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Abstract. Various methods for kinematic and reduced-dyna-
mic precise orbit determination (POD) of Low Earth Orbiters
(LEO) were developed based on zero- and double-differen-
cing of GPS carrier-phase measurements with and without
ambiguity resolution. In this paper we present the following
approaches in LEO precise orbit determination:

– zero-difference kinematic POD,

– zero-difference dynamic POD,

– double-difference kinematic POD with and without am-
biguity resolution,

– double-difference dynamic POD with and without am-
biguity resolution,

– combined GPS/SLR reduced-dynamic POD.

All developed POD approaches except the combination of
GPS/SLR were tested using real CHAMP data (May 20-30,
2001) and independently validated with Satellite Laser Rang-
ing (SLR) data over the same 11 days.

With SLR measurements, additional combinations are
possible and in that case one can speak of combined kine-
matic or combined reduced-dynamic POD. First results of
such a combined GPS/SLR POD will be presented, too.

This paper shows what LEO orbit accuracy may be
achieved with GPS using different strategies including zero-
difference and double-difference approaches. Kinematic ver-
sus dynamic orbit determination is presently an interesting
issue that will also be discussed in this article.

Key words. POD, kinematic orbit, dynamic orbit, LEO,
CHAMP, ambiguity resolution, GPS, SLR

1 Introduction

Today more and more low Earth orbiting satellites (LEOs)
of new scientific missions are equipped with a GPS receiver
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for precise orbit determination (POD). Although POD with
GPS has been tested using data from various satellites (e.g.
TOPEX/Poseidon, GPS/MET, etc.), there are still many open
issues concerning the optimum way to determine LEO satel-
lite orbits with GPS: on one hand the quality of spaceborne
GPS receivers has considerably improved, and on the other
hand much progress was achieved in the modeling aspects of
POD.

Over the last year we developed various methods to com-
pute LEO satellite orbits based on techniques ranging from
reduced-dynamic to purely kinematic precise orbit determi-
nation. These algorithms allow to process GPS code and
phase observations on the zero- or double-difference level.
They have been thoroughly tested using simulated data and
various analyses of real CHAMP data have been performed.

By making use of dynamical models (e.g. Earth’s grav-
ity field, tides, air-drag, solar radiation pressure) satellite
orbits can be determined using different types of measure-
ments, e.g. pseudo-range, carrier-phase (GPS), range (SLR)
and doppler type of measurements (DORIS). In this case the
quality of the dynamical models are crucial for the orbit ob-
tained. On the other hand, the GPS technique, by tracking
many satellites every epoch, allows a purely kinematic ap-
proach without making use of any dynamical model. Kine-
matic orbit determination is independent of the gravity field
and of all the non-conservative forces acting on the satellites.

In the first part of the paper the observation equations and
the treatment of the parameters in all methods will be pre-
sented and in the following, results for the CHAMP satellite,
including the validation with SLR, will be given.

2 LEO GPS observation equation

The observation equation for LEO zero-difference POD us-
ing carrier-phase measurements for the frequencyi between
LEO receiver and GPS satellites can be written as follows
(in units of length):

Ls
LEO,i = ρs

LEO + c (δtLEO + δtsys,i) − c (δt s + δt sys,i)+
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+δρion,i + δρrel + δρmul,i + δρpco,i + δρpcv,i +

+λi · N s
LEO,i + εi (1)

Ls
LEO,i LEO zero-diff. phase measurements,

ρs
LEO geometrical distance,

c speed of light in vacuum,
δtLEO, δt s LEO and GPS satellite clock corrections,
δtsys,i, δt sys,i LEO and GPS satellite system delays

(cable, electronics),
δρion,i ionospheric delay,
δρrel relativistic correction,
δρmul,i multipath,scattering, bending effects,
δρpco,i LEO phase center offset,
δρpcv,i LEO phase center variations,
λi wavelength of the GPS signal (L1 or L2),
N s

LEO,i zero-difference phase ambiguity,
εi phase noise (L1 or L2)

One can immediately recognize the well-known observation
equation for a ground station with one exception: in the LEO
case there is no tropospheric delay to be taken into account.
In order to eliminate ionospheric delays, the ionosphere-free
(L3) linear combination (LC) can be formed between the
LEO phase measurementsLLEO,1 andLLEO,2 on carrier fre-
quenciesf1 andf2, respectively:

Ls
LEO,3 =

f 2
1

f 2
1 − f 2

2

Ls
LEO,1 −

f 2
2

f 2
1 − f 2

2

Ls
LEO,2 (2)

In this case the LEO zero-difference observation equation
can be written as follows

Ls
LEO,3 = ρs

LEO + c · δtLEO,clk,3 − c · δt s,clk,3
+

+δρrel + δρmul,3 + δρpco,3 + δρpcv,3 +

+Bs
LEO,3 + ε3 (3)

whereδtLEO,clk,3 denotes the ionosphere-free LEO clock pa-
rameter consisting of the real LEO clock valueδtLEO and the
system delaysδtsys,1 andδtsys,2 on both frequencies:

δtLEO,clk,3 = δtLEO +
f 2

1

f 2
1 − f 2

2

δtsys,1 −
f 2

2

f 2
1 − f 2

2

δtsys,2. (4)

In the same way the ionosphere-free GPS clock parameter
can be defined as

δt s,clk,3
= δt s +

f 2
1

f 2
1 − f 2

2

δt sys,1
−

f 2
2

f 2
1 − f 2

2

δt sys,2. (5)

δρmul,3, δρpco,3, andδρpcv,3 denote multipath effects, phase-
center offset and phase-center variations for the ionosphere-
free linear combination. The zero-difference ionosphere-free
ambiguity (phase bias) is denoted byBs

LEO,3.
The observation equation for the LEO zero-difference

code measurements can be written in the same way with the
exception that the LEO phase ambiguity parameterBs

LEO,3 is
not included. GPS satellite and LEO system delays are dif-
ferent forP1 andP2 code measurements. By convention, the

ionosphere-free LC is said to have no differential code bias
(DCB), i.e. system delays are included in the GPS satellite
and the receiver clocks, respectively, see Schaer (1999).

The observation equation for POD based on double differ-
ences can be written by forming double-differences between
the LEO and a ground station and between GPS satellitesk

ands:

L
s,k
grd,LEO,3 = (Lk

LEO,3 − Lk
grd,3) − (Ls

LEO,3 − Ls
grd,3) (6)

In this way we can form baselines between all ground IGS
points and the LEO. It is very important to note that, by us-
ing double-differences between LEO and ground station, the
absolute tropospheric delay for the ground station can be es-
timated and isolated.

As soon as we involve the GPS ground network (e.g. the
IGS network), the troposphere zenith delays and station coor-
dinates have to be considered. In our POD approach weekly
IGS solutions for station coordinates computed at the CODE
Analysis Center and corresponding troposphere zenith de-
lays and troposphere gradients are introduced and kept fixed,
see IGS (2000).

3 LEO kinematic precise orbit determination

In this section kinematic POD will be considered from the
point of view of zero- and double-difference carrier-phase
and code GPS measurements.

3.1 Zero-difference kinematic POD

In the zero-diff. kinematic POD for each epoch three LEO
coordinates have to be estimated together with one LEO
clock parameter. Zero-diff. ambiguities are the only pa-
rameters in the adjustment procedure, that are not epoch-
specific. Figure 1 shows the normal equation matrix for
zero-diff. kinematic POD over eleven epochs. On the main
diagonal we can easily recognize 3× 3 blocks of epoch-
wise kinematic LEO coordinates, eleven epoch-wise LEO
clock parameters and, in the lower right corner, 6 zero-
diff. ionosphere-free ambiguities. We easily see the corre-
lations between zero-difference ambiguities and epoch-wise
parameters.

All zero-diff. approaches rely on the availability of highly
accurate GPS satellite orbits and clocks, see IGS (2000).
They should be provided with the same sampling as used for
the LEO kinematic POD. It is very important that GPS satel-
lite orbits and clocks are consistent with each other because
of the high correlations. If highly accurate GPS satellite or-
bits and clocks are available, this method is very simple and
reliable because it does not involve the huge load of process-
ing the ground IGS network.

An alternative zero-diff. approach based on forming dif-
ferences between phase observations of consecutive epochs
and avoiding zero-difference ambiguity parameters, may be
found in Bock et al. (2001).
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Fig. 1. Normal equation matrix for zero-diff. kinematic POD (11
epochs). On the main diagonal: 3 by 3 blocks of epoch-wise kine-
matic coordinates, 11 epoch-wise LEO clocks parameters and in the
lower right corner 6 zero-difference ambiguity parameters.

3.2 Double-difference kinematic POD

In contrast to the zero-difference kinematic POD approach,
the double-difference approach requires the simultaneous
processing of the GPS ground network and the LEO GPS
measurements. All possible baselines between LEO and
ground IGS network are formed and processed together. For
each epoch three kinematic LEO coordinates are estimated
together with the double-difference ambiguity parameters.
By forming double-differences, all GPS satellite clocks are
eliminated and there is no need for highly accurate GPS satel-
lite clocks computed from the GPS ground network.

The disadvantage of the double-difference kinematic ap-
proach is the huge number of observations and ambiguity pa-
rameters stemming from the IGS ground network. The noise
of the double-difference observable is twice as high as that
of the zero-difference observable, but we get rid of all clock
parameters and, what is the most important, ambiguity reso-
lution can be performed using double-differences.

An alternative double-diff. approach based on Kalman fil-
tering with a high efficiency may be found in Colombo et al.
(2002).

4 LEO dynamic Precise Orbit Determination

Dynamic POD approaches rely on the dynamical models, i.e.
on the solution of the LEO equation of motion given by

r̈ = −GM
r
r3

+ f1(t, r , ṙ , q1, q2, ..., qd) = f0 + f1 = f (7)

r LEO geocentric position (J2000),
t dynamic time (TT),
GM gravity constant times mass of the Earth,
f0 acceleration due to the central gravity term,
f1 perturbing accelerations acting on the LEO,
q1, ..., qdLEO dynamical orbit parameters,
f total LEO acceleration

where the LEO initial conditions (positionr and velocityṙ )
in the inertial system at the reference epocht0 can be rep-
resented using the well-known Keplerian elements (semi-
major axisa, eccentricitye, inclination i, ascending node
�, argument of perigeeω and perigee passing timetp) at t0:

r(t0) = r(a, e, i, �, ω, tp; t0)

ṙ(t0) = ṙ(a, e, i, �, ω, tp; t0). (8)

The perturbing accelerations that act on the LEO are due to
the higher order terms of the gravity field (e.g. given by
EIGEN1S, see Reigber et al., 2002), air-drag (e.g. from the
model MSISE-90, see Hedin, 1991; Doornbos et al., 2002),
solar radiation pressure, contributions of direct tidal effects
from all third bodies as the Sun, the Moon and the planets, as
well as indirect tidal effects (solid Earth tides, ocean tides)
and general relativistic effects. Earth albedo could also be
included, although its modeling is relatively complicated due
to the fact that information on cloud coverage and ocean sur-
faces has to be taken into account. The same equation of
motion is valid for GPS satellites, but the effects of the grav-
ity field of the Earth are much weaker and air-drag is non-
present.

Dynamic orbit determination can be considered as an or-
bit improvement procedure, where the orbitr(t) is developed
into a Taylor series with respect to the unknown orbit param-
eterspi (i = 1, ..., n) about the a priori dynamic orbitr0(t),
which is based on the a priori valuespi0 of the orbital param-
eters:

r(t) = r0(t) +

n∑
i=1

∂r0(t)

∂pi

(pi − pi0). (9)

The parameterspi include the initial state vector (position
and velocity) and all the dynamical parametersq1, ..., qd

that define the satellite force model. The partial derivatives
∂r0
∂pi

are computed from the so-called variational equations
(obtained as the partial derivative of the equation of motion,
Eq. 7) with respect to the parameterspi . The LEO equa-
tion of motion as well as all variational equations are usually
obtained by a numerical integration.

The use of so-called pseudo-stochastic pulses or small
changes in the velocity at user-determined epochs was de-
veloped for GPS orbits by the CODE Analysis Center Team,
see Rothacher and Mervart (1996), Beutler, et al. (1994). The
estimation of such pulses can easily be implemented into the
orbit determination procedure due to the nice feature that the
partials for such pulses can be computed as a linear combi-
nation of the partials with respect to the initial conditions.
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Frequently setting up stochastic pulses may be considered
equivalent to modeling air-drag and other forces with many
parameters. The pseudo-stochastic pulses allow a better fit of
the orbit to the measurements and are set up every 15 or even
9 minutes in our case.

In summary, the LEO dynamic orbit is parametrized in our
case by

– 6 initial conditions (Keplerian elements),

– 9 solar radiation pressure parameters,

– 1 air-drag scaling factor,

– pseudo-stochastic pulses every 9 or 15 min in along-
track, cross-track and radial direction.

4.1 Zero-difference dynamic POD

The only difference between dynamic and kinematic zero-
difference POD is, that kinematic coordinates for each epoch
are replaced by the orbital parameters mentioned above. This
means that the dynamical orbit parameters have to be esti-
mated together with zero-diff. ambiguities and epoch-wise
LEO clocks. In both cases high accuracy GPS clocks and
GPS orbits have to be available. By replacing the kinematic
by a dynamic orbit modelling the number of parameters is
considerably reduced and LEO satellite clock corrections are
the only remaining epoch-wise parameters. Later in this pa-
per we will show with real CHAMP data, that both approa-
ches provide orbits of similar quality. The quality of the GPS
satellite clocks used and the number of GPS satellites tracked
by the spaceborne LEO receiver are the two main factors that
influence the quality of the zero-difference kinematic POD,
whereas the quality of the dynamical models and parame-
terization and GPS satellite clocks primarily determine the
accuracy of the dynamic zero-difference POD.

4.2 Double-difference dynamic POD

In the case of double-difference dynamic POD the only pa-
rameters to be estimated are the double-difference ambigui-
ties and the orbital parameters. Highly accurate GPS satellite
clocks are not required for this method.

5 Parameter treatment in kinematic and dynamic POD

Table 1 shows the parameter statistics for zero- and double-
difference kinematic and dynamic POD with real CHAMP
data over one day. We immediately notice the huge num-
ber of phase observations stemming from the about 100 IGS
ground stations we selected. This together with the fast
changing geometry is also the reason why a huge number
of double-difference ambiguities are involved. Compared to
dynamic parameterization, kinematic POD has much more
epoch-wise parameters. Table 2 shows the treatment of pa-
rameters while forming the normal equation system. In or-
der to speed up computation, epoch-wise parameters (LEO
clocks and kinematic positions) are always pre-eliminated

Table 1. Parameter and observation statistics for zero-difference
(ZD) and double-difference (DD) dynamic and kinematic POD (for
CHAMP, day 148 in 2001)

Solution ZD Dyn ZD Kin DD Dyn DD Kin

Ambigiguitis 450 450 13200 13200
Orbit Parameters 300 - 300 -
Kinematic Coordinates - 8640 - 8640
LEO Clocks 2880 2880 - -

Total Number of Param. 3630 11700 13500 21840

Number of Observations 18400 18400 340000 340000

Table 2. Treatment of parameters in the zero- (ZD) and double-
difference (DD) dynamic and kinematic POD (CHAMP, day 148 in
2001)

Solution ZD Dyn ZD Kin DD Dyn DD Kin

Ambiguities pre-elim. estim. pre-elim. pre-elim.
Orbit Parameters estim - estim. -
Kinematic Coord. - pre-elim. - estim.
LEO Clocks pre-elim. pre-elim. - -
Time 24 h 24 h 24 h 8 h
CPU 10 min 10 min 90 min 60 min

epoch-by-epoch. At the end, only the normal equation ma-
trix consisting of parameters, that are not epoch-specific,
is inverted and in sequel, by back substitution, epoch-wise
parameters are obtained epoch-by-epoch. In the double-
difference kinematic case we have to pre-eliminate double-
difference ambiguities because of computer memory consid-
eration. We also see that the zero-diff. approaches are much
faster than double-differencing and usually (with data pre-
processing and the estimation of an a priori orbit) they re-
quire less that 10 minutes on a standard PC (800 MHz).

6 Ambiguity resolution in kinematic and dynamic POD

Only the double-difference approaches allow for ambiguity
resolution and this is why, in principle, the highest accuracy
should be achievable with these methods. In this section,
only the results of ambiguity resolution will be presented.
Details on the theoretical background can be found inŠvehla
and Rothacher (2002a) and inŠvehla and Rothacher (2002b).
Our ambiguity resolution approach is based on the fixing of

wide-lane ambiguities using the Melbourne-Wübbena linear
combination and subsequent fixing of narrow-lane ambigu-
ities using the ionosphere-free linear combination of phase
measurements only. In this way, the ionospheric delays that
show up in the classical wide-laning (phase only) technique
are eliminated. The main reason why this method works very
well is, that CHAMP code measurements are very accurate.
On the other hand, the QIF (quasi-ionosphere-free) ambigu-
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Fig. 2. Percentage of resolved wide-lane ambiguities over 11 days
using the Melbourne-Ẅubbena LC.
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Fig. 3. Percentage of resolved narrow-lane ambiguities over 11
days.

ity resolution strategy (see, Mervart, 1995) still does not pro-
vide satisfactory results due to the difficulties in the modeling
of the fast changing ionosphere environment for CHAMP.
Figure 2 shows the percentage of the resolved wide-lane am-
biguities over 11 days and Fig. 3 the percentage of resolved
narrow-lane ambiguities over the same test period. Although
the percentage of resolved ambiguities might seem small, it
will be shown that it has a considerable impact on the kine-
matic orbit quality.

7 SLR validation

All developed approaches described in this paper were tested
with real CHAMP data over a period of 11 days (days 140–
150, 2001) and validated with SLR measurements. The SLR
residuals were computed as the difference between the SLR
measurements (corrected for the tropospheric delay with the
Marini-Murray model) minus the distance between the SLR
station and the GPS-derived orbit position. Altogether 2007
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Fig. 5. SLR residuals for kinematic orbit with resolved ambiguities
(RMS = 56.4 mm).

SLR residuals were obtained in this way using 69 daily sta-
tion files from 17 SLR stations. For the validation of dynamic
orbits, the LEO positions were computed directly from the
dynamic orbit representation for the epoch, when the SLR
measurement took place. The offset between CHAMP cen-
ter of mass and SLR retro-reflector was applied using attitude
computed from Advanced Stellar Compass data. In the case
of kinematic orbits, the only difference is, that the kinematic
orbits are given with a sampling of 30 s and an interpola-
tion procedure is required in order to obtain positions at the
epochs of the SLR normal points. A linear interpolation was
used to get positions along an a priori dynamic orbit. We
noticed that the validation of kinematic orbits with SLR is
more difficult and the necessary interpolation may easily in-
crease the RMS by 1–2 cm. Another alternative would be to
form normal points exactly at the epochs, where kinematic
positions are defined, but raw SLR data would have to be
processed in this case and they are not easily available for all
SLR stations (Gurtner, 2002).

Figure 4 shows that the highest accuracy of 4–6 cm was



52 D.Švehla and M. Rothacher: Kinematic and reduced-dynamic precise orbit determination

0 500 1000 1500 2000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

R
es

id
ua

ls
 in

 m
et

er
s

Fig. 6. SLR residuals for double-diff. dynamic orbit (RMS = 44.3
mm), pseudo-stochastic pulses each 9 min.
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Fig. 7. Daily SLR range bias for zero-diff. dynamic orbit, mean
SLR bias of−11.1 ± 19 mm over all SLR residuals.

achieved with double-difference dynamic orbits and double-
difference kinematic orbits with ambiguity resolution. The
estimation of stochastic pulses every 9 min improves the or-
bit quality compared to the solution with 15-min pulses by
about 2 cm RMS-wise. The impact of ambiguity resolution
on kinematic orbits is very remarkable, whereas for dynamic
orbits it is relatively small and can be explained by the much
smaller number of parameters for the reduced-dynamic or-
bit representation, see Fig. 4. It it very important to mention
that in all kinematic and dynamic approaches no significant
bias could be detected in the SLR residuals. For example, for
double-difference dynamic orbits the bias is−1.3 ± 16 mm,
whereas for kinematic orbits it amounts to−5.0 ± 25 mm
over 11 days, see Fig. 8 and Fig. 9. The zero-difference or-
bits show a similar behaviour with a bias of−11.1 ± 19 mm
in the dynamic case, see Fig. 7.
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Fig. 8. Daily SLR range bias for double-diff. dynamic orbit, mean
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Fig. 9. Daily SLR range bias for double-diff. kinematic orbit, mean
SLR bias of−5.0 ± 25 mm over all SLR residuals.

8 Combined GPS/SLR Precise Orbit Determination

Figure 10 shows the combined GPS/SLR dynamic POD orbit
using SLR and zero-diff. phase measurements for day 144 in
2001 compared to the dynamic orbit estimated using the GPS
measurements only. Troposphere effects were modeled using
the Marini-Murray model and standard corrections like rela-
tivity, ocean-loading, station velocities were applied. Since
GPS satellite orbits and coordinates of the ground GPS points
were referring to ITRF97 in 2001, all SLR station coordi-
nates given in ITRF2000 were transformed to ITRF97 and
the combined LEO POD was done in this system. The com-
putation was performed using 9 SLR stations.

The comparison between the combined GPS/SLR dy-
namic orbit and the GPS-only solution reveals that SLR mea-
surements change the orbit by 1–2 cm. This value, of course,
heavily depends on the relative weighting between GPS pha-
se and SLR measurements. Because it is very difficult to
validate this combined orbit, the importance of the SLR data
mainly resides in the fact that systematic biases in the satel-
lite orbit model, the satellite attitude, GPS antenna phase cen-
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Fig. 10. Combined GPS/SLR dynamic zero-diff. POD compared to
GPS zero-diff. dynamic POD, day 144/2001.

ter variations, etc. might be detected. Anyway, more detailed
study should be performed with more recent CHAMP data
(see next section) and the weighting of the SLR measure-
ments.

In future, the combination of GPS and SLR data in the
case of kinematic POD will be a very interesting topic to
study, especially when using more recent CHAMP data. In
this case SLR normal points should be formed at the GPS
measurement epochs.

9 First results with more recent CHAMP data

In the year 2002, the CHAMP GPS receiver software was
changed to enable the tracking of up to 10 GPS satellites
at the same time. In order to assess the accuracy of kine-
matic and dynamic POD under these improved tracking con-
ditions, we computed zero-difference kinematic and dynamic
orbits for day 202/2002. Figure 11 compares these two or-
bit types and we see that they agree on the level of 2–3 cm.
Such a good agreement between kinematic and dynamic or-
bits clearly shows the impact of the increased number of
GPS satellites in the more recent CHAMP data. The stars in
the figure indicate epochs with missing attitude information
(nominal attitude was used in this case) and jumps may be
seen in the difference between the two orbit types at these
epoch increasing the RMS difference. The assessment of
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Fig. 11. Zero-diff. kinematic orbit compared to dynamic orbit, day
202/2002, starts are epochs with missing attitude information.

these kinematic and dynamic orbits with SLR measurements
results in an RMS of 2.1 cm and 2.3 cm, respectively.

10 Kinematic and dynamic velocities

Kinematic velocities of CHAMP are very interesting from
the point of view of the energy conservation approach in
gravity field recovery, see e.g. Gerlach et al. (2002).

Most simply, kinematic velocities can be obtained by
forming time differences of kinematic positions, whereas dy-
namic velocities are directly obtained when solving the equa-
tions of motion by numerical integration. In order to compute
unbiased kinematic velocities by forming time differences,
the LEO positions should be given with a high sampling rate.

Let us first compare CHAMP dynamic velocities between
several POD centers included in the CHAMP Orbit Com-
parison Campaign (see, Boomkamp, 2002a,b), namely be-
tween the Center for Space Research (CSR), Austin Texas,
the GeoForschungsZentrum (GFZ), Potsdam, Germany, and
the Technische Universität München (TUM), i.e. our dy-
namic velocities (see Figs. 12, 13 and 14). Just by compari-
son of the best CHAMP dynamic orbits, we can immediately
draw the conclusion that CHAMP dynamic velocities with a
precision below 0.1 mm/s can be computed.

Kinematic velocities can be computed in several ways.
One possibility is to fit a high-order polynomial to the kine-
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Fig. 12.Comparison of CHAMP dynamic velocities from CSR and
TUM, day 148/2001.

matic positions and to compute the first derivative of such
a polynomial. In this way a high-degree polynomial will fit
kinematic positions over a given time span and at the same
time smooth the kinematic positions. The second derivative
of such a polynomial will directly lead to kinematic accelera-
tions. In order to optimize this procedure, an a priori dynamic
orbit can be used and the high-order polynomial can be fit-
ted to the differences between kinematic orbit and dynamic a
priori orbit. In this way, the kinematic velocity will be given
as the sum of the dynamic velocity derived from the a priori
dynamic orbit and the first derivative of the polynomial used.
The main drawback of this method is that, depending on the
polynomial degree used for smoothing, systematic effects at
different frequencies may show up in the derived velocities.
One alternative to this method is to completely avoid the use
of any polynomial and any smoothing in this procedure and
just use plain differencing in time. The only disadvantage is
a somewhat increased noise level.

Figure 15 shows such non-smoothed kinematic CHAMP
velocities compared to the CHAMP dynamic velocities. Our
latest CHAMP zero-difference kinematic orbit and zero-
diff. dynamic orbit were used in this computation. Figures 13
and 15 clearly show that the accuracy of present CHAMP
kinematic velocities (without smoothing) is worse than that
of dynamic velocities. The noise level is somewhat higher in
the kinematic case, especially in the radial component, but by
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Fig. 13.Comparison of CHAMP dynamic velocities from GFZ and
TUM, day 148/2001.

making use of var/covariance information for the kinematic
positions, kinematic velocities can be reasonably weighted in
the gravity field recovery.

11 Conclusion

Methods for kinematic and dynamic precise orbit determi-
nation (POD) of low Earth orbiters (LEO) were developed
based on zero- and double-difference algorithms including
ambiguity resolution:

– Zero-difference kinematic POD,
– Zero-difference dynamic POD,
– Double-difference kinematic POD (ambiguity-float),
– Double-difference dynamic POD (ambiguity-float),
– Double-difference kinematic POD (ambiguity-fixed),
– Double-difference dynamic POD (ambiguity-fixed),
– Combined GPS/SLR dynamic POD.

All POD approaches but the last one mentioned were pre-
sented and tested using 11 days of real CHAMP data (20
to 30 May 2001) and validated independently with Satel-
lite Laser Ranging (SLR) measurements. This validation
with SLR showed that double-diff. dynamic and double-
difference kinematic approach with ambiguity resolution are
the two approaches providing the highest accuracy.
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Fig. 14.Comparison of CHAMP dynamic velocities from GFZ and
CSR, day 148/2001.

The accuracy of the double-difference dynamic orbits is at
a level of 4–5 cm (44.3 mm), whereas the kinematic ambi-
guity-fixed orbits have a quality of about 5–6 cm (56.4 mm).
Kinematic orbits of such a quality are extremely valuable
to assess dynamical orbit models and parameterizations and
may serve as input for gravity field recovery approaches. No
significant SLR bias could be detected in the two orbit types.
It is important to note that kinematic orbit positions should
always be used together with the corresponding variance-
covariance information. In addition, first results of a com-
bined GPS/SLR POD were presented.

First results with more recent CHAMP GPS data (July
2002) shows that the number of GPS satellites tracked by
the spaceborne GPS receiver plays a major role in kinematic
POD. The comparison of kinematic orbits from July 2002,
when up to 10 GPS satellites were tracked by the CHAMP
GPS receiver, with kinematic orbits computed for the period
of 11 days in the year 2001, where only up to 8 GPS satel-
lites were tracked simultaneously, shows an increase in the
accuracy by a factor of about two.
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56 D.Švehla and M. Rothacher: Kinematic and reduced-dynamic precise orbit determination

sembly, Nice, France, 21–26 April 2002, Adv. Geosciences, in
press, 2003.

Gurtner, W.: Personal comunications, 2002.
Hedin, A. E.: Extension of the MSIS Thermosphere Model into

the Middle and Lower Atmosphere, J. Geophys. Res., 96, 1159,
1991.

IGS: 2000 IGS Technical Reports, (Eds) IGS Central Bureau, JPL
Pasadena, California, 2000.

Mervart, L.: Ambiguity Resolution Techniques in Geodetic and
Geodynamic Application of the Global Positioning System, Vol.
53 of Geod̈atisch-geophys, Arbeiten in der Schweiz, Schweiz-
erische Geod̈atische Kommission, Switzerland, 1995.

Reigber, Ch., Balmino, G., Schwintzer, P., Biancale, R., Bode, A.,
Lemoine, J.-M., Koenig, R., Loyer, S., Neumayer, H., Marty,
J.-C., Barthelmes, F., Perosanz, F., and Zhu, S. Y.: A high-
quality global gravity field model from CHAMP GPS track-
ing data and accelerometry (EIGEN-1S), Geophys. Res. Lett.,

29(14), 10.1029/2002GL015064, 2002.
Rothacher, M. and Mervart, L.: (Eds), The Bernese GPS Software

Version 4.0. Astronomical Institute, University of Berne, 1996.
Schaer, S.: Mapping and Predicting the Earth’s Ionosphere Using

the Global Positioning System, Vol. 59 of Geodätisch-geophys,
Arbeiten in der Schweiz, Schweizerische Geodätische Kommis-
sion, Switzerland, 1999.
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