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Abstract—Features of microservice architectures, such as scal-
ability, separation of concerns, and their ability to facilitate the
rapid evolution of polyglot systems, have made them popular
with large organizations employing many software developers.
However, the features that make them attractive also create
complexity and require maintenance over the evolution of an
application, especially concerning application decomposition. Mi-
croservice architecture decomposition evolves together with the
application and is prone to errors referred to as architectural
anti-patterns over its lifetime. These can be difficult to detect and
manage because of their informal natural language definitions
and a lack of automated tooling.

This paper addresses this challenge by proposing an automated
methodology for detection of architectural anti-patterns related
to microservice dependencies. As a part of this methodology,
a novel Granular Hardware Utilization-Based Service Depen-
dency Graph (GHUBS) model is automatically inferred from
telemetry data. Three commonly known anti-patterns have been
formalized and algorithms provided to detect them in the model.
The methodology is supported by an open-source tool that
automatically detects and visualizes anti-patterns. The proposed
methodology and tool are validated using both synthetic data
and a case study of a popular microservice benchmarking suite,
showing that instances of the formalized anti-patterns can be
successfully detected.

Index Terms—microservice, software architecture, anti-
pattern, telemetry, architectural smells

I. INTRODUCTION

Microservice application architectures have become increas-
ingly popular over recent years because of their ability to
accelerate development in big organizations with many teams
of developers, as opposed to traditional monolithic designs.
Modeling organizations and software after business processes
have become the norm, and microservice architectures excel
at facilitating this kind of rapid workflow [1]. However, while
microservice applications provide these benefits, they also tend
to grow very large, sometimes in the range of 100 - 1000 ser-
vices [2]. The size and complexity of microservice applications
make it difficult for developers and architects to get a solid
understanding of an application in its entirety [3]. This lack
of understanding can be very damaging to quality assurance
processes, such as debugging, performance optimization, and
maintainability across multiple services and teams [4].

Ensuring that a system remains scalable, maintainable,
and performance-optimized at every step of the development
process is crucial, as the costs associated with a project are

directly related to the quality of the application. Furthermore,
microservice architectures are already susceptible to high
degrees of network overhead, which can be further exacerbated
by poor microservice application decomposition [5].

The literature on microservice architecture anti-patterns,
also referred to as bad smells [6, 7], shows that anti-patterns
in many cases are indicative of poor decomposition. These
works often rely on domain knowledge for both detection
and mitigation. The same literature also identifies anti-patterns
that are strictly related to microservice dependency relation-
ships, such as the Cyclic Dependency, Inappropriate Service
Intimacy, Microservice Greedy, and Megaservice anti-patterns.
However, these anti-patterns are described in natural language,
making their definition subject to interpretation and detection
difficult to automate. As a result, detection of these anti-
patterns is done manually, which is time-consuming and error-
prone in microservice applications with hundreds of services.
This challenge is exacerbated, as microservices tend to evolve
rapidly and independently, making maintenance and quality
assurance a continuous process [8]. This paper addresses these
challenges through the following two research questions:

RQ1 How can we automatically infer a model that supports
detection of architectural anti-patterns that can be ex-
pressed in terms of microservice dependency relation-
ships?

RQ2 How can we use such a model to automatically de-
tect instances of known microservice architectural anti-
patterns, such as Cyclic Dependencies, Inappropriate
Service Intimacy, Microservice Greedy, and Megaser-
vice?

Our research aims to reduce the time and cost related
to detection of architectural anti-patterns through a novel
methodology in which instances of architectural anti-patterns
are automatically detected from traces and metrics gathered
from the running microservice application are provided to
support reasoning about possible mitigations. The five main
contributions of this paper are: 1) a novel Granular Hard-
ware Utilization-Based Service-Dependency Graph (GHUBS)
model based on directed multi-graphs, which is automatically
inferred using telemetry data, 2) formal definitions of three
well-known microservice architectural anti-patterns, 3) algo-
rithms for automatically detecting the formalized patterns in



the GHUBS model, 4) implementation of the proposed method
in an open-source proof-of-concept tool called Televisor [9],
and 5) validation of the methodology using both synthetic
data and a case study from the popular DeathStarBench
benchmarking suite [10].

In Section II, we describe the background material of
this paper. Section III describes related work. Section IV
introduces a new GHUBS model for microservice architecture
analysis. Section V formalizes three anti-patterns from the
literature and describes algorithms for automatically detecting
them. We validate the methodology on a case study using our
proof-of-concept tool Televisor in Section VI. We then discuss
threats to validity in Section VII, before conclusions and future
work are presented in Section VIII.

II. BACKGROUND

This section introduces the necessary concepts to under-
stand the contributions of this research. First, we introduce
the concept of observability and the three main types of
telemetry data in microservice architectures. We then introduce
service dependency graphs, a commonly used data structure
for capturing service dependencies that serves as a base for
the GHUBS model proposed in this work.

A. Observability in Microservice Applications

Observability can be defined as: “a measure of how well
internal states of a system can be inferred from knowledge of
its external outputs” [11]. There are many commercial [12] and
open-source tools for application performance monitoring and
observability. Microservice architectures arguably need more
of this kind of tooling than monolithic applications because
of their inherently distributed nature [4]. Static analyses and
end-to-end testing of microservice applications are usually not
feasible because of their scale and polyglot nature. As such, we
employ tooling to monitor applications and gather telemetry
at runtime. The three main types of telemetry data are traces,
metrics, and logs, each representing different information
about our application. This work focuses on metrics and traces.

Metrics or more concretely time-series metrics is a “mea-
surement of a service captured at runtime. The moment of
capturing a measurement is known as a metric event, which
consists not only of the measurement itself but also the time at
which it was captured and associated metadata” [13]. There are
many different kinds of time-series metrics in a microservice
application. However, some of the more common metrics to
gather are hardware utilization metrics, such as CPU, memory,
and network utilization. While the means of exposing this in-
formation is highly dependent on the application infrastructure,
tools like Prometheus [14] are used to store data in time-series
databases. Prometheus, being the most prominent time-series
metric database, also provides a query language for retrieving
and manipulating the data, making it convenient for developers
to create further tooling around.

Traces describe a sequence of process execution in
an application and are composed of a finite set of
spans [13]. Formally, we can define a set of traces

Fig. 1: Service Dependency Graph

TR = {tr1, tr2, ..., trn−1, trn}, where tr is defined as a
tuple tr := (id, SP ) composed of an unique character
string id and a set of spans SP , where the set SP =
{sp1, sp2, ..., spn−1, spn} and sp is a defined as another tu-
ple sp := (id, service, operation, parent, start, end). Here,
service is the service that emitted the span, operation is an
identifier for the human-readable operation name, parent is
the id of the parent span that is responsible for the execution
of the child span and start, end are timestamps defining the
start and end timestamps of the span, respectively. Distributed
tracing through context propagation allows us to see the causal
connections between spans [15], and annotates every span with
a link to their parent’s span ID. This way a trace can cover
many microservices allowing us to gain more insight into
our system. Tools like Dapper [3], Zipkin, and Jaeger [16]
allow developers to query spans and traces and use them to
troubleshoot their applications.

B. Service Dependency Graphs

Service Dependency Graphs (SDG) [17], depicted in Fig. 1,
are typically represented as a directed graph, including every
relationship and a count for the number of times they have
been called on each edge. They are a popular way of visual-
izing the topology of a given microservice application. SDGs
have several features that are beneficial in the detection of
anti-patterns. However, they are limited in granularity. One
example of this is the lack of separation between application
traces. Furthermore, SDGs prevent us from distinguishing
individual spans or operations between microservices. Without
this kind of information, the traditional SDG makes it diffi-
cult to say much about the relationships between individual
microservices, making it more suitable for application-wide
analysis. SDGs do not provide detailed information about the
individual microservices that compose an application and are
strictly concerned with relationships. This makes it difficult
to reason about how the dependency relationships affect the
health of the microservices.



III. RELATED WORK

Anti-patterns are generally defined in natural language. A
few notable exceptions that can be detected through static code
analysis include the Cyclic Dependency anti-pattern and Hard-
Coded Endpoints [6, 7], the latter referring to a lack of service
discovery in an application. This lack of formal definitions
of anti-patterns allows for subjective interpretation, which is
detrimental to the detection and mitigation process as a whole.
It creates inconsistencies between different research addressing
the same or adjacent anti-patterns, and while facilitating dis-
cussion, does little to support the creation of universal good
practices across microservice applications. This furthermore
makes automatic detection of such anti-patterns very difficult.

There are several approaches for detecting anti-patterns
in microservice applications using static analysis. The ap-
proach in [18] analyses compiled Java projects to derive an
SDG. The work in [17] generates SDGs utilizing reflection.
The SDGs produced in these works have the limitations
discussed in Section II-B, which is detrimental to detecting
the kinds of anti-patterns considered in this work. [19] uses
a monolith API interface definitions (OpenAPI schemas) to
derive decomposition suggestions based on matching natural
language identifiers to an existing reference dictionary that
groups related concepts. This makes the work only applicable
to applications using OpenAPI schemas. In [20], researchers
detect the Cyclic Dependency smell by extending an abstract
syntax-tree-based tool created for detecting technical debt in
monolithic Java applications. They were also able to detect
instances of the Hardcoded Endpoints and Shared Persistence
smells [6]. Again, this limits the applicability of the method as
it is language-specific. In [21], structural coupling is computed
in Java-based microservice applications by gathering coupling
metrics found in the service classes. The researchers also chose
to represent and visualize this in a directed graph, named a
Structural Coupling graph. The metrics used here are always
system-dependent, making it difficult to reason objectively
about the severity of the structural coupling in a given system.

Despite their lack of general applicability, static analysis
methodologies do have the advantage in that they are usually
more performant, and can guarantee complete coverage of
the application in question. This is not always the case with
telemetry-based analysis. Telemetry-based approaches, such
as [22, 23], use distributed tracing built into microservice
applications to generate a service-dependency graph at run-
time. This approach is preferable, as it allows us to analyze
microservice applications regardless of the programming lan-
guages used in their creation. Furthermore, most observability
tooling is built around the increasingly popular OpenTeleme-
try [13] standard, making it highly applicable.

In [24], an SDG is created based on service mesh logs,
provided by telemetry tooling, containing information about
inbound and outbound requests to determine dependency rela-
tionships. The researchers use the generated SDG to detect five
anti-patterns, of which three are calculated using “anti-pattern
metrics”. These anti-patterns are ranked purely on application

metrics without any indication of their severity, making it
difficult to tell if the microservice application is unhealthy.
Furthermore, this approach cannot detect the types of anti-
patterns considered in this work.

IV. GRANULAR HARDWARE UTILIZATION-BASED SDG

We proceed by describing the automatic inference of a
novel model that facilitates detection of anti-patterns related
to microservice dependencies, addressing RQ1. To capture the
information we need, we have extended the traditional SDG
with new features to accommodate the limitations discussed
previously. This includes increasing granularity and mapping
the microservices to their respective hardware utilization met-
rics. The result is the Granular Hardware Utilization Based
SDG (GHUBS) model.

A. Increasing Granularity

The anti-patterns we wish to detect require us to distinguish
between different spans and operations, something the SDG
prevents us from doing. To tackle this granularity issue, we
need to increase the number of edges that usually exist in an
SDG. Instead of restricting the number of edges between two
services to one per direction, we create an edge for each unique
span between two services. The resulting graph shows not
only which microservices are dependent on each other, but the
actual individual operations that cause the dependencies. This
is instead of having a single edge between services, regardless
of the number of unique spans between them. We can tell if a
span is unique by looking at its source and destination service,
as well as its human-readable name and identifier that indicates
its function.

Fig. 1 and 2 show the difference in an example with
three external requests coming into a microservice application.
Fig. 1 is the traditional SDG, where the three requests are
grouped from the API Gateway to Service A and we can see
the number of executions on each span. Fig. 2 on the other
hand, shows us that the three requests are unique and labeled
R1, R2, and R3, respectively. In fact, it can show us the trace
in its entirety in the GHUBS model and how it is distinct from
the other traces.

B. Adding Utilization Metrics

We are annotating the GHUBS model with hardware uti-
lization metrics to support developers when thinking about
different anti-pattern mitigation strategies, such as merging or
splitting services. There are a few different approaches to do
this. We can measure the utilization metrics of the platform
the microservices are running on; the utilization metrics of
the cluster the microservices are contained within, or we can
measure the utilization metrics on a per microservice basis. We
choose to record the utilization metrics on a per-microservice
basis. While this will be an abstraction of the hardware
platform, it will serve as a more accurate representation of
the state of the microservices.

When it comes to recording utilization metrics, we need
to be aware of what metrics we are collecting. In our case,



Fig. 2: GHUBS Model with Increased Granularity and Hard-
ware Utilization Metrics

we want a conservative view of the system when performing
validation, while still getting rid of rare outliers. The 99.7%
percentiles, hereafter referred to as “tail”, are hence suitable
values. With that in mind, we wish to record six utilization
metrics in the same time frame that we gather the traces
for the construction of the GHUBS model. The metrics are
the tail, mean, and standard deviation CPU and memory
utilization. However, the GHUBS model is not limited to
these metrics and can incorporate whatever metrics are most
relevant to the work at hand. Some immediate examples could
be network utilization per microservice, span latency between
microservices on a request, and end-to-end latency for an
entire request.

In addition to increased granularity, Fig. 2 shows the hard-
ware utilization metrics visualized as gear icons included in
the GHUBS model.

C. Formalizing the GHUBS Model

With our addition of potentially parallel edges to the tradi-
tional SDG, the proper formalism for the GHUBS model is a
directed multi-graph, more commonly found in the domain of
networking. As such, we can take advantage of the established
language for directed multi-graphs to define our anti-patterns.
That is, define our bad smells according to patterns of edges
and vertices in the GHUBS model. We let V be the set
of all nodes in the directed multi-graph, where each node
v ∈ V represents a service. A node v is a tuple and
contains a name and utilization metrics and is defined as
v := (name, utilization). Let E be the set of all edges
on a request, where each edge (u, v, r) ∈ E represents a
dependency from service u to service v, and r represents the
unique operation name of the edge from u to v. Then, we let
(i, E) ∈ R, where i is an identifier for the request, and R is a
set of all requests in the GHUBS model. The GHUBS model
can now be defined as a directed graph G := (V,R), with
nodes V and requests R.

D. Automatic Inference of the GHUBS Model

Manually modeling complex evolving systems is time-
consuming and error-prone and is often a barrier to adoption
of model-based methodologies [25, 26]. Data-driven design
where models are automatically inferred from operational data

has been proposed as a way to mitigate this problem [27]. To
address this aspect of RQ1, Listing 1 shows the pseudo-code
for inferring the GHUBS model from the trace definition in
Section II. We define our function with a set of traces, V , as
a parameter on Line 1. On Line 2, we define our set R that
will group edges by their requests. We iterate over all traces
on Line 3 and define sets of edges on Line 4. On Line 5, we
iterate over the spans in every trace. Next on Line 6, we define
u, v, r which will contain the service where the edge comes
from, the service where the edge ends, and an identifier making
the edge unique in case of multiple parallel edges. On Line 7,
we add the new edge to a set E, which is grouped by the
request name of the trace on Line 8. Finally, we package both
the set V with our services, and the set R with our requests
in G and return the GHUBS model on Lines 10 and 11.

1 f u n c t i o n ghubs (TR) :
2 V = {} , R = {}
3 f o r E a c h ( t r a c e t r ∈ TR) :
4 E = {}
5 f o r E a c h ( span sp ∈ of t r . SP ) :
6 u , v , r = sp . from , sp . to , sp . o p e r a t i o n
7 V = V ∪ sp . s e r v i c e
8 E = E ∪ ( u , v , r )
9 R = R ∪ ( t r . id , E )

10
11 r e t u r n (V, R)

Listing 1: Creation of GHUBS Model

Note that while deriving the GHUBS model from an existing
system through telemetry, it is also possible to manually create
a model of an intended software architecture during system
design. This is done by specifying the microservices, the
requests in the application, and the dependency relationships in
those requests. Having the ability to do this allows developers
to evaluate their design before development begins, or test a
particular idea using artificial data.

V. FORMALIZATION AND DETECTION OF ANTI-PATTERNS

Having defined our new fine-grained GHUBS model, we
proceed by formalizing architectural anti-patterns and showing
how they can be detected in the model, addressing RQ2.
The three example dependency-based anti-patterns we are
looking for are Inappropriate Service Intimacy, Megaservice,
and Microservice Greedy [7]. The methodology also supports
the well-known Cyclic Dependency anti-pattern, although it is
not included here for brevity. For more information about the
formalization and detection of this anti-pattern, refer to [28].

To automatically detect architectural anti-patterns, we need
formal descriptions that can be compared to the structure of
software systems inferred from available telemetry data. Note
that a single anti-pattern definition can be interpreted in several
different ways. This is due to the inherent vagueness of the
natural language definitions. Considering that, we have defined
one instance of each of the three anti-patterns according to our
interpreted understanding of the source material [6, 7].



Fig. 3: Instances of Inappropriate Service Intimacy

A. Inappropriate Service Intimacy

Following the definition of the Inappropriate Service Inti-
macy anti-pattern where: “The microservice keeps on connect-
ing to private data from other services instead of dealing with
its own data” [7], we are looking for microservices that are
dependent on each other or on a specific service in such a way
that the separation of concerns between the services becomes
blurred. However, the definition does not tell us anything about
the number of microservices that are included. Neither does
it define the interval of these connections or if it matters.
The definition of what can be considered private data of a
microservice is also ambiguous.

The instance of the anti-pattern that we seek to detect is
when we have multiple microservices executing in parallel
between a diverging node and a converging node on the same
request. The same or related data is shared across multiple
services, removing the separation of concerns. We consider
this divergence to be problematic as it can result in race
conditions and unnecessary network communication. If the
processes are synchronous, it could also cause a tail latency
bottleneck. An example of services with the Inappropriate
Service Intimacy anti-pattern can be seen in Fig. 3, with the
responsible services marked in red in the GHUBS model.

The figure shows an instance of the Inappropriate Service
Intimacy anti-pattern we wish to detect. In formal terms, we
are first looking for a node that has two or more inbound
edges. If we find such a converging node, we want to detect
all other nodes on the paths between the converging node, and
a diverging node with two or more outbound edges. In nested
instances, the top level is considered. The nodes between the
diverging and converging nodes are marked as responsible for
the anti-pattern. In formal notation, the Inappropriate Service
Intimacy smell is on a single request, r, E ∈ R, for some
request identifier r, where two or more sequences of nodes
S contain d, v1, v2, ..., vk ∈ V such that (vi, vi+1, 1) ∈ E for
i = 1, ..., k−1 and (vk, c, 1) ∈ E, where d, c ∈ V and are the
diverging and converging node, respectively.

Listing 2 shows the pseudo-code for detecting instances
of Inappropriate Service Intimacy. We begin by defining our
function and supplying a single request as a parameter on
Line 1. Then, we use a function to find the diverging and
converging nodes in the request on Lines 2 and 3. We create
a set for our results on Line 5. On Lines 7 and 8, we
iterate over the diverging and converging nodes and find all
sequences between them on Line 9, excluding the diverging

Fig. 4: Instance of the Microservice Greedy Anti-Pattern

and converging nodes. If there is more than one sequence we
add the node names from those sequences to our results set
as a single set element on Lines 10 and 11. Finally, we can
return our result of a nested set with sets of responsible node
names on Line 13.

1 f u n c t i o n d e t e c t I n n a p p r o p r i a t e S e r v i c e I n t i m a c y (R) :
2 ds = d i v e r g i n g N o d e s (R . E )
3 cs = conve rg ingNodes (R . E )
4
5 r e s u l t = {}
6
7 f o r E a c h ( d i v e r g i n g N o d e d ∈ ds ) :
8 f o r E a c h ( converg ingNode c ∈ cs ) :
9 S = ge tSequencesBe tween ( d , c )

10 i f ( | S | > 1) :
11 r e s u l t = r e s u l t ∪ [ S . . . ]
12
13 r e t u r n r e s u l t

Listing 2: Detection of Inappropriate Service Intimacy

B. Microservice Greedy

For the Microservice Greedy smell, we are trying to find
services that only serve a singular purpose, and might be re-
dundant in the microservice application architecture. In [7], the
definition given is: “Teams tend to create new microservices
for each feature, even when they are not needed. Common
examples are microservices created to serve only one or two
static HTML pages.” Such services are usually a result of poor
planning or inconsiderate additions of new functionality [7].
Whatever the case for introduction, they increase complexity
and decrease application maintainability needlessly. An exam-
ple of the anti-pattern is shown in Fig. 4, where the responsible
service is marked in red.

As opposed to our other detection methods, in the case of
the Microservice Greedy anti-pattern, we look at all requests
aggregated. This is to prevent flagging microservices that
are only responsible for a singular function in an individual
request but have responsibilities in other requests. Every node
that is detected as such is marked as responsible for the anti-
pattern. In terms of our GHUBS model, create a union of all
edges in every request, e1 ∪ e2 ∪ e3 ∪ ... ∪ en = E, where
i, e ∈ R. We define a function g : V → E that takes a node as
input and returns a set of inbound connections to that node.

g(v′) = {(u, v, r) | (u, v, r) ∈ E, v = v′}

To check if a node only has a single inbound connection,
evaluate |g(v)|. If |g(v)| = 1, then we can conclude that v
has only a single inbound connection. In turn, v also has the
Microservice Greedy anti-pattern.



Fig. 5: Instance of the Megaservice Anti-Pattern

Listing 3 shows the pseudo code for the Microservice
Greedy detection algorithm. First, we define our function and
take in a set of all the requests R and another set of all the
services V as parameters. Thereafter, we take the union of the
requests and retrieve all of the edges on Line 2. On Line 3,
we define a variable that will be an array containing the edges
responsible for the anti-pattern. On Line 5, we iterate over all
of the services v ∈ V . If we find that exactly one edge ends
in v on Line 6, we append that edge to our results, and finally
return the result on Line 9.

1 f u n c t i o n d e t e c t M i c r o s e r v i c e G r e e d y (R , V) :
2 E ’ = {e ∈ E | ∀ ( i , E ) ∈ R}
3 r e s u l t = {}
4
5 f o r E a c h ( node v ∈ V) :
6 i f ( | g ( v , E ’ ) | == 1) :
7 r e s u l t = r e s u l t ∪ g ( v , E ’ )
8
9 r e t u r n r e s u l t

Listing 3: Detection of the Microservice Greedy Anti-Pattern

C. Megaservice
The Megaservice anti-pattern is defined as: “A service

that does a lot of things. A monolith.” [7]. The number of
functions a microservice has to serve before it is considered
a Megaservice is not clear following the definition, but we
assume the functions are unrelated. The instance of the anti-
pattern shown in Fig. 5 clearly shows the redundant execution
between the “API Gateway” and “Service A”, where “Service
A” is marked as red and considered responsible. This could for
instance be a remnant of a legacy monolithic application that
has been transitioned into a microservice application, where a
single request requires executing two operations to complete
the desired functionality. This kind of relationship can cause
data races and other unwanted behavior in the subsequent
microservices and makes the Megaservice a greater point of
failure and potential bottleneck.

Formally, the instance of the Megaservice anti-pattern we
are looking to detect is when a node has two or more inbound
edges coming from a second node on a single request. To
check if we have such redundant edges, we defined a function
f : V ×V → E that takes in a pair of nodes and returns a set
of edges between them.

f(u′, v′) = {(u, v, r) | (u, v, r) ∈ E, v = v′ & u = u′}

Where i, E ∈ R for some request identifier i. To check if
there are two or more redundant edges between two services
u and v, we evaluate |f(u, v)|. If |f(u, v)| ≥ 2, then we can
conclude that there are two or more redundant edges between
u and v. This in turn means that node v suffers from the
Megaservice anti-pattern according to our definition.

Listing 4 shows us the pseudo-code for our Megaservice
detection algorithm. On Line 1, we define our function with a
single request for its parameter. We retrieve the nodes on the
request on Line 2, and we define our result variable on Line 3,
which is a nested set containing sets with the responsible
edges. Lines 5 and 6 iterate over all nodes. If we find that we
have more than two edges between nodes u and v on Line 7,
we add node v to our result array on Line 8. Finally, the
function returns the result array which will contain all edges
pointing to a node that inhibits the Megaservice anti-pattern.

1 f u n c t i o n d e t e c t M e g a s e r v i c e (R) :
2 V = getNodesOnReques t (R)
3 r e s u l t = {}
4
5 f o r E a c h ( node u ∈ V)
6 f o r E a c h ( node v ∈ V)
7 i f ( | f ( u , v ) | >= 2) :
8 r e s u l t = r e s u l t ∪ f ( u , v )
9 r e t u r n r e s u l t

Listing 4: Detection of the Megaservice Anti-Pattern

VI. IMPLEMENTATION AND VALIDATION

To support the use of the proposed methodology, we have
created a proof-of-concept tool that supports the application
of the methodology to microservice applications. The tool has
been validated with synthetic data, as well as through two case
studies on two microservice applications from a well-known
open-source microservice application suite.

A. Implementation

The methodology described in Sections IV and V was im-
plemented as an application by the name Televisor (Telemetry-
Advisor) [9]. The architecture of the tool comprises two mod-
ules, as shown in Fig. 6. The first module, which we refer to as
the backend module, is responsible for pulling telemetry from
a microservice application, creating the GHUBS model, and
detecting the anti-patterns. The second module, the frontend,
is responsible for displaying the detected anti-patterns and
relevant metrics to the developer in a human-friendly manner.
The developer uses these insights to reason about suitable
anti-pattern mitigations. The backend module was written in
Go, and the frontend module is web-based and was written in
Typescript. The microservice applications were instrumented
with cAdvisor for collecting utilization metrics.

B. Validation

To validate our methodology, we manually created synthetic
GHUBS models with instances of all three formalized patterns
using the mechanism described in Section IV-D. This allowed



Fig. 6: Architecture of the Televisor tool

us to verify that the detection algorithms presented in Sec-
tion V work correctly. All instances of the anti-patterns in-
serted in this synthetic model were correctly detected without
any false positives.

In addition to validation with synthetic models, we also
performed two case studies with benchmark applications found
in the DeathStarBench microservice application suite [10].
To establish a ground truth, we first manually inspected the
dependency relationships on each request to determine the
presence of anti-patterns. For complex applications, this is
very time-consuming, but both applications are small enough
to allow manual validation in a reasonable time. From our
manual analysis, we conclude that the Social Network appli-
cation exhibits six instances of the Microservice Greedy anti-
pattern, and the Media Application application exhibits one
instance of Inappropriate Service Intimacy and three instances
of the Microservice Greedy anti-pattern. A possible reason
for the prevalence of the Microservice Greedy anti-pattern
is that DeathStarBench addresses the need for microservice
benchmarks with a larger number of services, which may
have resulted in an unnecessarily fine-grained decomposition.
Because of space limitations, we only present detailed findings
from the Media Application in this paper. For results and
validation of the Social Network application, refer to [28].

The scope of the Media Application, as described in the
DeathStarBench paper, is as follows: “The application im-
plements an end-to-end service for browsing movie infor-
mation, as well as reviewing, rating, renting, and streaming
movies” [10]. After running the included wrk2 benchmarking
tool, which executes all publicly exposed routes on the API
Gateway concurrently over a set amount of time, the Media
Application had six requests to analyze. Three instances of
the Microservice Greedy anti-pattern, and one instance of the
Inappropriate Service Intimacy anti-pattern were detected on
a single request. This is consistent with the results of our
manual inspection and no false positives were detected. The
request in question is on the \wrk2−api\review\compose route.
Fig. 7 shows the GHUBS model of the Media Application
with the edges involved on that request. The services that
exhibit the Microservice Greedy anti-pattern are highlighted
in red, while the services that have the Inappropriate Service

Intimacy anti-pattern are highlighted in purple.
To reason about how to mitigate the detected anti-patterns,

we manually look at the dependency relationships and hard-
ware utilization metrics in the GHUBS model and analyze
a Jaeger trace of the /wrk2−api/review/compose request to argue
about temporal behavior. Fig. 8 shows the Jaeger trace. First,
we consider the three detected instances of the Microservice
Greedy anti-pattern. The anti-pattern is detected because the
three services review−storage−service , movie−review−service and user
−review−service are only ever called by a single request from
the compose−review−service. It is apparent that the dependency
relation between the user−review−service and the movie−review−
service waiting for a callback from the review−storage−service is
not ideal. The three services perform strictly related tasks
and are tightly coupled, making them suitable for a merger
without the danger of creating a Megaservice. Furthermore,
the three services all interact with separate databases, however,
they are only invoked on this particular request. As the user−
review−service and the movie−review−service are also dependent on
data from the review−storage−service , there is strictly no need for
separate databases. In fact, merging the services and utilizing
a single database with multiple schemas would facilitate the
use of database transactions, enhancing data integrity and pos-
sibly increasing maintainability by simplifying error handling.
Looking at the hardware utilization metrics of the responsible
services in the GHUBS model, we see that the CPU and
memory tail utilization are very low. This indicates that we are
unlikely to encounter any performance issues by attempting a
merge. With this in mind, we believe that merging the services
responsible for the Microservice Greedy smell in the Media
Application is beneficial.

The Inappropriate Service Intimacy pattern involves movie−
id−service, text −service , unique−id−service , user−service , and rating −
service . The Jaeger trace shows unnecessary latency between
the services involved. The incoming data on the request di-
verges into five different services and they all converge on the
same service. Additionally, the service data boundaries do not
seem to follow business processes, and certainly not Domain
Driven Design [29]. The hardware utilization metrics in the
GHUBS model show us that the offending microservices have
low tail CPU and memory utilization metrics. This could be
indicative of a merge being possible without performance con-
cerns. However, because of the number of services involved in
this anti-pattern, we do not think that a single merge is feasible.
We could attempt recomposing the system after business
processes. For instance, merging the services into three new
services: a movie−service, user−service , and a review−service . Now,
we could reduce the number of operations on this request to
three. We can make a call to the new movie−service to retrieve
the movie ID, at the same time retrieve or authenticate the user
in the user−service and lastly upload our review in the review−
service . This case study demonstrates how our methodology
automatically detects instances of anti-patterns and supports
the developer in reasoning about different mitigation strategies.



Fig. 7: Media Application Anti-Patterns

Fig. 8: Media Application Jaeger Request Trace

VII. THREATS TO VALIDITY

This section discusses the threats to validity of the method-
ology proposed in this paper.

A. Internal validity
We proceed by discussing the internal validity of our

research results, i.e. the extent to which they are valid within
the scope of this study. A concern with any telemetry-based
methodology is that the workload has to cover all paths
through the application to get a complete view. If this is not
the case when using our methodology, certain dependency
relations between microservices may not be included in the
GHUBS model, resulting in certain instances of architectural
anti-patterns not being detected. How to create a workload that
provides sufficient coverage is highly application-dependent
and should be done with the help of domain experts. As
explained in Section VI-B, we have mitigated this risk in
our research by using the wrk2 benchmarking tool, which is
provided as a part of DeathStarBench and executes all publicly
exposed routes on the API Gateway.

The ability of our methodology to detect anti-patterns
depends on how their definitions in natural language are in-

terpreted and formalized. While we do believe that the formal
definitions we have created are valid, they do not exclude other
valid definitions of the same anti-patterns. Furthermore, the
set of anti-patterns described here should serve as a way of
thinking about architectural smells in general. Developers can
hence formalize additional anti-patterns that can be expressed
in terms of service dependencies and application metrics and
provide an algorithm that can detect them in the GHUBS
model. In most cases, the effort involved for an experienced
developer to add support for an additional anti-pattern in the
Televisor tool should be a couple of hours.

B. External validity

External validity considers the validity of our results beyond
this study. The methodology and supporting tool have been
validated using both synthetic data and two case studies based
on applications from a commonly used microservice bench-
mark suite, providing initial evidence of the applicability and
usefulness of our approach in this context. However, further
validation is required with larger applications from different
domains to establish how the methodology generalizes.



VIII. CONCLUSION AND FUTURE WORK

Microservice applications with hundreds to thousands of
services often exhibit anti-patterns over the evolution of a sys-
tem. These anti-patterns can negatively impact application per-
formance, maintainability, and decomposition. Anti-patterns
are often described in natural language, making their exact
definition ambiguous and subject to interpretation, hindering
development of tooling for automatic detection.

This research addresses this challenge by investigating how
we can automatically infer a model that supports detection
of architectural anti-patterns that can be expressed in terms
of microservice dependency relationships, and how we can
use such a model to automatically detect instances of known
microservice architectural anti-patterns, such as Cyclic Depen-
dencies, Inappropriate Service Intimacy, Microservice Greedy,
and Megaservice. The result of this research is a methodology
for automatic anti-pattern detection. The methodology uses
telemetry data from the running system to automatically infer
a novel Granular Hardware Utilization Based SDG (GHUBS)
model, a directed multi-graph that captures microservice de-
pendencies at the level of individual requests. We formalized
three anti-patterns in terms of such a multi-graph and defined
algorithms to automatically detect them in the GHUBS model.
The methodology is implemented in an open-source proof-of-
concept tool called Televisor. The proposed methodology was
validated using both synthetic models containing instances of
the three formalized anti-patterns, as well as case studies from
the DeathStarBench microservice benchmark.

Future work involves extending the methodology and tool
to support additional anti-patterns that can be described in
terms of microservice dependencies, as well as validation of
the methodology with a larger set of diverse applications.
Another interesting direction is to further reduce the time and
cost of dealing with anti-patterns by automatically provid-
ing recommendations for how to mitigate the detected anti-
patterns, e.g. by merging or splitting microservices. These
recommendations could be informed by hardware utilization
metrics and latencies collected in the GHUBS model.
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