@inproceedings{khairallah-etal-2024-camel,
title = "Camel Morph {MSA}: A Large-Scale Open-Source Morphological Analyzer for {M}odern {S}tandard {A}rabic",
author = "Khairallah, Christian and
Khalifa, Salam and
Marzouk, Reham and
Nassar, Mayar and
Habash, Nizar",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.240/",
pages = "2683--2691",
abstract = "We present Camel Morph MSA, the largest open-source Modern Standard Arabic morphological analyzer and generator. Camel Morph MSA has over 100K lemmas, and includes rarely modeled morphological features of Modern Standard Arabic with Classical Arabic origins. Camel Morph MSA can produce {\ensuremath{\sim}}1.45B analyses and {\ensuremath{\sim}}535M unique diacritizations, almost an order of magnitude larger than SAMA (Maamouri et al., 2010c), in addition to having {\ensuremath{\sim}}36{\%} less OOV rate than SAMA on a 10B word corpus. Furthermore, Camel Morph MSA fills the gaps of many lemma paradigms by modeling linguistic phenomena consistently. Camel Morph MSA seamlessly integrates with the Camel Tools Python toolkit (Obeid et al., 2020), ensuring ease of use and accessibility."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khairallah-etal-2024-camel">
<titleInfo>
<title>Camel Morph MSA: A Large-Scale Open-Source Morphological Analyzer for Modern Standard Arabic</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Khairallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salam</namePart>
<namePart type="family">Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reham</namePart>
<namePart type="family">Marzouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mayar</namePart>
<namePart type="family">Nassar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Camel Morph MSA, the largest open-source Modern Standard Arabic morphological analyzer and generator. Camel Morph MSA has over 100K lemmas, and includes rarely modeled morphological features of Modern Standard Arabic with Classical Arabic origins. Camel Morph MSA can produce \ensuremath\sim1.45B analyses and \ensuremath\sim535M unique diacritizations, almost an order of magnitude larger than SAMA (Maamouri et al., 2010c), in addition to having \ensuremath\sim36% less OOV rate than SAMA on a 10B word corpus. Furthermore, Camel Morph MSA fills the gaps of many lemma paradigms by modeling linguistic phenomena consistently. Camel Morph MSA seamlessly integrates with the Camel Tools Python toolkit (Obeid et al., 2020), ensuring ease of use and accessibility.</abstract>
<identifier type="citekey">khairallah-etal-2024-camel</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.240/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>2683</start>
<end>2691</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Camel Morph MSA: A Large-Scale Open-Source Morphological Analyzer for Modern Standard Arabic
%A Khairallah, Christian
%A Khalifa, Salam
%A Marzouk, Reham
%A Nassar, Mayar
%A Habash, Nizar
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F khairallah-etal-2024-camel
%X We present Camel Morph MSA, the largest open-source Modern Standard Arabic morphological analyzer and generator. Camel Morph MSA has over 100K lemmas, and includes rarely modeled morphological features of Modern Standard Arabic with Classical Arabic origins. Camel Morph MSA can produce \ensuremath\sim1.45B analyses and \ensuremath\sim535M unique diacritizations, almost an order of magnitude larger than SAMA (Maamouri et al., 2010c), in addition to having \ensuremath\sim36% less OOV rate than SAMA on a 10B word corpus. Furthermore, Camel Morph MSA fills the gaps of many lemma paradigms by modeling linguistic phenomena consistently. Camel Morph MSA seamlessly integrates with the Camel Tools Python toolkit (Obeid et al., 2020), ensuring ease of use and accessibility.
%U https://aclanthology.org/2024.lrec-main.240/
%P 2683-2691
Markdown (Informal)
[Camel Morph MSA: A Large-Scale Open-Source Morphological Analyzer for Modern Standard Arabic](https://aclanthology.org/2024.lrec-main.240/) (Khairallah et al., LREC-COLING 2024)
ACL