
Real-time behavioral DGA detection through
machine learning

Federica Bisio, Salvatore Saeli, Pierangelo Lombardo, Davide Bernardi, Alan Perotti, Danilo Massa
aizoOn Technology Consulting

Strada del Lionetto 6
10146, Turin, Italy

Email: [name].[surname]@aizoongroup.com

Abstract—During the last years, the use of Domain Generation
Algorithms (DGAs) has increased with the aim of improving the
resiliency of communication between bots and Command and
Control (C&C) infrastructure. In this paper, we report on an
effective DGA-detection algorithm based on a single network
monitoring. The first step of the proposed method is the detection
of a bot looking for the C&C and thus querying many auto-
matically generated domains. The second phase consists on the
analysis of the resolved DNS requests in the same time interval.
The linguistic and semantic features of the collected unresolved
and resolved domains are then extracted in order to cluster
them and identify the specific bot. Finally, clusters are analyzed
in order to reduce false positives. The proposed solution has
been evaluated over (1) an ad-hoc network where several known
DGAs were injected and (2) the LAN of a company. In the first
experiment, we deployed different families of malware employing
several DGAs: all the malicious variants were detected by the
proposed algorithm. In the real case scenario, the algorithm
discovered an infected host in a 15-day-long experimental session,
while producing a low false-positive rate during the same period.

I. INTRODUCTION

Cybercrime constitutes one of the most serious threats
to the current society, with heavy and sometimes dramatic
consequences for many companies, organizations and single
individuals [14, 18, 20, 26, 30]. During the last number of
years, a key role in cybercrime has been played by botnets:
these are networks of compromised computers (popularly
referred to as zombies or bots), which are controlled by
a remote attacker (popularly referred to as a bot herder)
through specific Command and Control (C&C) channels. The
strength of the botnet resides in the fact that it can be a
highly distributed and highly changeable network, making the
tracing and the recovery of all the infected components very
difficult, and therefore allowing a secure and stable platform
for the implementation of a wide range of malicious and illegal
activities such as the spreading of ransomwares, exploit kits,
banking trojans, etc. [4, 7, 11, 12, 17, 23, 25, 32].

In botnets, the bot herder and bots can exchange information
using different protocols; P2P-based botnets have a more
robust C&C structure that is difficult to detect and take down,
but they are typically harder to implement and maintain.

In order to combine the simplicity of centralized C&Cs with
the robustness of P2P-based structures, many attackers employ
HTTP botnets that locate their C&C servers through the

dynamic generation of domains using a Domain Generation
Algorithm (DGA), also known as domain-flux. With this
technique, each bot, using a precalculated seed value known to
the bot herder (e.g., the current date), automatically generates
hundreds or thousands of pseudo-random domain names that
represent candidate C&C domains. The bot sends DNS queries
until it connects to the IP address associated to a resolved
domain. The key advantage of this strategy is that even if one
or more C&C domain names or IP addresses are identified
and recovered, the bots will query the next set of automatically
generated domains and it will eventually get the IP address of a
relocated C&C server. DGA provides therefore a remarkable
level of agility and a very resilient communication channel
between bots and C&C, making it one of the most used
technique in botnet control [6, 7, 8, 12, 15, 24, 33].

For these reasons, DGA detection is of crucial importance
in cyber security. A number of different approaches to DGA-
detection have been implemented, but DNS-based analysis
is one of the most appropriate to obtain quick responses,
since it does not need file dumps and it only requires the
analysis of a small part of the network traffic (in particular,
it can ignore packets’ payloads). For this reason, many recent
works focused on automatically recognizing DGA within DNS
traffic, whenever occurring. Many efforts have been made to
use supervised or signature-based approaches [5] but these
have obtained limited results in the highly dynamic DGA
realm. Therefore, some works have applied unsupervised tech-
niques on DNS traffic data provided by some Internet Service
Provider [9, 22, 28, 29] or retrieved by collecting the DNS
traffic of a single network [15, 21, 33].

In this paper, we report on an effective DGA-detection al-
gorithm which analyzes the DNS traffic of a single network in
near-real-time: if we consider a network as the one described
in Tab. I, the average execution time of the algorithm is 2
seconds, while the average time between two subsequent runs
of the algorithm is 3 minutes and 48 seconds (see Sec. III for
more details). The ability to detect an attack in near-real-time
is crucial, as it allows for a quick reaction and it is the only
way to prevent a potentially severe damage to the company
which is using the network under attack [14, 31].

The remainder of the paper is structured as follows. In
Sec. II we briefly describe aramis, the monitoring platform
which contains the DGA detection method which is the focus



of this paper and which is described thoroughly in Sec. III.
Finally, we discuss the experimental results in details in
Sec. IV and possible future developments in Sec. V.

II. ARAMIS

The proposed DGA-detection algorithm has been deployed
in aramis (Aizoon Research for Advanced Malware Identifi-
cation System), a network security monitoring platform able
to automatically identify a wide range of malware and attacks
in near-real-time. aramis software is bundled with dedicated
hardware1, and its structure can be summarized in four phases:

1) Collection: sensors are placed in various nodes of the
network. Each sensor gathers the data from its segment
of the network, pre-analyzes them in real-time and sends
the results to a NoSQL database.

2) Enrichment: inside the NoSQL database, data is enriched
with information coming from the aramis Cloud Service,
which collects intelligence from various OSINT sources
and from internally managed sources.

3) Analysis: two kinds of analyses are executed on the
stored data: (i) advanced cybersec analytics to spot and
highlight specific attacks, among which DGAs, and (ii)
a machine learning engine which compares the behavior
of each node with the usual one.

4) Visualization: the results are presented through cognitive
dashboards, which are crucial to highlight anomalies.

The cycle of the four phases restarts after a period ∆t which
slightly depends on the quantity of analyzed traffic. On the
network described in Tab. I ∆t = 228 ± 92 seconds, which
represents the best trade-off between the need of many network
data in order to have statistically significant results and the
requirement of near-real-time analysis.

III. DGA DETECTION METHOD

The aim of the proposed DGA-detection method is the
near-real-time identification of domain-flux attacks via the
monitoring of a single network. To this purpose, the method
is composed of several steps of analysis:

• Collection of unresolved DNS requests (UNRES): in
order to detect a bot trying to connect with the C&C, all
the UNRES in a suitable amount of time are collected.
The sudden and huge increase of UNRES may in fact
indicate the tentative of connection with several untrusted
automatically generated domains.

• Filtering and preprocessing of UNRES: all the queries
due to user errors (e.g., typos of popular domains) and
system misconfigurations are removed.

• Outlier detection: the hosts producing the highest peaks
of UNRES are identified.

• Extraction of resolved DNS requests (RES): since a bot
stops querying when an existent domain is hit and a
successful connection is established, RES near the peaks
identified in the previous step are collected.

1E5-2690 2.9GHz x 2 (2 sockets x 16 cores) 16 x 8GB RAM, 1.1TB HDD

• Domain features extraction: all the collected RES and
UNRES are mapped in a feature space able to embed the
linguistic and semantic components (see Sec. III-E).

• Clustering: domains which are similar according to the
features extracted in the previous step, are grouped to-
gether in order to spot common patterns of the specific
bot.

• False positives removal: the level of homogeneity of
the clusters is calculated. This allows the distinction
between true DGAs (associated with highly homogeneous
clusters) from the expected legit unresolved DNS peaks
(associated with less homogeneous clusters).

In the following we describe the details of each step.

A. Collection of UNRES

aramis framework operates in near-real-time, therefore all
the UNRES are continuously downloaded and analyzed. On
the network described in Sec. IV-B, the complete DGA-
detection algorithm takes an average time of 2 seconds to
complete. Anyway, as discussed in Sec. II, the algorithm is
integrated in aramis, which takes an average time ∆t of about
3 minutes and 48 seconds to collect all network data and
perform the analyses. After this process, aramis produces a
detailed analysis of the network risk and restarts a new cycle
of analysis.

B. Filtering and preprocessing of UNRES

The following filters are applied to the retrieved UNRES:

• Requests containing invalid or malformed Top Level
Domains (TLDs) are removed. Typically, they are due
to typos or user errors.

• Overloaded DNS: DNS queries are sometimes overloaded
so to provide anti-spam or anti-malware techniques. In
order to reduce noise, the overloaded DNS are removed.

• Local and private domains are removed.
• White list domains (i.e., domains that are known to be

trusted) are removed.
• Popular domains are removed. More specifically, three

popular domains sources are considered: the top 10000
domains in the world provided by Alexa [2], the web
URLs of the 500 world biggest companies provided by
Forbes [3] and the top 100 domains collected inside the
network under analysis. In all these cases, the second
and third level domains of an input domain are extracted
and compared with the second and third level domains of
the list of popular domains; if the Jaro-Winkler distance
[27] is below 0.1, the input domain is considered as a
misspelling of a popular domain and removed.

• Configuration words: domains containing certain sub-
strings (e.g., words related to network system and struc-
ture) are filtered out, because they represent congenital
network traffic.

• ARPA domains are filtered out, since they are only used
for reverse DNS lookup.



• If a TLD is found in the third or higher levels, it is
considered as a misconfiguration of the web browser or
of the particular application and hence it is removed.

• If an IP address is found in the third or following levels,
it is considered as an internal domain and it is removed.

The filtering phase removes the largest part of the initial
UNRES; usually just a 5-10% of the queries are not filtered
out and proceed through the other steps of the algorithm.

C. Outlier Detection

In order to recognize burst in the UNRES traffic, time is
discretized and the number of UNRES for each machine in
each time interval is considered part of a time series, which
is described in terms of 6 different statistical methods:

• deviation from the expected distribution calculated via
– Gaussian estimate
– kernel density estimate

• arima model [10]
• deviation from the expected behavior calculated on a

moving window via
– mean and standard deviation
– median and median absolute deviation
– interquantile range

Each method can be considered as a binary classifier
between ordinary points and outliers, and the results of all
classifiers are combined with an ensemble classifier based
on a weighted majority rule2, which has been shown to
perform typically better than any single classifier [13]. The
identification of outliers in the distribution of the number of
UNRES allows to detect potentially suspicious machines.

D. Extraction of resolved DNS requests

Once the suspicious machines are detected, the extraction
of the related RES is performed. In particular, all the RES
occurring in a time interval τ around the UNRES peaks are
collected. The interval τ is set to 20 seconds; this choice
represents a trade-off between the need of a large τ to
compensate possible delays in the network data collection and
the necessity of a small τ in order to avoid casual associations
of RES with a cluster of UNRES.

E. Domain features extraction

The purpose of this phase is the creation of a common
feature space for RES and UNRES, able to map into an
array of numbers the linguistic peculiarities of the domains
under analysis. Pseudo-random domains generated by the same
algorithm typically share at least some common linguistic
attributes, while legitimate domains are not generated by an al-
gorithm and, hence, should not show similarities in the domain
structure. It is known however [15] that some modern DGAs
employ English dictionary words with little modifications; for

2The weight used for each method is proportional to the inverse of the
mean number of outliers detected by that method: this means that an alarm
reported by a method which often presents alarms has a smaller relevance
compared to an alarm presented by a usually cautious method.

this reason both linguistic and non-linguistic features have
been considered 3. Therefore, the main idea is to extract the
most relevant features of both RES and UNRES in order to
find common patterns able to characterize a specific C&C
connection. In this way, we are able to perform the subsequent
clustering phase and group together domains showing a similar
pattern, therefore defining the behavior of a particular bot.

The extracted linguistic features are the following:
• Number of levels in the domain
• For the second and third levels: distance of the mono-

grams probability distribution from the one of mono-
grams in the English language

• For the second and third levels: distance of the bigrams
probability distribution from the one of bigrams in the
English language

• Entropy in characters distribution of the second and third
levels

• Number of characters of the second and third levels

TABLE I
NETWORK DESCRIPTION

Real Network Malware Lab
N. of machines 288 269
N. of clients 209 185
Average N. of connections 136 k / hour 452 k / hour
Average N. of UNRES 791 / hour 14 k / hour
Average N. of RES 59 k / hour 184 k / hour

F. Clustering

Once the domain features are extracted, a k-means clus-
tering [16] is performed on the feature space. The number
of clusters Nc is set equal to a fifth of the number of
input domains, because this was found as the best trade-off
between the need of a large Nc in order to obtain highly
homogeneous groups and the need of a small Nc to avoid the
separation of domains belonging to the same DGA into many
different clusters. Moreover, every cluster has an associated
homogeneity value corresponding to the average proximity of
the samples of the cluster with the related centroid.

After creating the clusters, malicious clusters have to be
recognized; they are identified in the following way:

• Clusters formed by both RES and UNRES and where the
number of UNRES is higher than the number of RES;

• Clusters which only contain UNRES.
In both cases, we assign an anomaly indicator A to each

malicious cluster proportional to its value of homogeneity.
Therefore, A has minimum value A = 0 (no anomaly detected)
and maximum value A = 1 (maximum anomaly detected).
The two kinds of clusters contain respectively DGAs which
eventually contacted a C&C and DGA attempts which did not
find a C&C. Thus, A for the second case is reduced by a
corrective factor λfail = 0.8.

3This choice allowed for the identification of English-dictionary-based
DGAs (see Sec. IV-A), e.g., Gozi ISFB, Rovnix, Matsnu, Suppobox.



TABLE II
MALWARE DESCRIPTION AND DETECTION RESULTS

Malware type Domain layout Domain
length

Malware names C&C / sinkhole
alive

Clusters Resolved
domains

A

Banking Trojan

Alphabetic

Fixed
Fobber [Tinba v3] Yes 40 2 0.9841

Ranbyus Yes 38 5 0.9842
Tinba [TinyBanker, Zusy] Yes 29 6 0.9937

Variable
Qakbot Yes 71 2 0.9864
Ramnit Yes 40 1 0.8885

Vawtrak [Neverquest, Snifula] No 82 2 0.9638
Alphabetic + seed Fixed Banjori [MultiBanker 2, BankPatch(er)] Yes 116 3 0.9955

Alphanumeric

Fixed Qadars v3 No 52 1 0.9850

Variable

Newgoz [Gameover Zeus] Yes 42 3 0.9926
Shiotob No 57 2 0.9615
ZeusBot Yes 84 1 0.9731

Murofet v3 [Licat] Yes 44 1 0.9859
Alphanumeric + DDNS Variable Corebot Yes 55 4 0.9847

Dictionary Variable
Gozi ISFBa [Ursnif, Snifula, Papras] Yes 30 2 0.9766
Gozi ISFBb [Ursnif, Snifula, Papras] Yes 51 3 0.9776

Rovnix No 174 3 0.9875

Botnet
Alphabetic Fixed PushDO [Pandex, Cutwail] No 63 2 0.9995

Alphabetic + DDNS Variable Kraken v1 [Bobax, Oderoor] Yes 70 5 0.9834
Alphabetic Variable Necurs Yes 39 2 0.9664

Exploit Kit Alphabetic Variable Blackhole No 63 3 0.9924

Ransomware Alphabetic
Fixed Cryptolocker No 24 2 0.9984

Padcrypt Yes 84 4 0.9908

Variable DirCrypt No 16 2 0.9784
Locky v3 Yes 30 3 0.9738

Trojan Horse

Alphabetic
Fixed

Dnschanger [Alureon] No 57 1 0.9959
Ramdo No 131 3 0.9894
Simda Yes 34 3 0.9984

Sisron [TOMB, Trojan.Scar] Yes 10 1 0.9807
Srizbi No 14 1 0.9964

Variable Bamital Yes 21 1 0.9888
Nymaim No 48 3 0.9643

Alphabetic + DDNS Variable Vidro Yes 130 4 0.9866
Symmi Yes 49 2 0.9816

Alphanumeric Fixed Chinad Yes 17 1 0.9861
Variable Beped No 35 2 0.9822

Dictionary Variable Matsnu No 74 3 0.9897
Suppobox Yes 52 1 0.9267

Worm Alphabetic
Fixed Tempedreve No 38 2 0.9877

Variable Proslikefan Yes 98 5 0.9957
Pykspa [Pykse,Skyper, SkypeBot] Yes 58 5 0.9835

aEmploying ”luther” dictionary
bEmploying ”nasa” dictionary

G. False positive removal

The anomaly indicator of each cluster is rescaled in order
to reduce false positives. The effect of this rescaling is to
further decrease low values of A (usually associated with
false positives), to highlight large values of A and to enhance
the differences in the interval [0.3, 0.75], which has been
recognized in the training phase as the overlapping region
between the most uncertain false positives and true positives.

IV. EXPERIMENTAL EVALUATION

The DGA-detection algorithm described above was evalu-
ated within two different experimental designs:

• 40 DGA snippets belonging to different malware families
were used to inject real DGA network traffic into an
ad-hoc network (malware lab, see Tab. I). The malware
families of the DGA snippets include banker trojans,

ransomwares, worms (see Tab. II for a complete list) and
cover all the most relevant DGA-attack scenarios.

• The LAN of a real company (described in Tab. I) was
observed for a 15-day-long experimental session.

A. Network traffic injection

The first round of experiments consisted in 40 DGA snippets
belonging to different malware families used to simulate real
DGA traffic inside the malware lab, which is described in
Tab. I. In order to simulate the successful connection to the
C&C, a technique similar to sinkholing [19, 8] was used:
before the injection of the traffic generated by each snippet, a
couple of the domains produced by the snippet were registered
in the FakeDns of the malware lab. Each registered domain
was associated to an IP address of a honeypot running a web



server 4.
Tab. II provides a synthetic description of the malware used

in the experiments and the related detection results. For each
malware, it contains the following information:

• Malware type
• Domain layout, i.e., elementary components of the gen-

erated domains [24]
• Domain length (fixed or variable)
• Specific names of the malware; aliases of the malware

names are reported in square brackets
• C&C / sinkhole alive, i.e., a field indicating if at least one

domain (in addition to the ones registered as described
in Sec. IV-A) was resolved during the experiments

• Number of clusters, i.e., number of groups of similar
domains found by the algorithm described in Sec. III-F

• Number of clusters containing resolved DNS requests
• Anomaly indicator A, as described in Sec. III-F
From Tab. II it is possible to notice that the proposed DGA-

detection framework successfully detected all the malware
variants with a high anomaly indicator. In fact, the value of
A averaged on all the samples is 0.9806. Moreover, all the
malicious RES have been identified, thus giving the possibility
to detect all the active C&Cs, which were reported to the
appropriate OSINT repositories.

B. Real company scenario

The second round of experiments was performed through
the monitoring of the LAN of a real company, in order to
provide a real case test of the proposed solution. In this way,
we were able to reliably estimate the false positive rate.

aramis was run for a 15-day-long experimental session. In
order to evaluate the performances, we distinguished between
RES and UNRES requests. The RES case represents the riski-
est situation, since the complete domain-flux attack took place;
in this case, therefore, the first concern is the avoidance of false
negatives, while some false positives might be tolerated.

On the contrary, the UNRES situation is less risky since
it indicates that the potential malware unsuccessfully tried to
connect to the C&C. Therefore, in the latter case, a higher
false negative rate might be tolerated.

Out of the 285 k unresolved domains of the whole network
collected during the observation, the algorithm detected 37 and
1720 domains respectively for the RES and the UNRES case.

We collected results with two different granularities:
• A > 0: in this case all the alarms are considered.
• A > 0.7: in this case only the alarms with Anomaly

Indicator greater than 0.7 (high risk) are considered.
Tab. III reports the obtained results. In particular, it is

possible to notice that a real domain-flux attack, including the
final contact with the C&C (RES case), has been completely
detected. In fact, the alarms associated with this detection
were investigated and led to the discovery of the activity of a
banking trojan (VawTrak [1]). In this case, as it can be noticed

4Besides the DNS registered in the experiment, other domains were
resolved, revealing the presence of active C&Cs or sinkholes.

TABLE III
REAL NETWORK RESULTS

UNRES case A > 0 A > 0.7
DGA Not DGA DGA Not DGA

Detected 1.65 k 70 1.65 k 42
Undetected 0 285 k 0 285 k
RES case A > 0 A > 0.7

DGA Not DGA DGA Not DGA
Detected 37 0 37 0

Undetected 0 21.3 M 0 21.3 M

in Tab III, all malicious clusters were detected with A > 0.7.
Moreover, it is possible to observe that the false positive rate is
equal to zero for the RES case, hence allowing to completely
distinguish the real attacks from the normal traffic.

Besides, we also analyzed the UNRES case. It is possible
to notice that all the 1.65 k malicious UNRES were detected
with A > 0.7, while the false positive rate is very low: the
0.02% of the 285 k non-malicious UNRES are presented in
output by the algorithm, and only the 0.01% has A > 0.7.

Therefore, we can conclude that the proposed method is able
to detect potentially infected machines in near-real-time and
with high anomaly indicators, while limiting the false positives
at the same time.

V. CONCLUSIONS

In this paper, we proposed a DGA-detection method based
on the analysis of the DNS traffic of a single network; the
analysis requires aramis security monitoring system.

The proposed solution has been evaluated over two net-
works: (i) an ad-hoc network, where traffic generated with
DGA snippets belonging to different DGA attacks was injected
and (ii) the LAN of a real company. In the first experiment,
all the malicious variants were detected, while in the real case
scenario the algorithm discovered an infected host. Thus, the
experimental evaluation has confirmed the effectiveness of the
proposed approach.

As a future development, we plan to refine the clustering
algorithm by adding weights to domain levels in the linguis-
tic features extraction phase and by recognizing the layout
(alphanumeric or alphabetic). Another aspect that we plan to
improve is the filtering phase, with the introduction of a filter
for Content Delivery Networks (CDN) and Round Robin DNS
(RRDNS), with the development of a CDN/RRDNS identifi-
cation algorithm. Other developments include the introduction
of a specific dictionary for the country where the network is
located, the filtering of queries used by some browser (e.g.,
Chrome and Chromium) to determine if the user is on a
network that intercepts and redirects requests for nonexistent
hostnames, and the refinement of local domains identification.

REFERENCES

[1] https://www.blueliv.com/downloads/network-insights-
into-vawtrak-v2.pdf.

[2] http://www.alexa.com.
[3] http://www.forbes.com.



[4] K. Alieyan, A. ALmomani, A. Manasrah, and M. M.
Kadhum. A survey of botnet detection based on dns.
Neural Computing and Applications, pages 1–18, 2015.

[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster. Building a dynamic reputation system for
dns. In USENIX security symposium, pages 273–290,
2010.

[6] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon. From throw-away
traffic to bots: Detecting the rise of dga-based malware.
In USENIX security symposium, volume 12, 2012.

[7] A. H. R. A. Awadi and B. Belaton. Multi-phase irc botnet
and botnet behavior detection model. arXiv preprint
arXiv:1501.03241, 2015.

[8] T. Barabosch, A. Wichmann, F. Leder, and E. Gerhards-
Padilla. Automatic extraction of domain name gener-
ation algorithms from current malware. In Proc. NATO
Symposium IST-111 on Information Assurance and Cyber
Defense, Koblenz, Germany, 2012.

[9] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Ex-
posure: Finding malicious domains using passive dns
analysis. In Ndss, 2011.

[10] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M.
Ljung. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

[11] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A taxonomy
of botnet structures. In Computer Security Applications
Conference, 2007. ACSAC 2007. Twenty-Third Annual,
pages 325–339. IEEE, 2007.

[12] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos,
M. Van Steen, and N. Pohlmann. On botnets that use
dns for command and control. In Computer Network
Defense (EC2ND), 2011 Seventh European Conference
on, pages 9–16. IEEE, 2011.

[13] T. G. Dietterich et al. Ensemble methods in machine
learning. Multiple classifier systems, 1857:1–15, 2000.

[14] T. Grance, K. Kent, and B. Kim. Computer security
incident handling guide. NIST Special Publication,
800:61, 2004.

[15] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak. Detect-
ing dga malware using netflow. In Integrated Network
Management (IM), 2015 IFIP/IEEE International Sym-
posium on, pages 1304–1309. IEEE, 2015.

[16] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-
means clustering algorithm. Journal of the Royal Statisti-
cal Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[17] G. Hogben, D. Plohmann, E. Gerhards-Padilla, and
F. Leder. Botnets: Detection, measurement, disinfection
and defence. European Network and Information Secu-
rity Agency, 2011.

[18] M. Korolov. Cyber security review. Treasury & Risk,
2012.

[19] F. Leder, T. Werner, and P. Martini. Proactive botnet
countermeasures: an offensive approach. The Virtual
Battlefield: Perspectives on Cyber Warfare, 3:211–225,

2009.
[20] F. Lemieux. Investigating cyber security threats: Explor-

ing national security and law enforcement perspectives.
2011 Developing Cyber Security Synergy, page 63, 2011.

[21] M. Mowbray and J. Hagen. Finding domain-generation
algorithms by looking at length distribution. In Soft-
ware Reliability Engineering Workshops (ISSREW), 2014
IEEE International Symposium on, pages 395–400.
IEEE, 2014.

[22] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero.
Phoenix: Dga-based botnet tracking and intelligence. In
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 192–211.
Springer, 2014.

[23] E. Soltanaghaei and M. Kharrazi. Detection of fast-flux
botnets through dns traffic analysis. Scientia Iranica.
Transaction D, Computer Science & Engineering, Elec-
trical, 22(6):2389, 2015.

[24] A. K. Sood and S. Zeadally. A taxonomy of domain-
generation algorithms. IEEE Security & Privacy,
14(4):46–53, 2016.

[25] M. Stevanovic and J. M. Pedersen. On the use of machine
learning for identifying botnet network traffic. Journal
of Cyber Security and Mobility, 4(3):1–32, 2016.

[26] R. W. Taylor, E. J. Fritsch, and J. Liederbach. Digital
crime and digital terrorism. Prentice Hall Press, 2014.

[27] W. E. Winkler. String comparator metrics and enhanced
decision rules in the fellegi-sunter model of record link-
age. 1990.

[28] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan.
Detecting algorithmically generated malicious domain
names. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pages 48–61. ACM,
2010.

[29] S. Yadav and A. N. Reddy. Winning with dns failures:
Strategies for faster botnet detection. Security and pri-
vacy in communication networks, pages 446–459, 2012.

[30] T. Yadav and R. A. Mallari. Technical aspects of cyber
kill chain. arXiv preprint arXiv:1606.03184, 2016.

[31] X. Yin, W. Yurcik, Y. Li, K. Lakkaraju, and C. Abad.
Visflowconnect: Providing security situational awareness
by visualizing network traffic flows. In Performance,
Computing, and Communications, 2004 IEEE Interna-
tional Conference on, pages 601–607. IEEE, 2004.

[32] H. R. Zeidanloo, M. J. Z. Shooshtari, P. V. Amoli,
M. Safari, and M. Zamani. A taxonomy of botnet
detection techniques. In Computer Science and Informa-
tion Technology (ICCSIT), 2010 3rd IEEE International
Conference on, volume 2, pages 158–162. IEEE, 2010.

[33] H. Zhang, M. Gharaibeh, S. Thanasoulas, and C. Pa-
padopoulos. Botdigger: Detecting dga bots in a single
network. In Proceedings of the IEEE International
Workshop on Traffic Monitoring and Analaysis, 2016.


