

VSEPR Structures: A Handy Guide

Rule: Atoms and lone pairs have electron density. The lowest energy state of a molecule is the one where atoms and lone pairs are the furthest away from each other.

The VSEPR Method

Step 1: Determine Lewis structure for the molecule.

Step 2: Assign it a VSEPR AXE notation based on the # of atoms and lone pairs.

A = # of central atoms; X = # of substituent atoms; E = # of lone pairs.

Step 3: Use this chart to determine the geometry.

				200
# of electron groups	Types of electron groups	VSEPR	Name of molecular shape	Ex
2	2 Bonds	AX ₂	Linear	BeF ₂
3	3 Bonds	AX ₃	Trigonal planar	BF ₃
3	2 Bonds, 1 Lone Pair	AX ₂ E	Angular	SnCl ₂
4	4 bonds	AX ₄	Tetrahedral	CF ₄
4	3 bonds, 1 lone pair	AX ₃ E	Trigonal pyramidal	PCl ₃
4	2 bonds, 2 lone pair	AX_2E_2	Angular	H ₂ S
5	5 bonds	AX ₅	Trigonal bipyramidal	SbCl ₅
5	4 bonds, 1 lone pair	AX ₄ E	Seesaw	TeCl ₄
5	3 bonds, 2 lone pair	AX_3E_2	T-shaped	BrF ₃
5	2 bonds, 3 lone pair	AX_2E_3	Linear	XeF ₂
6	6 bonds	AX ₆	Octahedral	SF ₆
6	5 bonds, 1 lone pair	AX ₅ E	Square pyramidal	BrF ₅
6	4 bonds, 2 lone pair	AX_4E_2	Square planar	XeF ₄

Frequently Asked Questions:

Q: Are bond angles exact for each molecule?

A: No, the bond angles are slightly influenced by whether the substituent is an atom or a lone pair and by atomic radii.

Methane, CH₄ AX₄ 109.5°

Ammonia, NH₃ AX₃E 107°

Q: Does VSEPR theory work for more complex molecules?

A: For the carbon atom at the far left, VSEPR predicts it will be a tetrahedral carbon as it has the AX4 configuration of four bonded groups and no lone pairs. We treat each hydrogen atom as a separate substituent and the everything else residing to the right of the carbon as one substituent.

Q: What is the difference between the molecular geometry and the electronic geometry of a molecule?

A: The molecular geometry only takes atoms into account. whereas electronic geometry accounts for both atoms and lone pair electrons.

Molecular: Tetrahedral

This means that the electronic geometry and the molecular geometry can be different for the same molecule.