11/27/2016
3j symbol Wikipedia
3j symbol
From →ikipedia, the free encyclopedia
In quantum mechanics, the Wigner 3j symbols, also called 3j or 3jm symbols, are an alternative to
Clebsch–Gordan coefficients for the purpose of adding angular momenta. →hile the two approaches address
exactly the same physical problem, the 3j symbols do so more symmetrically, and thus have greater and
simpler symmetry properties than the ClebschGordan coefficients.
Contents
1
2
3
4
5
6
Mathematical relation to ClebschGordan coefficients
Definitional relation to ClebschGordan coefficients
Selection rules
Symmetry properties
Orthogonality relations
Relation to spherical harmonics
6.1 Relation to integrals of spinweighted spherical harmonics
7 Recursion relations
8 Asymptotic expressions
9 Other properties
10 See also
11 References
12 External links
Mathematical relation to ClebschGordan coefficients
The 3j symbols are given in terms of the ClebschGordon coefficients by
The j 's and m 's are angular momentum quantum numbers, i.e., every j (and every corresponding m) is either
a nonnegative integer or halfoddinteger. The exponent of the sign factor is always an integer, so it remains
the same when transposed to the left hand side, and the inverse relation follows upon making the substitution
m3
−m3:
.
Definitional relation to ClebschGordan coefficients
The CG coefficients are defined so as to express the addition of two angular momenta in terms of a third:
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
1/7
11/27/2016
3j symbol Wikipedia
The 3j symbols, on the other hand, are the coefficients with which three angular momenta must be added so
that the resultant is zero:
Here,
is the zero angular momentum state (
). It is apparent that the 3j symbol treats all three
angular momenta involved in the addition problem on an equal footing, and is therefore more symmetrical
than the CG coefficient.
is unchanged by rotation, one also says that the contraction of the product of three
Since the state
rotational states with a 3j symbol is invariant under rotations.
Selection rules
The →igner 3j symbol is zero unless all these conditions are satisfied:
Symmetry properties
A 3j symbol is invariant under an even permutation of its columns:
An odd permutation of the columns gives a phase factor:
Changing the sign of the
quantum numbers (timereversal) also gives a phase:
The 3j symbols also have socalled Regge symmetries, which are not due to permutations or time
reversal.[1] These symmetries are,
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
2/7
11/27/2016
3j symbol Wikipedia
→ith the Regge symmetries, the 3j symbol has a total of 72 symmetries. These are best displayed by the
definition of a Regge symbol which is a onetoone correspondence between it and a 3j symbol and assumes
the properties of a semimagic square[2]
whereby the 72 symmetries now correspond to 3! row and 3! column interchanges plus a transposition of the
matrix. These facts can be used to devise an effective storage scheme.[3]
Orthogonality relations
A system of two angular momenta with magnitudes and , say, can be described either in terms of the
and
), or the coupled basis states (labeled by
uncoupled basis states (labeled by the quantum numbers
and
). The 3j symbols constitute a unitary transformation between these two bases, and this unitarity
implies the orthogonality relations,
Relation to spherical harmonics
The 3jm symbols give the integral of the products of three spherical harmonics
with
,
and
integers.
Relation to integrals of spinweighted spherical harmonics
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
3/7
11/27/2016
3j symbol Wikipedia
Similar relations exist for the spinweighted spherical harmonics if
:
Recursion relations
Asymptotic expressions
a nonzero 3j symbol has
For
where
the Regge symmetry is given by
and
where
is a →igner function. Generally a better approximation obeying
.
Other properties
See also
Clebsch–Gordan coefficients
Spherical harmonics
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
4/7
11/27/2016
3j symbol Wikipedia
6j symbol
9j symbol
References
1. Regge, T. (1958). "Symmetry Properties of ClebschGordan Coefficients". Nuovo Cimento. 10: 544.
doi:10.1007/BF02859841.
2. Rasch, J.; Yu, A. C. H. (2003). "Efficient Storage Scheme for Precalculated →igner 3j, 6j and Gaunt
Coefficients". SIAM J. Sci. Comput. 25 (4): 1416–1428. doi:10.1137/s1064827503422932.
3. Rasch, J.; Yu, A. C. H. (2003). "Efficient Storage Scheme for Precalculated →igner 3j, 6j and Gaunt
Coefficients". SIAM J. Sci. Comput. 25 (4): 1416–1428. doi:10.1137/s1064827503422932.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia
of Mathematics, Addison→esley, Reading, 1981.
D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press,
Princeton, 1960.
Maximon, Leonard C. (2010), "3j,6j,9j Symbols", in Olver, Frank →. J.; Lozier, Daniel M.; Boisvert,
Ronald F.; Clark, Charles →., NIST Handbook of Mathematical Functions, Cambridge University
Press, ISBN 9780521192255, MR 2723248
Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K. (1988). Quantum Theory of Angular
Momentum. →orld Scientific Publishing Co.
Regge, T. (1958). "Symmetry Properties of ClebschGordon's Coefficients". Nuovo Cimento. 10 (3):
544–545. doi:10.1007/BF02859841.
E. P. →igner, "On the Matrices →hich Reduce the Kronecker Products of Representations of Simply
Reducible Groups", unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum
Theory of Angular Momentum, Academic Press, New York (1965).
Moshinsky, Marcos (1962). "→igner coefficients for the SU3 group and some applications". Rev. Mod.
Phys. 34 (4): 813. Bibcode:1962RvMP...34..813M. doi:10.1103/RevModPhys.34.813.
Baird, G. E.; Biedenharn, L. C. (1963). "On the representation of the semisimple Lie Groups. II.". J.
Math. Phys. 4: 1449. Bibcode:1963JMP.....4.1449B. doi:10.1063/1.1703926.
Swart de, J. J. (1963). "The octet model and its GlebschGordan coefficients". Rev. Mod. Phys. 35 (4):
916. Bibcode:1963RvMP...35..916D. doi:10.1103/RevModPhys.35.916.
Baird, G. E.; Biedenharn, L. C. (1964). "On the representations of the semisimple Lie Groups. III. The
explicit conjugation Operation for SUn". J. Math. Phys. 5: 1723. Bibcode:1964JMP.....5.1723B.
doi:10.1063/1.1704095.
Horie, Hisashi (1964). "Representations of the symmetric group and the fractional parentage
coefficients". J. Phys. Soc. Jpn. 19: 1783. Bibcode:1964JPSJ...19.1783H. doi:10.1143/JPSJ.19.1783.
P. McNamee, S. J.; Chilton, Frank (1964). "Tables of ClebschGordan coefficients of SU3". Rev. Mod.
Phys. 36 (4): 1005. Bibcode:1964RvMP...36.1005M. doi:10.1103/RevModPhys.36.1005.
Hecht, K. T. (1965). "SU3 recoupling and fractional parentage in the 2s1d shell". Nucl. Phys. 62 (1): 1.
Bibcode:1965NucPh..62....1H. doi:10.1016/00295582(65)900684.
Itzykson, C.; Nauenberg, M. (1966). "Unitary groups: representations and decompositions". Rev. Mod.
Phys. 38 (1): 95. Bibcode:1966RvMp...38...95I. doi:10.1103/RevModPhys.38.95.
Kramer, P. (1967). "Orbital fractional parentage coefficients for the harmonic oscillator shell model".
Z. Phys. 205 (2): 181. Bibcode:1967ZPhy..205..181K. doi:10.1007/BF01333370.
Kramer, P. (1968). "Recoupling coefficients of the symmetric group for shell and cluster model
configurations". Z. Phys. 216 (1): 68. Bibcode:1968ZPhy..216...68K. doi:10.1007/BF01380094.
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
5/7
11/27/2016
3j symbol Wikipedia
Hecht, K. T.; Pang, Sing Ching (1969). "On the →igner Supermultiplet Scheme". J. Math. Phys. 10
(9): 1571. Bibcode:1969JMP....10.1571H. doi:10.1063/1.1665007.
Lezuo, K. J. (1972). "The symmetric group and the Gel'fand basis of U(3). Generalizations of the
Dirac identity". J. Math. Phys. 13 (9): 1389. Bibcode:1972JMP....13.1389L. doi:10.1063/1.1666151.
Draayer, J. P.; Akiyama, Yoshimi (1973). "→igner and Racah coefficients for SU3". J. Math. Phys. 14
(12): 1904. Bibcode:1973JMP....14.1904D. doi:10.1063/1.1666267.
Akiyama, Yoshimi; Draayer, J. P. (1973). "A users' guide to fortran programs for →igner and Racah
coefficients of SU3". Comp. Phys. Comm. 5: 405. Bibcode:1973CoPhC...5..405A. doi:10.1016/0010
4655(73)900775.
Paldus, Josef (1974). "Group theoretical approach to the configuration interaction and perturbation
theory calculations for atomic and molecular systems". J. Chem. Phys. 61 (12): 5321.
Bibcode:1974JChPh..61.5321P. doi:10.1063/1.1681883.
Schulten, Klaus; Gordon, Roy G. (1975). "Exact recursive evaluation of 3j and 6jcoefficients for
quantum mechanical coupling of angular momenta". J. Math. Phys. 16 (10): 1961–1970.
Bibcode:1975JMP....16.1961S. doi:10.1063/1.522426.
Haacke, E. M.; Moffat, J. →.; Savaria, P. (1976). "A calculation of SU(4) GlebschGordan
coefficients". J. Math. Phys. 17 (11): 2041. Bibcode:1976JMP....17.2041H. doi:10.1063/1.522843.
Paldus, Josef (1976). "Unitarygroup approach to the manyelectron correlation problem: Relation of
Gelfand and →eyl tableau formulations". Phys. Rev. A. 14 (5): 1620. Bibcode:1976PhRvA..14.1620P.
doi:10.1103/PhysRevA.14.1620.
Bickerstaff, R. P.; Butler, P. H.; Butts, M. B.; Haase, R. w.; Reid, M. F. (1982). "3jm and 6j tables for
some bases of SU6 and SU3". J. Phys. A. 15: 1087. Bibcode:1982JPhA...15.1087B. doi:10.1088/0305
4470/15/4/014.
Sarma, C. R.; Sahasrabudhe, G. G. (1980). "Permutational symmetry of many particle states". J. Math.
Phys. 21 (4): 638. Bibcode:1980JMP....21..638S. doi:10.1063/1.524509.
Chen, JinQuan; Gao, MeiJuan (1982). "A new approach to permutation group representation". J.
Math. Phys. 23: 928. Bibcode:1982JMP....23..928C. doi:10.1063/1.525460.
Sarma, C. R. (1982). "Determination of basis for the irreducible representations of the unitary group
for U(p+q) U(p)×U(q)". J. Math. Phys. 23 (7): 1235. Bibcode:1982JMP....23.1235S.
doi:10.1063/1.525507.
Chen, J.Q.; Chen, ↓.G. (1983). "The Gel'fand basis and matrix elements of the graded unitary group
U(m/n)". J. Phys. A. 16 (15): 3435. Bibcode:1983JPhA...16.3435C. doi:10.1088/03054470/16/15/010.
Nikam, R. S.; Dinesha, K. V.; Sarma, C. R. (1983). "Reduction of innerproduct representations of
unitary groups". J. Math. Phys. 24 (2): 233. Bibcode:1983JMP....24..233N. doi:10.1063/1.525698.
Chen, JinQuan; Collinson, David F.; Gao, MeiJuan (1983). "Transformation coefficients of
permutation groups". J. Math. Phys. 24: 2695. Bibcode:1983JMP....24.2695C. doi:10.1063/1.525668.
Chen, JinQuan; Gao, MeiJuan; Chen, ↓uanGen (1984). "The ClebschGordan coefficient for
SU(m/n) Gel'fand basis". J. Phys. A. 17 (3): 481. Bibcode:1984JPhA...17..727K. doi:10.1088/0305
4470/17/3/011.
Srinivasa Rao, K. (1985). "Special topics in the quantum theory of angular momentum". Pramana. 24
(1): 15–26. Bibcode:1985Prama..24...15R. doi:10.1007/BF02894812.
→ei, Liqiang (1999). "Unified approach for exact calculation of angular momentum coupling and
recoupling coefficients". Comp. Phys. Comm. 120 (2–3): 222–230. Bibcode:1999CoPhC.120..222→.
doi:10.1016/S00104655(99)002325.
Rasch, J.; Yu, A. C. H. (2003). "Efficient Storage Scheme for Precalculated →igner 3j, 6j and Gaunt
Coefficients". SIAM J. Sci. Comput. 25 (4): 1416–1428. doi:10.1137/s1064827503422932.
External links
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
6/7
11/27/2016
3j symbol Wikipedia
Stone, Anthony. "→igner coefficient calculator".
Volya, A. "ClebschGordan, 3j and 6j Coefficient →eb Calculator". (Numerical)
Stevenson, Paul. "ClebschOMatic". Bibcode:2002CoPhC.147..853S. doi:10.1016/S0010
4655(02)004629.
369jsymbol calculator at the Plasma Laboratory of →eizmann Institute of Science (http://plasmagate.
weizmann.ac.il/369j.html) (Numerical)
Frederik J Simons: Matlab software archive, the code THREEJ.M (http://geoweb.princeton.edu/peopl
e/simons/software.html)
Sage (mathematics software) (http://www.sagemath.org/) Gives exact answer for any value of j, m
Johansson, H.T.; Forssén, C. "(→IG↓JPF)". (accurate; C, fortran, python)
Johansson, H.T. "(FAST→IG↓J)". (fast lookup, accurate; C, fortran)
Retrieved from "https://en.wikipedia.org/w/index.php?title=3j_symbol&oldid=748211622"
Categories: Rotational symmetry Representation theory of Lie groups Quantum mechanics
This page was last modified on 7 November 2016, at 00:54.
Text is available under the Creative Commons AttributionShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. →ikipedia® is a registered
trademark of the →ikimedia Foundation, Inc., a nonprofit organization.
https://en.wikipedia.org/w/index.php?title=3j_symbol&printable=yes
7/7