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A lot of applications have been developed recently 
for the forest inventory and monitoring employing 
LANDSAT TM and SPOT satellite data. The rapid 
quality development of a new satellite and radio- 
meter generation with high spectral and ground 
resolution provides new application possibilities 
for this area mainly in combination with sampling 
methods. Space Imaging’s IKONOS satellite belongs 
to this generation because in 1999 it made history 
with the world’s first one-meter commercial remote 
sensing satellite. IKONOS produces 1-meter black-
and-white (panchromatic) and 4-meter multispec-
tral (red, blue, green, near infrared) imagery that can 
be combined in a variety of ways to accommodate a 
wide range of high-resolution imagery applications. 
Moving over the ground at approximately 7 km/sec, 
IKONOS collects black-and-white and multispec-
tral data at a rate of over 2,000 km2/min. To date, 
IKONOS has collected nearly 100 mill km2 of im-

agery, through the nearly fifteen, 98-minute journeys 
it makes around the globe each day.

Different commercial and governmental organiza-
tions utilized IKONOS data to view, map, measure, 
monitor and manage different activities and ap-
plications. These range from disaster assessment to 
urban planning and agricultural and forestry assess-
ment and monitoring. Due to the very high ground, 
spectral and temporal resolution of IKONOS data 
and imagery products, determined by the level of 
positional accuracy, the possibilities of forestry ap-
plications are endless.

This research, also with respect to recent experi-
ences acquired from the application of Landsat TM 
and SPOT XS satellite data, is aimed at developing 
adequate methods for the assessment of spruce 
(Picea abies L.) timber growing stock as well as 
vegetation cover classification employing IKONOS 
satellite data.
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ABSTRACT: In recent years, satellite remote sensing has become a new tool for estimation of forest condition. The 
paper deals with spruce timber growing stock and vegetation cover assessment employing IKONOS satellite data from 
a mountain forest area of Central Slovakia. Original digital data as well as enhanced digital images were used to estimate 
some forest variables. Image enhancement approaches employing topographic normalization, PCA analysis and differ-
ent vegetation indices are a very important part of data processing. Apart from spectral characteristics, texture as an 
additional variable was utilized. In order to improve classification accuracy the knowledge of the vertical distribution 
of tree species also was incorporated into classifiers. Spectral signatures as auxiliary variables measured with the aid 
of training sets were utilized for the construction of spectral models for growing stock estimation. In spite of the fact 
that the standard error of these models is not very favourable as it varies about 30%, they offer initial information for 
application of different sampling designs for timber growing stock assessment, where the final precision is acceptable. 
Stepwise discriminant analysis was employed to choose appropriate sets for the classification of vegetation cover. Clas-
sification results show an assumed contribution of categorial knowledge for increasing the correctly classified pixel 
proportion and this improvement was on average about 10%. Likewise, the texture contributes to better resolution of 
some very near spectral classes.
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MATERIAL AND METHODS

Study area and image data

A forest section of the Management Plan Unit 
(MPU) in a mountain area of the High Tatras (Cen-
tral Slovakia) was chosen as test area. The area of 
MPU is relatively multiple with the range of heights 
above sea level from 980 to 2,052 m. Different forest 
types occur there, mainly Sombreto-Piceetum, Cem-
breto-Piceetum with dominance of spruce (Picea 
abies L.), also Cembreto-Mughetum and Mughetum 
acidofilum with dominance of dwarf pine (Pinus 
mugo T.). Mountain crests of MPU are covered with 
the meadow community where Calamagrostis vil-
losa, Vaccinium myrtillus, Vaccinium vitis-idea and 
Juncus trifidus are dominant.

The IKONOS Satellite image of the MPU was taken 
in August 2004 in panchromatic and multispectral 
modes. The satellite image was geometrically cor-
rected using a digital terrain model with spatial 
resolution 1 m and 13 ground control points. The 
reached total RMS was 1.27 m and 0.73 m for coor-
dinates x and y for panchromatic data and 1.32 m and 
0.74 m, respectively, for multispectral data. Spectral 
digital values (DN) were converted from the range 
11 bits to 8 bits (range of DN 0–255).

Stand mapping and enumeration of the forest 
compartments (compartments database) were 
performed using appropriate modules of INTER-
GRAPH software. Stand boundaries were digitized 
from a forest map at a scale 1:25,000. Auxiliary data 
(compartments variables) were gathered from the 
existing forest management plan.

Ground survey and spectral signature collection

Location of training polygons was targeted by a 
ground survey employing GPS technology. The ho-
mogeneous groups of vegetation representing classi-
fication classes for training polygons were chosen.

Spectral signatures as auxiliary variables in order 
to derive spectral reflectance models for spruce 
growing stock estimation were collected in indi-
vidual compartments employing training polygons. 
The size of these polygons for the calculation of 
mean spectral signature differed considering the 
knowledge that it is better to have a higher number 
of smaller polygons than a lower number of larger 
ones.

The ground data of the variable of interest (tim-
ber growing stock per ha) were measured in single 
compartments and in combination with the cor-
responding spectral signature they were used to 
derive spectral regression models for the estimation 
of timber growing stock from satellite data. In ad-
dition to spectral signatures, the age of the forest 
compartment was employed as an auxiliary variable 
because it could be easily determined from previous 
forest management plans and could be projected to 
the current data.

For the classification of vegetation cover the fol-
lowing classification classes were defined:

1 – dwarf pine	 6 – Calamagrostis villosa
2 – cembra pine	 7 – soil destruction
3 – spruce	 8 – Juncus trifidus
4 – stony debris	 9 – road
5 – rowan	 10 – water

Spectral signatures for growing stock estimation 
as well as vegetation cover classification were ob-
tained from different original and enhanced image 
data. Topographic normalization, PCA analysis, 
HIS transformation and different spectral indices 
were applied for original image data enhancement. 
Image texture was also employed in enhancement 
approaches for vegetation cover classification due 
to the latest knowledge that the object oriented ap-
proach could improve classification accuracy results 
(Ferro, Warner 2002; Franklin et al. 2001). It was 
analyzed by different algorithms which are based on 
the evaluation of image spectral variation in various 

Table 1. Algorithms of texture image analysis

Relative richness R = n/nmax × 100
Diversity H = –sum (p × ln(p))
Dominance D = Hmax – H
Fragmentation F = (n – 1)/(c – 1)
NDC – number of different neighbours in the matrix 3 × 3, 5 × 5 or 7 × 7 (1–9, 1–25, 1–49)
CVN – pixel number different from pixel value in the matrix 3 × 3, 5 × 5 or 7 × 7 (0–8, 0–25, 0–48)
BCM – number of different pixels in the matrix 3 × 3, 5 × 5 or 7 × 7

n – number of different classes occurring in the matrix, H – diversity, nmax – maximum number of classes in input image, 
Hmax – maximal diversity = ln(n), p – relative abundance of each class in the matrix, c – number of score cellules (9, 25 or 
49), ln – logarithm
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selected matrices 3 × 3, 5 × 5 or 7 × 7 pixels. Some of 
them are listed in Table 1. Totally more than 80 ima- 
ge data sets were used for spectral signature collec-
tion. Stepwise discriminant analysis was employed 
to choose appropriate sets for the classification of 
vegetation cover. The most appropriate, with re-
spect to visual interpretation as well as statistical 
evaluation, appear spectral vegetation indices for 
both applications. These are sensitive indicators of 
“on-the-scene” presence and condition of vegeta-
tion, mainly slope-based vegetation indices, which 
are combinations of the visible red and near infrared 
bands (Perry, Lautenschlager 1984). The values 
indicate both the status and abundance of green 
vegetation cover and biomass, e.g. the Corrected 
Transformed Vegetation Index (CTVI):
                  (NDVI + 0.5)          –––––––––––––––
CTVI = –––––––––––––– × √ABS (NDVI + 0.5)	 (1)
             ABS (NDVI + 0.5)

where the values of Normalized Difference Vegeta-
tion Index (NDVI) are transformed to suppress the 
negative values. Also the distance based vegetation 
indices bring satisfactory results. They are based on 
the Perpendicular Vegetation Index (PVI) and the 
main objective is to cancel the effect of soil bright-
ness to generate an image that only highlights the 
vegetation signal. This is important in areas where 
vegetation is sparse as well as in open forests. For 
example the Modified Soil-Adjusted Vegetation 
Index (MSAVI):
                 2pNIR+1–√(2pNIR+1)2–8(pNIR–pRED)
MSAVI = ––––––––––––––––––––––––––––––––	(2)
                                            2

Vegetation indices also allow compensation for 
changing light conditions, surface slope, exposition 
and other external factors, but for the signature 
collection mostly topographically normalized data 
(TN data) employing radiometric statistic empirical 
correction were utilized.

The maximum likelihood classification method 
was used for vegetation cover classification. This 
method enables to define also categorial knowledge 
for classified classes for the purpose of right classi-
fication improvement. Therefore the knowledge of 
the vertical distribution of single vegetation cover 
classes expressed by categorial likelihood images 
was applied in this research. These images from 
DTM data were created employing the sigmoidal 
membership function (Fig. 1). It enables to define 
the membership likelihood of single classes to fuzzy 
sets; value a represents full no membership, i.e. 
for heights above sea level lower or equal to this 
value the likelihood of assigned class is equal to 0. 
Value b represents full membership, i.e. likelihood 1,  

in c the function starts to drop below 1 and in d it 
gains likelihood 0 again. Likelihood between a, b, c, 
d fluently changes from 0 to 1 or 1 to 0 with respect 
to the type of selected function. The S curve was 
selected for our application. Fault values of the used 
function are shown in Table 2. For the evaluation of 
texture and categorical knowledge contribution to 
classification accuracy the following classification 
approaches were applied:
A.	Classification without utilization of categorial 

likelihood images;
B.	Classification with utilization of categorial likeli-

hood and texture;
C.	Classification with utilization of categorial likeli-

hood and with the exclusion texture image analy-
ses.

RESULTS AND DISCUSSION

Growing stock estimation

The parameters of the best spectral reflectance 
models for growing stock estimation (timber growing 
stock per hectare) are shown in Table 3. The inde-
pendent variables that best suited to multiple regres-
sions were chosen by stepwise variable selection.

The spectral reflectance models are linear and 
exponential, simple or multiple stochastic models, 
where dependent forest variable is the function of its 
mean spectral signature in single vegetation indices 
(models 1, 2, 3, 4) or transformed variable employing 
the ratio between the square of spectral value and the 
age of compartment (models 5, 6). Multiple linear 
models are a combination of both approaches. In 
contrast to simple regression, multiple regressions do 
not provide better results if only spectral signatures 
are used; however, if we introduce additional vari-
ables to multiple regression (transformed variable), 
the results are better. All models are significant; 
correlation coefficients vary from 0.63 to 0.80. In 
spite of the fact that the accuracy of these models 
is not very favourable, they offer initial information 
for the application of different sampling designs for 

b, c, d a, b, c

b, c

a d

cb

a d

Fig. 1. The sigmoidal membership function

d
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timber growing stock assessment. The application of 
two-phased sampling design utilizing derived spec-
tral reflectance models was investigated in previous 
research employing different remote sensing data 
(Scheer et al. 1997; Scheer, Akça 2001). Mainly 
two-phased sampling with regression or stratification 
is frequently applied in conjunction with aerial or 
satellite images. The results show that this approach is 
precise enough mainly for large-scale application and 
very effective in comparison with ground survey.

Vegetation cover classification

With respect to the results of stepwise discrimi-
nant analysis the following image data with spectral 
as well as textural information were chosen for veg-
etation cover classification:
– 	NRVI: normalized ratio vegetation index R/NIR,
– 	V2: texture defined by diversity H analyzed on NIR 

image enhanced by topographic normalization,

– 	RATIO: ratio vegetation index NIR/R,
– 	MSAVI: modified soil-adjusted vegetation index,
– 	RAT V5: ratio of RATIO and texture image NDC,
– 	VIR: texture characterized as relative richness 

employing R channel of the image,
– 	PCA2ST V: ratio of PCA 2nd component and tex-

ture R analyzed on RATIO. 
Classification of these image data sets is marked as 

B in classification results. Totally 8,380 pixels were 
used for the evaluation of classification results, when 
23% of them were used purely for control and 77% of 
training polygons from the ground survey were also 
applied for the training polygon creation.

The results of classification precision and accuracy 
evaluated on the basis of ground true data are shown 
in Table 4. The most exact is classification C with cat-
egorial likelihood utilization without texture images 
(Δw = ± 0.68, P = 0.95). The accuracy of classification 
by two characteristics was evaluated; as the ratio 
of right classified pixels (p) and by kappa or KHAT 

Table 2. Values of categorial knowledge of the likelihood of single class occurrence

Class
Membership to fuzzy set

a (0) b (1) c (1) d (0)
Dwarf pine 1,300 1,450 1,780 1,970
Cembra pine 1,500 1,600 1,650 1,800
Spruce 1,360 1,360 1,800
Stony debris For the whole image likelihood is 0.1
Rowan 1,300 1,300 1,800
Calamagrostis villosa 1,100 1,400 1,400
Soil destruction For the whole image likelihood is 0.7
Juncus trifidus 1,300 1,600 1,600
Road polygon
Water polygon

Table 3. Parameters of spectral reflectance models from IKONOS satellite data

Dependent variable Independent variable Model SE (%) Variance explained (%) F

Timber growing stock 
per ha (V/ha)

RVI 1 ± 31.61 41.1 33.7***

CTVI 2 ± 31.65 40.9 37.3***

MSAVI 3 ± 31.51 41.6 35.7***

TTVI 4 ± 31.72 41.0 34.8***

MSAVI2/age 5 ± 29.83 47.5 21.6***

NIR2/age 6 ± 28.75 51.2 16.5***

Multiple regression (Model 7)
                                                                                                                                                     NDVI2                      RATIO2
V/ha = 1,533.65 – 1,522 × 55 NRVI – 1,580 × 22 TVI – 177.89 × RATIO – 403.47 × ––––––– + 103.58 × –––––––
                                                                                                                                                      AGE                           AGE
SE (%) = ± 24.26%, variance explained: 65.3%
RVI = RED/NIR, RATIO = NIR/RED, SE (%) = standard error in percentage, CTVI = corrected transformed vegetation 
index, variance explained = r2, MSAVI = modified soil-adjusted vegetation index, F = F value (***highest significance),  
TTVI = thiam’s transformed vegetation index, NDVI = normalized difference vegetation index
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statistic, which ranges between 0 and 1 and expresses 
a proportional reduction in the error achieved by a 
classifier as compared with the error of a completely 
random classifier. Thus, the value 0.80 would indicate 
that the classifier was avoiding 80% of the errors that 
a totally random process would have produced. With 
respect to a comparison of both characteristics the 
expected share of categorial knowledge for classifi-

cation was unambiguously confirmed, higher KHAT 
statistic was achieved for classification B and C as 
compared with classification A, by about 9% and 
13%, respectively. Quite surprising is lower KHAT 
statistic for classification B in comparison with clas-
sification C in spite of the fact that with respect to the 
results of discriminant analysis images with texture 
characteristics were also chosen for classification B. 

Table 4. Comparison of classification precision and accuracy

Classification approach p (%) Δw (%) P = 0.95 KHAT (%)
Classification A 80 ± 0.86 69
Classification B 86 ± 0.74 78
Classification C 89 ± 0.68 82

Table 5. Classification contingency table employing categorial likelihood images of spectral characteristics as well as texture 
characteristics

Class
Reference data

Total e2 KHAT
1 2 3 4 5 6 7 8 9 10

1 4,200 0 10 0 0 24 0 23 0 0 4,257 0.01 0.97
2 9 102 0 0 0 0 0 0 0 0 111 0.08 0.92
3 8 45 1,441 0 9 0 0 0 1 0 1,504 0.04 0.95
4 0 1 2 232 0 0 36 0 1 0 272 0.15 0.85
5 1 22 108 0 73 0 0 0 0 0 204 0.64 0.35
6 293 7 9 0 12 476 0 76 0 0 873 0.45 0.52
7 0 1 8 27 0 0 39 2 0 0 77 0.49 0.50
8 429 4 3 1 0 7 0 593 0 0 1,037 0.43 0.53
9 0 0 0 0 0 0 1 0 21 0 22 0.05 0.95

10 0 0 0 0 0 0 0 0 0 23 23 0.00 1.00
Total 4,940 182 1,581 260 94 507 76 694 23 23 8,380

e1 0.15 0.44 0.09 0.11 0.22 0.06 0.49 0.15 0.09 0.00 0.14
KHAT 0.70 0.55 0.89 0.89 0.77 0.93 0.51 0.83 0.91 1.00 0.78

Table 6. Classification contingency table employing categorial likelihood excluding texture images

Class
Reference data

Total e2 KHAT
1 2 3 4 5 6 7 8 9 10

1 4,523 71 136 0 7 4 0 2 0 0 4,743 0.05 0.89
2 174 32 0 0 0 2 0 0 0 0 208 0.85 0.14
3 170 41 1,365 0 5 0 0 0 0 0 1,581 0.14 0.83
4 0 0 1 229 0 0 16 0 0 0 246 0.07 0.93
5 34 16 48 0 74 9 0 0 0 0 181 0.59 0.40
6 25 15 7 0 8 487 0 59 0 0 601 0.19 0.80
7 0 2 13 30 0 0 56 5 0 0 106 0.47 0.52
8 14 5 11 1 0 5 0 628 0 0 664 0.05 0.94
9 0 0 0 0 0 0 4 0 23 0 27 0.15 0.85

10 0 0 0 0 0 0 0 0 0 23 23 0.00 1.00
Total 4,940 182 1,581 260 94 507 76 694 23 23 8,380

e1 0.08 0.82 0.14 0.12 0.21 0.04 0.26 0.10 0.00 0.00 0.11
KHAT 0.81 0.15 0.83 0.88 0.78 0.96 0.73 0.90 1.00 1.00 0.82
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It points out that training polygons used for clas-
sification better represent the whole image spectral 
variation than texture characteristics.

A more detailed analysis of classification results 
in single classes for classification B is shown in Ta-
ble 5. This contingency table or so-called confusion 
matrix is prepared by classifying the training set of 
pixels, where the known class types of pixels used for 
training are listed versus the classes chosen by the 
classifier. In an ideal case, no diagonal of the confu-
sion matrix would be zero, indicating no misclassi-
fication. From the matrix also classification errors of 
omission and commission as well as KHAT statistic 
for single classes can be studied. Commission er-
rors (e2) are represented by no diagonal elements of 
the matrix where pixels are classified into a class to 
which they do not actually belong; omission errors 
(e1) represent the reverse type of situation.

As we can see, the most omitted classes are cem-
bra pine and soil destruction. Value e1 = 0.44 for 
cembra pine denotes that 44% of reference pixels 
are misclassified, 45 as spruce and 22 as rowan. For 
the class soil destruction (e1 = 0.49) 49% pixels was 
misclassified as stony debris. The most commit-
ted classes were rowan (e2 = 0.64), soil destruction  
(e2 = 0.49), Calamagrostis villosa (e2 = 0.45) and Jun-
cus trifidus (e2 = 0.43).

For a better explanation of texture contribution to 
classification accuracy classification results of classi-
fication C (classification without texture utilization) 
are also summarized in Table 6. The meaning of clas-
sification omission and commission in class cembra 
pine is evident again. KHAT statistics indicate that 
only 15% and 14% of pixels, respectively, in this 
class were classified correctly. In comparison with B 
classification, where these values were 55% and 92% 
respectively, it indicates a positive contribution of 
texture images, mainly to the elimination of this class 
spectral likeness with classes dwarf pine and spruce. 
These comparisons also for other classes are allowed 

by graphs in Fig. 2. It is evident that in class dwarf 
pine texture helps to decrease the commission error 
in favour of spruce, which contributes to accuracy 
classification improvement in both classes. At the 
same time texture markedly suppressed spectral dif-
ferentiation from similar textural classes of meadow 
communities. The last dominant wood species class 
rowan does not register with typical texture in spite 
of the prediction from the ground survey. Generally 
we can state for this class a very high proportion 
of incorrectly classified pixels, mainly in favour of 
spruce and partially dwarf pine as well. The overall 
classification accuracy of vegetation cover employing 
texture images was improved by about 16%.

CONCLUSION

Forestry is a very important area for remote sens-
ing applications where it is possible to estimate 
different forestry variables employing different 
methods of image analysis.

Spectral signatures as auxiliary variables meas-
ured with the aid of training sets are a good and 
acceptable basis for the construction of spectral 
models for growing stock estimation. In spite of 
the fact that the standard error of these models is 
not very favourable, it varies about 30%, they offer 
initial information for the application of different 
sampling designs for timber growing stock assess-
ment, where the final precision and effectiveness 
are acceptable.

On the basis of vegetation cover classification it 
is possible to draw the following conclusion and 
recommendations:
– 	in spite of broken topography topographic nor-

malization does not contribute meaningfully to 
classification accuracy, for visual interpretation 
its addition was significant, but for classification 
topographic normalization was sufficiently sub-
stituted by vegetation indices, 
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Fig. 2. Comparison of KHAT omission (a) and commission (b) statistics employing texture or spectral characteristics ( texture, 
 spectral)
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– 	the assumed contribution of categorial knowledge 
for result improvement employing maximum 
likelihood classification was achieved,

– 	texture is an additional variable whose precise 
classification and utilization can be recommended 
mainly in applications where there exists a strong 
conjunction between spectral characteristics, e.g. 
for tree species classification.
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Určovanie niektorých charakteristík stavu lesa pomocou kozmických snímok 
ikonos

ABSTRAKT: V poslednom období sa kozmický diaľkový prieskum stáva dôležitým nástrojom pre účely zisťovania 
stavu lesa. Práca je zameraná na odhad porastovej zásoby smreka a klasifikáciu vegetačného krytu pomocou kozmic-
kých snímok IKONOS. Pôvodné a vylepšené digitálne kozmické údaje boli použité k odhadu niektorých charakteristík. 
Topografická normalizácia, analýza hlavných komponentov a rôzne vegetačné indexy, ktoré radíme medzi metódy 
vylepšovania obrazu, sú dôležitou súčasťou jeho spracovania. Ako pomocná premenná bola okrem spektrálnych cha-
rakteristík použitá textúra. Za účelom zlepšenia správnosti klasifikácie boli do klasifikátorov zahrnuté aj kategoriálne 
poznatky o vertikálnom rozmiestnení jednotlivých druhov drevín. Spektrálne signatúry k odhadu porastovej zásoby 
pomocou spektrálnych modelov odraznosti boli určené pomocou trénovacích polygónov. Napriek tomu, že presnosť 
týchto modelov nie je veľmi priaznivá (stredné chyby kolíšu okolo 30 %), poskytujú počiatočné informácie pre apliká-
ciu rôznych výberových postupov k odhadu zásoby porastov s akceptovateľnou presnosťou. Kroková diskriminačná 
analýza bola použitá k výberu vhodných obrazových súborov pre klasifikáciu vegetačného krytu. Výsledky klasifikácie 
potvrdzujú predpokladaný prínos kategoriálnych poznatkov na zlepšenie správnosti klasifikácie; toto zlepšenie bolo 
v priemere o 10 %. Rovnako textúra prispela k lepšiemu rozlíšeniu niektorých spektrálne blízkych tried.

Kľúčové slová: IKONOS; porastová zásoba; textúra; kategoriálne poznatky; vegetačný kryt
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