VSEPR Structures: A Handy Guide Rule: Atoms and lone pairs have electron density. The lowest energy state of a molecule is the one where atoms and lone pairs are the furthest away from each other. # The VSEPR Method Step 1: Determine Lewis structure for the molecule. **Step 2**: Assign it a VSEPR AXE notation based on the # of atoms and lone pairs. A = # of central atoms; X = # of substituent atoms; E = # of lone pairs. **Step 3**: Use this chart to determine the geometry. | | | | | 200 | |-------------------------|--------------------------|-------------------|-------------------------|-------------------| | # of electron
groups | Types of electron groups | VSEPR | Name of molecular shape | Ex | | 2 | 2 Bonds | AX ₂ | Linear | BeF ₂ | | 3 | 3 Bonds | AX ₃ | Trigonal planar | BF ₃ | | 3 | 2 Bonds,
1 Lone Pair | AX ₂ E | Angular | SnCl ₂ | | 4 | 4 bonds | AX ₄ | Tetrahedral | CF ₄ | | 4 | 3 bonds,
1 lone pair | AX ₃ E | Trigonal pyramidal | PCl ₃ | | 4 | 2 bonds,
2 lone pair | AX_2E_2 | Angular | H ₂ S | | 5 | 5 bonds | AX ₅ | Trigonal bipyramidal | SbCl ₅ | | 5 | 4 bonds,
1 lone pair | AX ₄ E | Seesaw | TeCl ₄ | | 5 | 3 bonds,
2 lone pair | AX_3E_2 | T-shaped | BrF ₃ | | 5 | 2 bonds,
3 lone pair | AX_2E_3 | Linear | XeF ₂ | | 6 | 6 bonds | AX ₆ | Octahedral | SF ₆ | | 6 | 5 bonds,
1 lone pair | AX ₅ E | Square pyramidal | BrF ₅ | | 6 | 4 bonds,
2 lone pair | AX_4E_2 | Square planar | XeF ₄ | # **Frequently Asked Questions:** #### Q: Are bond angles exact for each molecule? A: No, the bond angles are slightly influenced by whether the substituent is an atom or a lone pair and by atomic radii. Methane, CH₄ AX₄ 109.5° Ammonia, NH₃ AX₃E 107° ### Q: Does VSEPR theory work for more complex molecules? A: For the carbon atom at the far left, VSEPR predicts it will be a tetrahedral carbon as it has the AX4 configuration of four bonded groups and no lone pairs. We treat each hydrogen atom as a separate substituent and the everything else residing to the right of the carbon as one substituent. ## Q: What is the difference between the molecular geometry and the electronic geometry of a molecule? A: The molecular geometry only takes atoms into account. whereas electronic geometry accounts for both atoms and lone pair electrons. Molecular: Tetrahedral This means that the electronic geometry and the molecular geometry can be different for the same molecule.