
{web web up

app — 1} 0.05 ‘

{web =1, {web=1,
=2 >0
= } app > 0} web up

{web = 1} 0.95 ‘ 0.95 ‘
app =2
mop T Lo

app down

0.05 app_up
{web=1,
.05 =0
0.05 “ Vmiopapp } 10
{web =1, web_up
app = 1} 0.05 ‘ Lo
app-down
{web =0, 1 é)p
app > 0} web_down
ey Opn S
app = 1 0
0.05 app-up
{web =0, _
app = 1} vm_op {Z);;; ; 8’} Lo
0.05 web_down
1.0
app_down

Fig.4. Model Myeptapp for the running example: the two Web and the two
App(lication) instances on Server A or B are down at the end of the analysed time
period if the server fails, the VM migration triggered by a warning is unsuccessful, or
the VMs running them fail.

for the probabilistic symbolic model checker PRISM [22], and the tool ran out
of memory when attempting to verify if the resulting 176,381,406,182,650-state
model satisfied the property “the probability that the service fails within a one-
year time interval is under 0.0005”.

{db=1} {db =0}

1.0
server_down

db_down

War
Z =1} 0.15

] vm_migrate
0.85

0.05

{db=1}

1.0
LD

Fig. 5. Model Mg, for the running example: the Database instance on Server C or D
is down at the end of the analysed time period if the server fails, the VM migration
triggered by a warning is unsuccessful, or the VM running it fails.

0.95

{db=1}

This state explosion is avoided by compositional verification, a collection of
techniques that increase the size of the (component-based) systems that can be
model checked significantly. In its original form proposed in the seminal work
of Pnueli [29], compositional verification involves establishing that the parallel
composition of two models M; || Mo satisfies a global property G through veri-
fying two premises independently. The first premise is that My satisfies G when
it is part of a system that satisfies an assumption (i.e., property) A. The second
premise is that A is satisfied by the remainder of the system (i.e., by M;) un-
der all circumstances. This can be expressed formally as a proof tree by using
Pnueli’s generalisation [29] of the Hoare triple notation [23]:

(true) My (A), (A)Mx(G) (6)
(true) My || Ma(G)

The technique is termed assume-guarantee reasoning, to distinguish it from other
compositional verification approaches that have emerged more recently.

Given the importance of extending the applicability of model checking to
larger systems, assume-guarantee reasoning has received significant attention
from the research community [3,14, 15, 21]. In particular, assume-guarantee rea-
soning has been extended to probabilistic systems [27], enabling the composi-
tional verification of probabilistic safety properties for parallel model compo-
sitions such as model (5) from our running example. The models used in this
extension of the technique are probabilistic automata (PAs) [30] of the form

M; = (i, 8), i, 65, Ly). (7)

As before, S;, s) € S;, a; and L; represent a finite set of states, the ini-
tial state, the action alphabet and an atomic-proposition labelling function,
respectively. However, the state transition relation T; from the definition of
the Kripke model in (2) is replaced by a probabilistic state transition rela-
tion 6; C S; x (a; U {1}) x Dist(S;), where Dist(S;) denotes the set of all
discrete probability distributions over the state set S;. The possible transi-
tions from a generic state s € S; to another state in S; are given by the set

0:(s) = {(s,a,d) | (s,a,d) € 0;}. When the system is in state s, an element

{web =4, {web =2, {web =0V app =0,
app = 4, app = 2, web_down_&_app_up(B) db =2}
db = 2} db = 2} "
web_down_& _app_down(A) web_down_&_app_down(B) ’
service_down
web_up_-&_app-down(B)
<
ey web_up_& _app_up(B)
=
!
§.: {web =2, {web =0,
) app = 4, web_down_& _app_up(B app > 0,
i db = 2} pp-up(B) db = 2)
=] reb_down_& _app_up(A 1.0
a \ " pp-up(A) web_down_&_app_down(B))
g service_down
web_up_-&_app-down(B)
web_up_& _app_up(B)
{web = 4, {web > 0,
app =2, web_up_&_app_down(B) app = 0,
db =2} db = 2}

.0

1
web_down_&_app_down(B))
service_down

web_up_&_app_down(A)

web_down_& _app_up(B
web_up_&_app-u

{web > 0, {web > 0, {web > 0,
app > 0, app > 0, app > 0,
db = 2} db =1} db = 0}

1.0
db_down(A) db_down(B)
service_down
%
&
&
D {web > 0,
app > 0,
db > 0}

1.0
‘ service_up

Fig. 6. Model Mservice for the running example: the service fails if all instances of any
of the Web, Application and Database “functions” fail.

(s,a,d) € §;(s) is chosen nondeterministically, and the next state s’ is selected
randomly according to the distribution d € Dist(S;). This characteristic of prob-
abilistic automata is particularly useful for modelling LSCITS components, as
illustrated in Figure 7 for a physical server from our running example.

The analysis of PA properties requires the resolution of its nondeterministic
choices by means of adversaries, i.e., functions that map any finite path ending
in a generic state s € S; to one of the discrete probability distributions in d;(s) or
“decide” to remain in state s. Given the set of all adversaries Adv; of a PA model
M;, we are typically interested in verifying a property related to the minimum
and/or maximum probability of an event over all adversaries in Adv;. For the

{disks = Np1sk,
cpus = Ncpu, 1 no_disk
mem = Nypn}

{disks = Nprsk—1,
cpus = Nepu,
mem = Nypa}

0.001

{disks > 0,
cpus = Ncpu,
mem = Ny}

Fig.7. Fragment of the PA model of a server that may wuse disks
of type “diskl”, disks of type “disk2” or may not be equipped
with the Nprsx’th disk. Accordingly, d1(s°) = {(s°,diskl_op, [(s°,0),
(s',0.001), (52,0.999),...]), (s°, disk2_op, [(s°,0), (s*,0.005), (s2,0.995),. . .])),
(s°,no_disk, [(s°,0), (s*,1), (s%,0),...])}.

system in our running example, for instance, we want to establish that the PA
version of the parallel composition M in (5) satisfies

Pgﬁ%g% [F —(web =0V app =0V db=0)], (8)

namely that the minimum probability that none of the three service functions
fails, over all possible adversaries of M, is at least 0.9995.

The core probabilistic assume-guarantee rule introduced in [27] is a proba-
bilistic variant of (6):

(true) Mi(A)>p,, (A)>p M2(G)>p, 9)
<t7’u€>M1 || M2<g>2p2 7

where, given a model M and a probabilistic safety property (X)s>,, M = (X)>,
holds iff the minimum probability that X is satisfied over all adversaries of M
is at least p. A probabilistic safety property (X)>, is specified by means of:

— A deterministic finite automaton (DFA) X" = (Q, ax,dx, qo, F') with the
state set @), alphabet ay, transition function dy : Q X ax — @, initial state
go and accepting states F'C @. The finite words accepted by X" specify the
sequences of actions associated with prefixes of paths that do not satisfy X.

— The rational probability bound p.

Consider, for instance, the server model Myepper from Fig. 3, its action alphabet
Qserver = {disk_op, cpu_op, mem_op, detect, warn, server_up, server_down},
and let (A1)>0.999 be the probabilistic safety property from eq. (4). The DFA

err

AS™ and its regular language L(A$™) of “bad prefixes” are shown in Fig 8(a).

warn server_down

warn

warn, server_down warn, server_down warn

(a) AT L(AT) = server_down™ (b) AS™*: L(ASTY) = warn*

app-down web_down app_up web_down

web_down app-up web_down

web_down n web_down app_up

web_down, app_down web_down, app_up
(c) ASTT: L(A§™) = (app.down'web_down | (d) AT L(AS™) = (app-upweb_down |
web_downTapp_down) web_downTapp_up)
(web_down | app_down)* (web_down | app-up)*

db_down service_down

web_down, app_down db_down service_down

(e) AS™T: L(AS™) = (app-down*web_up | (f) A§™: L(A§™) = db.down™ (g) G L(G®) = service_down™
web_up*app_down)
(web_up | app-down)*

Fig. 8. Deterministic finite automata and regular expressions defining for the proba-
bilistic safety properties from the running example.

Given the DFAs A®" and G for the assumed and guaranteed probabilistic
safety properties in the proof rule (9), the verification of its two premises is
carried out as follows [27]:

— To verify (true) M;(A)>,, quantitatively, the parallel composition of M; and
A®™ is model checked to obtain 1 — p;, the maximum probability of reaching
the (undesirable) accepting states of A®™*, over all adversaries of M.

— To verify (A)>,, M2(G)>p,, M2 is composed with both A" and G'*. Because
the satisfaction of A with probability p; and of G with probability ps must

be analysed together, a technique called multi-objective model checking [18]
is then used. This technique produces 1 — ps, the maximum probability of
reaching the (undesirable) accepting states of G, under the assumption
(A)>p, and over all adversaries of M. These steps are described in detail in
[27], and automated in the latest version of the probabilistic symbolic model
checker PRISM [26].

To verify that model M from eq. (5) satisfies the probabilistic safety property
(8), we used the probabilistic assume-guarantee proof tree

(true) Mservery (A1ns As2y) >p1,p2
<A1A7 -’42A>2p1 ,P2 Mweb-‘ra:DPA <-A3A7 A4A7 A5A>2P37P471’J5 (*)
bl

<true>MserverA H Mweb+appA <A3A’ A4A’ A5A>2P3’p4,175

(true) Mservery (A1, Aszg) >p1,p2
<~AIB) A2B>2p1 ,P2 Mweb+app5 <~ASB) A4B) A53>2p3,p4,p5 (*)

(true) MserverB H qu;eb+app3 <A3B5 A4B’ A5B>2P37p47135

(true) Mserverc (Aic, Aac) >p1,p2
<~A1c) AQC > >p1,p2 Mdbc <A6c > >Pps

(10)
<true>Mserverc || Mdbc<A6c>ZP6 7 (*)

(true) Mserver, (A1, A2p) >pi1,p2
<A1D’ A2D>2P17P2 MdbD <-AGD>ZPG (*)
(true) Mservery || Maby, <~AGD>ZP6 ’

<‘A3A7A4A7A5A7A3B7A4B?A5B’A6C7A6D> >P3,P4,P5,P3,P4,P5:P6,P6 Mservice <g> >p7

(#)
(true) M(G)>y,

Notice that this proof tree represents a bottom-up reflection of the structure of
the real-world system from Figure 1, where:

— the probabilistic safety properties (A1,)>p, t0 (A15)>p1, (A2,)>p, 10 (A2p)>ps,
etc. are defined by the DFAs in Figure 8 (with the appropiate subscript—a,
B, c or p—applied to their action names);

— the probabilities p; to p; were obtained using the probabilistic model checker
PRISM as described earlier;

— (*) denotes the application of the ASYM-MULT probabilistic assume-guarantee
proof rule from [27];

— (#) marks the application of the new assume-guarantee proof rule that we
introduce in Appendix A.

We executed the verification steps for all premises in (10) on a Macbook
Pro laptop with 2.66 GHz Intel Core 2 Duo processor and 8GB of memory,
using the hardware failure probabilities reported in [32, 34] (pgisk_fair = 0.0231,
Depu_fail = 0.0018 and ppem_fair = 0.0231 for a one-year period of operation).?

3 The component failure probabilities in Figs. 3 and 7 were used only for illustration.

Table 1. Experimental results for the probabilistic assume-guarantee proof tree (10).
The probabilities associated with the assumed and guaranteed properties in (10) were
calculated for a one-year time interval, based on the hardware component failure prob-
abilities reported in [32, 34].

Verified model | Number of states | Result
MserverA,D 570 p1 = 0.999998
p2 = 0.999544
Mwebw‘»appAiB 54 p3s = 0999946
pa = 0.997452
ps = 0.997452
Mape_p 13 ps = 0.949954
Mservice 1035 pr = 0.997482

The results of the verification and the size of the models verified are shown in
Table 1. As indicated by these results, the size of the state space for the verified
models ranged between 13 and 1035, which explains why each of the verification
steps completed in under one second. We anticipate that safety proporties for
systems comprising much larger numbers of servers, VMs per server, and function
instances per service could be verified using the approach, and we are planning
to confirm this experimentally in the future.

3 Reverification of safety properties for LSCITS

We showed in the previous section how compositional verification can be used to
verify safety properties of a class of systems that can potentially be very large.
However, size is not the only defining characteristic of LSCITS. LSCITS can be
seen as coalitions of systems whose components join and leave continually, and
within which frequent component selection and failure represent the norm rather
than an exception [9, 28, 31].

In this section, we present techniques for the calculation of the minimal
sequence of assume-guarantee premises that need to be reverified in response to
several of these key patterns of LSCITS change. To describe these techniques,
we will use the following additional notation:

— M, the set of PA models (7);

— P, the set of probabilistic safety properties;

— DFA, the set of deterministic finite automata;

— dfa : P — DFA, the function that maps each probabilistic safety property
to its defining deterministic finite automaton;

— prob : P — [0, 1], the function that maps each probabilistic safety property
to its associated probability (i.e., V(X)>, € P o prob({(X)>,) = p);

— mec: 2P x M x DFA — [0, 1], the quantitative model checking function that,
given a set of assumptions A € 27, a model M € M and a deterministic
finite automaton G'* € DFA, ensures that (G)>p,i.e., M = (G)>me(a,m,gom)
under the assumptions A4;

— V C 2P x M x 2%, the set of all verification steps that can appear as premises
in a probabilistic assume-guarantee proof tree; (4, M, G) € V iff A and G
are finite sets of assumed and guaranteed probabilistic safety properties for
the PA model M, respectively.

Note that (true) is a special element of P; when it is used as an assumption for
a model M € M, dfa((true)) is the one-state DFA that has the same alphabet
aypr as M and does not accepts any word, i.e., dfa({true)) = ({q},an,{a €
apre(qo, a) = qo}s o, {}) and prob({true)) = 1. In the definition of the transition
function for dfa({true)), we used the set comprehension notation {a € ay o
(go, a) — qo} to build the set of mappings “(qo, a) — ¢o” for all possible values
a € ayy. This notation, including its generalised form {declaration | predicate o
expression } will be used again in this section as a concise way of specifying sets
such as {x € N |5 < z < 20 e \/2}, the set comprising the square root of all
natural numbers between 5 and 20.

We are interested in the finite sequences of verification steps (vy, va, ..., v,) €
seq) that correspond to probabilistic assume-guarantee proof trees, which we
term compositional verification tasks. A sequence (vq,va,...,v,), where v; =
(A;, M;,G;) € V for all 1 < i < n, is a compositional verification task iff
the set of assumed properties for each of its verification steps comprises only
the special property (true) and properties guaranteed by preceeding verification
steps: A; C {(true)} U Gy U G2 U G;_1, for 1 < i < n.

Using the notation introduced above, the compositional verification task (9)
from our running example can be specified as a nine-element sequence of verifi-
cation steps (v, v2, ..., vg), where

true) }7 MserverA) {

v = ({((A1) 2p15 (A24)2p, })
v2 = ({(true)}, Mservers, { (A1) >p, (A26)>p2 })
U3 = ({(true)}, MGEWETC? {< c>>;l71’ <A2c>>P2})
Vg = ({(true)}, Mservem7 {<A10>>p17 <*AQD>>P2})
Us = ({<~A1A>2,’D1ﬂ <A2A>>P2} Muweb+appa {< A>ZP37 <A4A>>P47 <A5A>>P5}) (11)
Vo = ({< B)Z) <A23>>P2}v Muweb+apps » {<A3B>2p35 <‘A4B >pas <‘A58 D5)
U7 = ({< c>2 7<-A2c>>;02}7Mdbcv{<A6c>2PA6})
USZ({< D>Z 1 (A D>>p2}7MdbDv{<-AGD>ZPAG})
Ug = ({< A>Z v< A>2P4’<A5A>2P5’<A3B>2P3’<A4B>2P4’
< 5B>Z < 6c>2p6’ <A6D>2P6}’ Miervice, {<g>ZP7})

3.1 Reverification of a sequence of verification steps

Consider a compositional verification task cv = (v, va,...,v,) € seqV that was
completed successfully as described in the Section 2.3. The rest of this section
describes a technique for the derivation of the minimal sequence of verification
steps Acv € seqV that need to be carried out to reverify the safety properties
associated with cv after different types of changes in the verified system.

We start by introducing a reverify function that takes as parameters:

1. a sequence of verification steps vs € seqV; and

2. a set of guaranteed property changes of the form (g,¢’) € P x P (where ¢
and ¢’ are related properties before and after a system change, respectively)

and produces the minimum sequence of verification steps that need to be carried
out in order to reestablish the probabilistic safety properties from vs. We define
the function

reverify : seqV x 2F*F — seqV (12)

recursively on the size of the sequence of verification steps vs:

reverify((), changes) = ()

reverify((A, M, G) ™ vs, changes) =
[reverify(vs, changes), if AN{(g,9’) € changese g} =0
B { (A, M, G") ™ reverify(vs, changes’), otherwise
(13)
where:

(i) A"={a€ A|~(3(g,9) € changesea = g)}U{(g,¢’) € changes | g € Aeg'}
is obtained by updating all the assumptions from A that changed;

(i) G ={x €P| (g € Gedfa(zx) = dfa(g)) AN prob(xz) = mc(A’, M, dfa(g))}
is the new set of probabilistic safety properties guaranteed by the model M
given the changed assumed property set A';

(ili) changes'= changesU{(g, g')€ GxG" | dfa(g) = dfa(g’) A prob(g’) < prob(g)}
represents the new set of guaranteed property changes, which is obtained by
extending the old changes set with all pairs from G x G’ that correspond to
a decrease in a safety probability bound.

Throughout this section we assume that the goal of the reverification is to
establish whether the analysed system continues to satisfy given probabilistic
safety properties after changes. If the aim is instead to find the new probability
bounds for all safety properties, then prob(g’) < prob(g) should be replaced with
prob(g’) # prob(g) in the calculation of changes’ above.

The cost of executing the reverify function has two components:

1. the cost of running the verification steps (A", M, G') from (13);
2. the cost of performing the set intersection from (13) and the calculations
from steps (i)—(iii) described above.

For each use of reverify in handling one of the LSCITS change patterns covered
later in this section, we will prove that reverify yields the minimum sequence of
verification steps required to reverify the analysed probabilistic safety properties.
Therefore, we focus here only on the second cost component. To evaluate this
cost component, we consider the execution of reverify(cv, changes) for a generic
compositional verification task cv and a generic property change set changes.
Without loss of generality, we assume that cv comprises n > 0 verification
steps, and that these n verification steps and the changes set taken together
contain m > 0 assumed and guaranteed probabilistic safety properties. Under

these assumptions, the set intersection A N {(g,g’) € changes o g} from (13)
requires at most O(m?) time. Likewise, the two set comprehensions from step
(i) take at most O(m?) time even for the most basic implementation of set
membership queries. Building the set G’ in step (ii) requires O(m) time (in
addition to the cost of executing mc(A’, M, dfa(g)), but this is part of the first
cost component). Finally, the cost of updating changes to changes’ in step (iii)
requires again at most O(m?) time for the examination of the elements in G' x G'.
Due to the recursive reverify invocations, the operations analysed above are
performed n times, so the overall time complexity for the operations covered
by the second cost component is O(nm?). Note that, even for large values of n
and m, this represents a modest overhead compared to the first cost component,
which corresponds to executing the model checking operations mc(A’, M, dfa(g))
from (13). Since we will prove that the minimal set of such model checking
operations is executed in each scenario in which reverify is used in the remainder
of the section, we conclude that reverify is cost effective for the scenarios in which
it is used.

Having introduced and analysed the generic reverify function in (12)—(13),
we are ready to calculate the minimum sequences of verification steps required
after different types of LSCITS changes.

3.2 LSCITS component failure (or “departure”)

Suppose that the system component associated with model M; from the verifica-

tion step v; of the compositional verification task cv = (vy, vo, ..., v,) failed (or
left the system), where 1 < ¢ < n. In this scenario, appropriately modified vari-
ants of some or all of the verification steps v;41, v;y2, ..., v, need to be redone.

The theorem below provides a method for the derivation of these verification
steps.

Theorem 1: The minimal sequence of verification steps that needs to be carried
out to reverify a compositional verification task cv = (v1,va,...,v,) after the
failure of the component associated with its i-th verification step is

Acv = reverify(viy1, Vigo, .-,), {9 € G; o (g, (true))}). (14)

The proof of this theorem is included in Appendix A.

Returning to our running example, suppose that the database function on
server D is removed from the system because the service workload no longer
justifies maintaining two instances of the database. Since the verification step
associated with this component in (11) is vs, the sequence of verification steps
that need to be redone is given by

Acv = reverify((vo), {({Aso) >ps, (true))})- (15)

According to the reverify definition in (13), this is

Acv = reverify(({<A3A>2p37 <A4A>ZIJ47 <A5A>2p57 <-A3B>ZP37 <A4B>ZP47
<A5B>2ps> <A6c>2psa <A6D>ZP6}’ Miservice, {<g>ZPg })v
{ (Ao) >pe, (true))})
= ({<~A3A>ZP3= <A4A>2p4= <~A5A>2p57 <A33>2p37 <~A4B>2p47 <~A5B>2p5>
(A6c)>pes (true) }, Mservice, {(G)>p, }) 7 reverify((), changes’)
= ({<A3A>ZP37 <A4A>ZP47 <A5A>ZP57 <~A3B>ZP37 <~A4B>2p47 <A5B>2p57
<A6c>2p6}7 Miervice {<g>2p§}) - ()
= ({<A3A>Zp3a <A4A>Zp4a <A5A>ZP5’ <A3B>ZP37 <A4B>ZP47 <A5B>ZP5’
<A6c>2p6}7 Mservice, {<g>2p§})

where the probability bounds p; to p; are those in Table 1,

pr = mc({<A3A>2p3’ <"44A>2p47 <"45A>2P5> <"43B>2P37 <A4B>ZP47 <A5B>ZP57
<A6C>ZP6}’ Mservice, dfa(<g> 2107))

and

hanges — { {((Aao) 5o (rue)), () G))} i 0 < pr
{((A6p) >pe (true)) }, otherwise

Redoing the only verification step in (16) yields p, = 0.949943. Since p; <
pr = 0.997482 (cf. Table 1), changes’ = {({Aep)>pq, (true)), ((G)>prs (G)>pr)}
(although this updated set of changes is not used in the recursive invocation of
reverify, which is applied to the empty sequence of verification stepss).

3.3 LSCITS component change

Assume that the system component associated with model M;, 1 < ¢ < n, from
the verification step v; of compositional verification task cv = (v1,va,..., v,)
changed. The theorem below specifies the minimum sequence of verification steps
that need redone to re-establish the properties corresponding to cv.

Theorem 2: The minimal sequence of verification steps that needs to be carried
out to reverify a compositional verification task cv = (v, v2,...,v,) after a
change in the component associated with its i-th verification step is

Acv = (A;, M}, G])™
reverify((vis1, visa, - >), (17)
{(g9,9") € Gix G} | dfa(g)=dfa(g’) N prob(g") <prob(g)}),
where M/ represents the updated model for the changed system component and
G ={z€P|(3g e G;edfa(g) = dfa(z)) A prob(xz) = mc(A;, M/, dfa(z))}.

Proof The proof is similar to that of Theorem 1.
(]

To illustrate the application of the result in Theorem 2, suppose that the
service functions running on Server A from our running example are redeployed

on a different type of server (perhaps located in a different data centre). Suppose
that the new server has Nj, ;¢ = 4 disks instead of Npjsx = 3 disks for the
server from our original scenario, but that the NJ,;q; new disks are less reliable,
i.e., p:ﬁskifail = 0.0250 compared t0 paisk_fair = 0.0231 previously. According
to (17), the sequence of verification steps that need to be redone is

Acv = ({(true>}, Ms/erverA? {<A1A>2pi? <A2A>2pé})/—\
reverify((ve, vs, - . ., Ug), changes),

where M/ is the updated model for Server A,

Servera

p{ mc({<true>}7Ms{erverA7 dfa(<A1A>ZP1))7
py = me({(true)y, Mieryer, > dfa((A2,)>p,))

the probabilities p; and po are those in Table 1, v3 to vy are defined in (11), and

changes = {i € N |1 < i <2 A p; < p; o ((Ai)>p,, (Ain)>pr) }-
Executing the first verification step in Acv yields

p; =1 —5.85E-8 (which is larger than p; = 0.999998)
P, =0.999984 (which is larger than py = 0.999544)

hence changes = {} and, since reverify((vs, vs,...,v),{}) = (), no further veri-
fication step needs to be carried out.

3.4 LSCITS component joining

Suppose that a new component with model M,,,, joins the system. Re-establishing
the probabilistic safety properties of the system requires updating any compo-
nent models that depend on M,,.,,, and carrying out verification steps for M,,¢,,,
these updated models, and any other models whose verification steps include as-
sumed properties that have changed. The minimal sequence of verification steps
that need to be carried out is given by the theorem below.

Theorem 3: Let M., be the model of a new component that joins a system
for which a composition verification task cv = (v, v2,...,v,) was completed
successfully before this operation. Also, let M; , M,,, ..., M; , m > 0, be the
models of the components that depend on My, 1 < i1 < g < ... < iy < 1, and
assume that their updated versions reflecting the presence of the new component
are M{, M, ..., M . Under these circumstances, the minimal sequence of

verification steps that needs to be carried out to reverify cv is

~
Acv = (A'newv Mneun Gnew)

Teve?“ify(((A:ha Mi:17 Giy)s Uiy +15 Vig 42, -+ Vig—1,
(AIL'27M1‘27 GiQ)J’U'L.2+17/U7;2+27"'7U’L'3717 (18)
(A;Wﬁ Mz'lmv Gin)s Vit 15 Vi 425+ -+ 5 Un)

{(97 gnew) EPX Grew | dfa(g) = dfa(gnew) A pT’Ob(g) :0})v

where Ape C U;!ll G; U {{true)} is the set of assumed properties for the
verification of the new system component, and 4] C A; U{a € P | (g €
Grew ® dfa(a) = dfa(g)) A prob(a) = 0} represents the new set of assumed prop-
erties for the model M, 1 <j < m. Note that 4] \ A; # {} forall 1 <j <m

<3 /
since Mi] depends on M,,cq.

Proof We note first that the minimal sequence of verification steps must include
the verification step for the new component, i.e., (Anew, Mnew, Gnew). Moreover,
this step can appear at the beginning of the sequence since its assumed property
set, Apew, consists of properties already established by the previously executed
compositional verification task cv. We also note that the assumed property sets
for the verification tasks v; to v, 1 are unchanged after the new component
joined the system. Accordingly, the use of a sequence of verification steps that
start at the 4;-th component as the first argument for the reverify invocation
from (18) is correct. The rest of the proof shows that this invocation of reverify
yields the sequence of verification steps required to re-establish the probabilistic
safety properties in cv for the system components associated with the models
M, M1, My o, .., My, 1, My, My, 1, Miyio, ..y My, 1, M . M; 41,
M; 42, ..., M, after the execution of the verification step (Anecw, Mnew, Gnew)-
This part of the proof is similar to the proof of Theorem 1, and therefore not
included in the paper.

(|

Returning to our running example, suppose that the service is augmented
with a third database instance running on an additional server (Server E). The
first verification step from (v, va,...,v9) that is affected by this change is vy,
whose model needs to be updated to M The new verification step for the
component that joined is

ervice*

Unew = (Anewa Mnew; Gnew) = ({<A15>2P1a <A25>2p2}’ Mdbsv {<~AGE>ZP6})a

so, according to Theorem 3,

Acv = ({<A15>Z;ﬂlv <A25>2p2}’ Mape, {<A6E>2P6})r\
reverify(((é? Ms/erm'ce’ {<g>2p§}))7 {(<A6E>20}7 <A6E>ZP6})}>

with Ay = {<~’43A>2p37 <A4A>2P4? <A5A>2P5’ <A3B>2p3> <A4B>2p4a <A5B>2P5’
(Aoc)>pss (Abp)>pesr (Ase)>0}- As a result,

Acv = ({<A1E>ZP1’ <A25>ZP2}7 Map, {<A6E>ZPG})A
({<~A3A>ZP37 <A4A>ZP47 <-A5A>Zp57 <~A3B>2p37 <~A4B>ZP47
<A5B>ZP5’ <A6c>2p6’ <A6D>2P67 <A65>2p6}’ M;e7'vice7 {<g>2p§})

Carrying out the two verification steps yields ps = 0.949954 (as for the other
database instances) and p; = 0.999861.

3.5 LSCITS component choice

Assume that the functionality of the i-th system component, 1 < i < n, can
be provided by m > 1 new concrete implementations of this component, each
characterised by different performance, reliability and cost. Let M}, M2, ... M™
be the models associated with these functionally equivalent component imple-
mentations. Assume that the implementation that helps the system satisfy its
requirements with minimum cost needs to be identified.

Theorem 4: The minimal sequence of verification steps that needs to be carried
out to select the least expensive i-th component in the scenario described above
is

Acv = (A;, M}, GH)™
reverify((Vig1, Vig2s -+ Un)s
{(9,9") € Gix G} | dfa(g)=dfa(g") N prob(g') <prob(g)})"™
(Ai, M7, G)™
T@U@Tify((’l)i+17 Vit2y - -5 Un)a
{(9,9") € Gix G} | dfa(g)=dfa(g') N prob(g) <prob(g)})”

(;Ll-iv Mim7 sz)/\
Teverify((vi.,_l, Vit25 -+ -5 U’n)v
{(g9,9") € Gix G™ | dfa(g) = dfa(g") N prob(g’) <p7’0b(g)})6 |
19

where G7 = {z € P | (3g€ Giedfa(g)=dfa(z)) A prob(z)=mc(A;, M?, dfa(z))}
for1<i<m.

Proof Selecting the least expensive component requires the independent exam-
ination of the effect of changing M; with each of the models M}, M2, ... M™, in
order to identify the options that satisfy the requirements of the system. There-
fore, the minimal sequence of verification steps is obtained by concatenating the
minimal sequences of verification steps from Theorem 2 for models M} to M™,
as shown in (19).

O

Returning again to our running example, suppose that the version of the
virtualisation middleware installed on Server A from Figure 1 can be selected
from three options. Assume that these options are associated with different levels
of functionality/configurability, and with different levels of reliability, reflected
in the probability pyva_feu that a VM fails to operate correctly during a given
time period:

1. The latest stable version of the virtualisation software, which is characterised
by pvm_saa = 0.05 for a one-year time period. As shown by the probabilities
annotating the state transitions associated with vm_op actions in Figure 4,
this is the option used by model Mycp+qpp, from our case study.

2. The latest beta version of the virtualisation middleware, which provides the
richest functionality and configurability, but which is also the least reliable,
with pya_geir = 0.1 for a one-year time period.

3. A highly reliable old version of the middleware that is characterised by
PvM_fair = 0.01 over one year, but which lacks some of the monitoring
capabilities of the other two options.

The last two options mentioned above correspond to two new models M}

eb+appa
and M2, +appA for verification step wvs from our compositional verification task

cv from eq. (11). According to Theorem 4, the minimal sequence of verification
steps required to assess the suitability these two new options is

Acv = ({<A1A>>P1? <A2A>>p2} web+appA’ {<A3A>2p§7 <‘A4A>2pi’ <A5A>2p§ })A
reverify((ve, vz, vs, Uy),
{(g.9") € G5 Gsl | dfa(g)=dfa(g') A prob(g") <prob(g)})"™
({<A1A>>P1’ <A2A>>P2} web+appA7 {<-A3A>2p§7 <'A4A>2pz’ <A5A>2p52})/\

reverify((ve, vz, vs, Uy),
{(9,9") € G5 x G2 | dfa(g) = dfa(g") A prob(g") <prob(g)})

Carrying out the two verification steps shown explicitly above yields: pi =
0.999852, p! = pi = 0.989953, p2 = 0.999952 and p; = p2 = 0.999852.
Since the probability bounds for the original compositional verification task were
p3 = 0.999946 and ps = p5s = 0.997452, we have

Acv = ({(A1)2pur (Ao) 200 Mbop appnr L) 0 (Asn) st (4520550 D)
reverify((vs, vr, vs, V),
>pi))7

{((Asa)2p, (A3,590)s (As)2pes (Aa)) (s (Asa) 5
(A1) 215 (A2n) 202 1 Migen 4 apps £648) 2025 (Aaa) 2070 (Asa) 22 1)
reverify((vs, v7, vs, V), {})

= ({<A1A>>p1 <~A2A>>p2} 111€b+apPA’ {<A3A>2p§’ <A4A>2pi’ <A5A>2pé})/\
Aan)>pts (Asa)>pts (Ass) >ps0 (Aag) >

)>
A6c>>p <A6D>>p5}7 Mservice7 {<g>2p% })A
<A1A >p1s <A2A>>p2} Mweb+appA7 {<A3A>2p§v <A4A>2p27 <A5A>2p§})/\

»)

w
o~~~

<A1A>2p17 <A2A>Z 2} web+appA7 {<‘A3A>>p) <‘A4A>>pi’ <‘A5A>2P§})/\
<~A3A>2p§ﬂ <A4A>2p17 <A5A>>p) <~’43B>>p37 <~’44B>>p47
(Asg)>ps» (Abc) >pss (Abo) >p6 }> Mservice, {(G)>p2 1)

({<A1A>2p17 <A2A>>p2} Mweb+appA7 {<A3A>2p§7 <A4A>2p27 <A5A>2p§})'

The only remaining verification step to carry out is the one in the middle, which
yields p3 = 0.997494, a value that is slightly lower than the probability bound
pr = 0.997482 provided by the original choice of a virtualisation middleware
version for Server A.

4 Conclusion and future work

Large-scale complex IT systems (LSCITS) are notoriously difficult to verify for-
mally. Their extremely large state spaces, continual changes and nondeterminis-
tic behaviour challenge not only the scalability of existing verification techniques,
but also the validity of the traditional approach of performing the verification
offline, typically at design time. While an increasing number of compositional
verification techniques address the scalability challenge, less research has ex-
plored the effect that continual change has on the verification of LSCITS.

This paper overviewed assume-guarantee compositional verification in the
context of a case study from the area of cloud computing, and presented a for-
malism for specifying several classes of change that are common to LSCITS. We
showed how this formalism can be used to generate the sequence of verification
steps that need to be (re-)done after each type of change, and illustrated the
application of this approach for several scenarios from our case study.

Our future work will focus on extending the change specification formalism to
other classes of LSCITS change (e.g., changes in requirements), and on validating
it in additional case studies. In the longer term, we envisage the integration of the
approach with online learning techniques supporting change detection [7,17] and
with techniques for learning the assumptions for its sequence of compositional
verification steps [15,19].

Finally, an important challenge for our compositional reverification approach
is the availability of suitable models for the components of the analysed LSCITS.
In the work presented in this paper, we assumed that such models were available
for all LSCITS components, including those joining the system “on the fly”.
Clearly, this assumption does not hold in many real-world scenarios. Significant
future research is therefore needed to devise techniques that can learn these
models from observations of the running system, or at least automate their
synthesis from domain-specific descriptions of the LSCITS components.

Acknowledgements

This work was partly supported by the UK Engineering and Physical Sciences
Research Council grant EP/H042644/1.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109-120 (Sep 2001), http://doi.acm.org/10.1145/503271.503226

2. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In: Revised Lectures from the International Symposium on Composi-
tionality: The Significant Difference. pp. 81-102. COMPOS’97, Springer-Verlag,
London, UK (1998), http://dl.acm.org/citation.cfm?id=646738.701964

3. Blundell, C., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee testing.
ACM SIGSOFT Software Engineering Notes 31(2) (2006)

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

Calinescu, R.: General-purpose autonomic computing. In: Denko, M., et al. (eds.)
Autonomic Computing and Networking. pp. 3-30. Springer (2009)

Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM (Septem-
ber 2012)

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS management and optimization in service-based systems. IEEE Trans-
actions on Software Engineering 37, 387-409 (2011)

Calinescu, R., Johnson, K., Rafiq, Y.: Using observation ageing to improve Marko-
vian model learning in QoS engineering. In: Proceedings 2nd ACM/SPEC Inter-
national Conference on Performance Engineering. pp. 505-510 (2011)

Calinescu, R., Kikuchi, S., Kwiatkowska, M.: Formal methods for the develop-
ment and verification of autonomic IT systems. In: Cong-Vinh, P. (ed.) Formal
and Practical Aspects of Autonomic Computing and Networking: Specification,
Development and Verification. pp. 1-37. IGI Global (2012)

Calinescu, R., Kwiatkowska, M.: Software engineering techniques for the develop-
ment of systems of systems. In: Foundations of Computer Software: Future Trends
and Techniques for Development. LNCS, vol. 6028, pp. 59-82. Springer (2010)
Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Foundations of Com-
puter Software. Modeling, Development, and Verification of Adaptive Systems,
Lecture Notes in Computer Science, vol. 6662, pp. 122-135. Springer (2011)
Calinescu, R., Kwiatkowska, M.: CADS*: Computer-aided development of self-*
systems. In: Chechik, M., Wirsing, M. (eds.) Fundamental Approaches to Software
Engineering (FASE 2009). Lecture Notes in Computer Science, vol. 5503, pp. 421—
424. Springer (March 2009), http://qav.comlab.ox.ac.uk/papers/fase09.pdf
Calinescu, R., Kwiatkowska, M.Z.: Using quantitative analysis to implement auto-
nomic IT systems. In: 31st International Conference on Software Engineering. pp.
100-110 (2009), http://dx.doi.org/10.1109/ICSE.2009.5070512

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proc. 4th
Intl. Symp. Logic in Computer Science. pp. 353-362 (1989), http://ieeexplore.
ieee.org/xpl/freeabs_all.jsp?arnumber=39190

Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Proceedings of the 9th international conference
on Tools and algorithms for the construction and analysis of systems. pp. 331-
346. TACAS’03, Springer-Verlag, Berlin, Heidelberg (2003), http://dl.acm.org/
citation.cfm?id=1765871.1765903

Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud comput-
ing: Distributed internet computing for it and scientific research. IEEE Internet
Computing 13(5), 10-13 (September—October 2009)

Epifani, 1., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time adaptation. In: Proceedings of the 31st International Conference on Software
Engineering. pp. 111-121. IEEE Computer Society (2009)

Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) Proc.
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’07). LNCS, vol. 4424, pp. 50-65. Springer (2007)
Feng, L., Kwiatkowska, M.Z., Parker, D.: Automated learning of probabilistic as-
sumptions for compositional reasoning. In: Fundamental Approaches to Software
Engineering - 14th International Conference, FASE 2011. pp. 2-17 (2011)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software:
continuous assurance of non-functional requirements. Formal Asp. Comput. 24(2),
163-186 (2012)

Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843-871 (May 1994), http://doi.acm.org/10.1145/
177492.177725

Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
Proc. 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06). LNCS, vol. 3920, pp. 441-444. Springer
(2006)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (Oct 1969), http://doi.acm.org/10.1145/363235.363259
Inverardi, P., Patrizio, Tivoli, M.: Towards an assume-guarantee theory for adapt-
able systems. In: Proceedings of the Software Engineering for Adaptive and Self-
Managing Systems Workshop (SEAMS). pp. 106-115 (2009)

Kesten, Y., Pnueli, A.: A compositional approach to ctl* verification. Theor. Com-
put. Sci. 331(2-3), 397-428 (Feb 2005), http://dx.doi.org/10.1016/j.tcs.2004.
09.023

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp.
585-591. Springer (2011)

Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verifica-
tion for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) Proc. 16th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’10). LNCS, vol. 6105, pp. 23-37. Springer (2010),
http://qav.cs.ox.ac.uk/bibitem.php?key=KNPQ10

Northrop, L., et al.: Ultra-large-scale systems - the software challenge of the future.
Tech. rep., Software Engineering Institute, Carnegie Mellon University (June 2006)
Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and models of concurrent systems, pp. 123-144.
Springer-Verlag New York, Inc., New York, NY, USA (1985), http://dl.acm.org/
citation.cfm?id=101969.101977

Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250-273 (1995)

Sommerville, 1., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.,
McDermid, J., Paige, R.: Large-scale complex IT systems. Communications of the
ACM 55(7), 71-77 (July 2012)

Thomas, K.: Solid state drives no better than others, survey says.
http://www.pcworld.com/businesscenter/article/213442/so0lid_state_
drives_no_better_than_others_survey_says.html

Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Generation Computer Systems 28(2), 358 — 367 (2012)
Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware re-
liability. In: Proceedings of the 1st ACM symposium on Cloud computing. pp.
193-204. SoCC ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1807128.1807161

Appendix A

A.1 Additional probabilistic assume-guarantee proof rule

The proposition below introduces the assume-guarantee proof rule (#) that we
used in eq. (9). To prove the rule we use the following additional notation:

- Prj‘\’jz (A;) represents the probability that model M; satisfies the safety prop-
erty A; for a fixed adversary o; € Adv;.

— Given an adversary o € Advpy, | my)|... M, O |1, € Adv; denotes the projection
of o onto M;, 1 <i < x.

Proposition 1: If M;, Ms, ..., M; are probabilistic automata, and (A1)>p,,
(A2)>py, -+, (Ak)>p, are probabilistic safety properties such that aa, C ayy,
forall1 <i<k—1land aas, Cay, Uas, Uas,U...Uayu, ,, then the following
proof rule holds:

(true) My (A1) >p,
(true) Ma(Asz)>p,

(true) My —1(Ak—1)>p,_,
<A17 A27) Ak—1>ZP17P2,-~7Pk71Mk <Ak>2;ﬂk
(true) My || Mo || ... || Mi(Ak)>p,

Proof Starting from the hypothesis, we have:

Vi€ {1,2,...,]‘5 — 1} Vo, € AdUMl OPT’](\T/L(A,‘) > i
(according to the definition of (true)M,;(A;)>p,)
=
Vie {1, 2, ey k— 1} eVo € AdUM1HM2||---HMk71 ° PT’;\T/[[Mi (Az) > i
(since o [y, € Advyy,)
=
Vie {]., 2,..., k—].} eVo € AdUM1HM2||---HMk71 ° PT‘X/AHMQHHMk,l(AZ) > pi
(by part (a) of Lemma 1 from [27], since a4, C ap;)
=
Voe AdelHM2”»--”Mk—l ° PT’}\T/hHMsz”Mk_l(Al) Zp A A
/\PT](\ZlﬂMQH...HMk_l(Akfl) > Pk—1
(rewrite of the previous step)
=
(true) My||Ms||. . || My—1(Ax, Az, ... Ak—1)>py.pa...pis
(by definition)
=
(true) My || Mz | ... || Mi(Ak)>p,
(by applying the ASYM-MULT rule from [27])

A.2. Proof of Theorem 1
Theorem 1: The minimal sequence of verification steps that needs to be carried

out to reverify a compositional verification task cv = (v, va,...,v,) after the
failure of the component associated with its i-th verification step is

Acv = reverify((vig1, Vit2, -, V), {g € G ® (g, (true))}). (21)

Proof We start by observing that, according to the recursive definition of
reverify from (13), Acv can be rewritten as:

Acv = Acvy 7 reverify((vig1, Vita, - .., Un), changesy)
= Acvy 7 reverify((vita, Vits, .- ., Un), changes;) (22)

Acvn—i1 " reverify((), changesn— 1),

where Acv; = (), changes; = {g € G; e (g, (true))} and, for 1 <j <n—i+1,
Ac; and changes; are obtained by carrying out the calculations defined by (13).
We will prove the following intermediate results by induction on the value of j:

1. Ag; is the minimal sequence of verification steps required to re-establish the
probabilistic safety properties associated with the first i + 7 — 1 elements of
cv;

2. changes; is the set of all changes in the probabilistic safety properties guar-
anteed by models My, My, ..., M;y;_1,

for j =1,2,...,n — i+ 1. The theorem will then follow immediately from the
fact that Acv,_;41 is “the minimal sequence of verification steps required to re-
establish the probabilistic safety properties associated with the first i + (n — i +

1)—1 = n elements of ¢v”, since Acv = Acv,_;11 " reverify((), changes,_;+1) =
ACUn,iJrlr\ () = ACUn,iJrl.
The base case, corresponding to j = 1, is straightforward:

1. Acvy = () since the verification steps vy, w2, ..., v;—1 do not need to be
redone (as their assumption sets Ay, Aa, ..., A;—1 do not contain any prop-
erties guaranteed by the failed component), and v; does not need to be redone
(because we already know that it corresponds to the failed component);

2. changesy = {g € G; (g, (true))} since none of the properties guaranteed
by My, Ms, ..., M;_1 has changed, and all properties in G;, which were
guaranteed by the failed component, need to be replaced with the property
that does not offer any guarantees, i.e., (true).

Suppose now that Ac; and changes; satisfy our two properties for a value of
7 such that 1 < j < n — i+ 1. We will prove that the two properties are also
satisfied by Acjy1 and changes;ti.

According to the notation introduced in (22) and to the definition of reverify
from (13),

A~ if A;1; N changes; =0
Aci = Ag { (AL,,, M, Gl,,), otherwise (23)
and
changesj 1 = changes; U
{} if A;4; N changes; =0 (24)
{(9,9") € Giy; x G, | dfa(g)=dfa(g") A
prob(g") <prob(g)} otherwise

where

- AL, ={a G/ Aiyj | ~(3(g,9") € changesj o a = g)} U{(g,9") € changes; |
g€ Aiyjeg'h;

G, = {2 €P | @g € Gy o dfals) = dfa(g)) A prod(s) = me(ALy,,
My, dfa(g))}.

We analyse each of the two cases above in turn, recalling the fact that, according
to the inductive hypothesis, changes; is the set of all changes in the probabilistic
safety properties guaranteed by models M; to M;;_:

— The case A;4; N changes; = () corresponds to the scenario in which the as-
sumptions for the verification step v;1; are unchanged. Therefore, the mini-
mal sequence of verification steps for models M; to M, ; coincides in this case
with the minimal sequence of verification steps for models M; to M;;_1,1i.e.,
with Acv; (according to the inductive hypothesis). Since Acv;11 = Acwy, it
follows that, in this case, Acvj4q satisfies the first required property. Fi-
nally, no probabilistic safety properties guaranteed by M;;; changed, so
changesj 11 = chages; satisfies the second required property.

— The second case (i.e., A;4; N changes; # () corresponds to the scenario in
which at least one of the assumptions for the verification step v;1; changed,
hence the model M;,; needs to be reverified against the updated set of
assumptions A +; defined above, yielding the new guaranteed probabilistic
safety properties in G +;- The minimal set of verification steps to be re-
done for models M; to M;; consists of all the verification steps that need
to be redone for models M; to M;y;—1 (i-e., Acv;) and the additional step
(A’H_j, M;4;, Géﬂ). This is precisely Acvj41, so the first required property
is also satisfied in the second case. Finally, we note again that changes; the
set of all changes in the probabilistic safety properties guaranteed by M; to
M;j-1, and that the set {(g, ¢') € Gi1;x G}, ; | dfa(g)=dfa(g") A prob(g') <
prob(g)} contains precisely the changes to the probabilistic safety properties
guaranteed by M, ;. Therefore, the union of these two sets (i.e., changes;;1)
represents the set of all changes in the probabilistic safety properties guar-
anteed by models M; to M;y;.

O

