University of Amsterdam

Formal Verification of components through Mirroring of
Coloured Petri Nets

by
Merrick Oost-Rosengren

Academic Supervisor: Benny Akesson (k.b.akesson@uva.nl)
Second reader: Ana Oprescu (a.m.oprescu@uva.nl)

Host organisation: ESI (TNO) (https://esi.nl/)

A thesis
submitted in partial fulfilment of the requirements
for the degree of Master of Science
Software engineering

Amsterdam, Netherlands
July 2024

Abstract

In environments where multiple software or hard-
ware components communicate data with each other
(a component-based system), and a breakdown of
the components or communication can be fatal (e.g.
Military Ships or an Intensive Care Unit), verifica-
tion of the component model as early in the devel-
opment process is vital. These components may be
developed by different manufacturers or teams, or at
different times, so access to other components or the
specifications thereof may be impossible. This ne-
cessitates a way to validate the component model by
itself and confirm that it does not cause deadlocks,
or otherwise hinder or is hindered by the functional-
ity of other components, or with/by the data being
transferred between components. There seems to be
a research gap related to the early validation of com-
ponent models when data coming from one compo-
nent affects the behaviour of another component.

This thesis addresses this gap by proposing a novel
approach for generating a Verification Model based
on the Model of the component. When the two mod-
els are combined, we can detect if they run without
terminating unexpectedly (are Weakly Terminating)
and do not create an infinite amount of execution
paths with different data (have a finite State Space).

We introduce two additional types of Coloured Petri
Nets (A model which describes a system with data):
The Open Coloured Petri Net, which models a com-
ponent with connections to other components specif-
ically, and the Mirrorable Coloured Petri Net, which
contains additional information about the Compo-
nent which is needed to generate the Verification
Model. We call this generation of a Verification
Client, Mirroring. We defined a methodology to ap-
ply the theory of Mirroring and test the Methodol-

ogy.
The final objective is to validate that the Method-
ology can be automated. We concluded that the
theory is correct, and a methodology and automa-

tion can be applied with a Mirrorable Coloured Petri
Net.

Acknowledgements

I foremost would like to thank Benny for his invalu-
able guidance. Our discussions about the subject
were very insightful. Then I would like to thank Deb,
who created a verification model to analyse, which
allowed me to identify the ruleset and the theory
discussed in this thesis.

I would also like to thank everyone who encour-
aged and supported me: My husband: Johnny, my
friends: Erik, Noah, Armin, Sean, Ferdinand, and
Holger, the professors and students at CCI, and the
AMAEX team, specifically: Thomas, Chris, Tim and
Marten.

Table of Contents

Abstract

Acknowledgements

1 Introduction

2 Preliminaries

2.1

2.2
2.3

24

Component-Based Development
2.1.1 Asynchronous communication systems
2.1.2 Software interfaces
State Machine
Petri Nets
2.3.1 Terms used describing Petri Nets . . .
232 PetriNet
2.3.3 Open Petrinet
2.3.4 StateSpace
2.3.5 Weak Termination
Coloured Petri Net
2.4.1 Unrolling a CPN into a Petri Net . . .
2.4.2 Inverse of a Coloured Petri Net

3 Mirroring

3.1
3.2
3.3
3.4
3.5

Open Coloured Petri Net (OCPN)
Analogy of Mirroring
Mirroring Elaboration

Definition of a Mirrorable Open Coloured Petri Net

Logical groups of Places, Arcs and Transitions

4 Methodology and Tools

4.1
4.2
4.3

Methodology
Alternative
Tooling
4.3.1 Tool selection
4.3.2 Tool Chain

5 Tool Verification

5.1 Imtroduction L.
5.2 Verification Experiment 1
5.2.1 Objective

17
17
18
19
20
22

23
23
23
23
24
24

0.2.2 Experiment 26

5.2.3 State space explosion 26

5.24 Findings 26

5.2.5 Resolving the state space explosion L. 27

5.3 Verification Experiment 2 27
5.3.1 Objective 27

5.3.2 Experiment 27

5.3.3 Findings L 27

5.4 Verification Experiment 3 28
5.4.1 Objective L 28

0.4.2 Experimento 28

54.3 Findings 28

5.5 Verification Experiment 4 28
5.5.1 Objective 28

5.5.2 Experiment L 28

5.5.3 Findings 29

6 Related Work 34
7 Conclusion 35
7.1 Answers to Research Questions 35
7.2 Future Work e 36
7.2.1 Expansion of Guards and Arc Inscriptionso L. 36

7.2.2 Full Petri Net Mirroring 36

7.2.3 Mirrorable by Design 36

7.2.4 MOCPN-MT 36

7.2.5 Complimenting Methodologies 37

A Identifying M 38
A.1 Arcs from or to an interface placeo 38
A2 Process Flow Arcs o e 38
A.3 Other Client Server Data Flow Arcs 38
A4 Other Arcs e 38

B Tools Overview 39
C Tool Details 41
C.1 Import CPN from CPN-Tools 41
C.2 Calculating the Mirror 41
C.3 Merge the Nets o e 41
C.3.1 Create Snakes Net 42

C.3.2 Create State Chart e 42

C.3.3 Export for PNaT o 42

D Class Diagram of MOCPN-MT 43
Bibliography 45

Illustrations

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1

4.2

5.1
5.2
2.3
5.4
9.5
5.6
5.7
5.8
2.9

D.1

Picnico 8
Picnic Components L 9
Picnic e 12
Picnic CPN start state 13
Picnic CPN end state e 13
Picnic CPN inverse start state 14
Picnic CPN inverse end state 14
Transition with 1 var and Inverse 14
Transition with 1 outgoing constant and Inverse 15
Transition with a Constant as Guard and Inverse 15
Using a tuple to combine tokenso 15
Communications Protocol with Systems 0 L. 17
Moving Balls Analogy 18
Moving Balls Analogy Mirror 18
Moving Balls Analogy Inverse 18
Moving Balls Analogy: Guards and Arcs 19
Server with Mirrored Client 20
Server with Inverted Client 20
Transition with 1 var and Mirror 20
Transition with 1 outgoing constant and Mirror 21
Transition with a Constant as Guard and Mirror 21
Transition with in and out var and Mirror 22
Command Server e 22
Methodology and Tool chain 23
Moving Balls e 24
Verification 1: Model e 27
Verification 1: Example Snakes render of Model 28
Verification 1: Fused Net 29
Verification 1: Resolving state space explosion, 29
Verification 2: Fused Net 30
Verification 1: PNaT Reachability Graph 30
Verification 3: Model 31
Verification 3: PNaT Reachability Graph 32
Verification 4: Fused Net by Snakes oo 33
Class Diagram e 44

Chapter 1

Introduction

In September 1996 a system failure on the USS York-
town left this cruiser stranded in port over a weekend
[1]. The SmartChip project being tested by this ship,
was rushed, with no real prototyping, trying to make
all parts work together as they went along. The prob-
lem occurred when one component communicated an
unexpected zero, and another component tried to di-
vide one of its own values by this zero.

The above historical example shows that systems
that contain many different components (Compo-
nent Based System: CBS [2]) may create errors be-
cause of data coming from other components. It is
vital that these errors are caught as early in the de-
sign and development process as possible. Nowa-
days, a lot of systems are comprised of multiple
components. They can contain a plethora of dif-
ferent hardware and/or software components, and
the behaviour of one component must not negatively
impact other components. If a server deadlocks or
crashes, because a client sends invalid or unexpected
data, that is a problem. Systems need to be veri-
fied to ensure they behave as expected and don’t fail
when connected to other systems. But during the
early phases of a project (e.g. Inception, Analysis,
Design), there may not be other systems available,
they may be created by different manufacturers and
only start communicating when integrated by an or-
ganisation. For instance, in the Intensive Care unit
of a hospital, there are a lot of systems from differ-
ent manufacturers working together, some to moni-
tor blood oxygen, some to monitor heart rate, and
some to display information to medical profession-
als. Some of these systems may only be created later
based on an interface definition.

This brings us to the topic of this thesis: How to
verify a single component, which is part of a CBS
which communicates data with other components,
before building it, and when connecting components

are not available, and ensure that a component does
not deadlock or crash, specifically in environments
where this could be catastrophic.

One of the problems of analysing CBS where data
is being communicated, is that data can have many
different values. This makes it useful to abstract the
data. That communication does not look at every
value of the data being communicated but refers to
this as 'name of datatype’ and all data of this type
is being treated equally. The problem of different
data is being delegated to a document describing the
datatype (the interface definition), but the system is
not checked if it handles all values of the datatype
correctly until implementation (using unit tests), if
it is checked at all. A component may need to behave
differently depending on what data is being received,
so ignoring the contents of a data element may not

be desired.

In this thesis, we will investigate a novel approach
to verification by modelling the Interface of a system
or the whole system as a Coloured Petri Net (CPN),
then check this CPN for weak termination. A CPN
can be seen as a model that has both a graphical
and a scientific notation (see Chapter 2.4). Weak
termination of a CPN defines that from each reach-
able state of the system, a final state can always
be reached (see Chapter 2.3.5). Checking for weak
termination, of an interface when the accompany-
ing interface of the connecting system is not avail-
able during this check, has a problem: A final state
can not be reached without communication with the
connecting system. So part of this novel approach
will be the generation of a connecting Interface or
Client, specific for verification, based on the defini-
tion of the original Interface or Client. We will call
this generation "Mirroring”.

Research questions:

1.

How can a Component or the Interface of a
Component, which exchanges data with other
components in a Component-based system, and
this data changes the behaviour of this compo-
nent, be verified for weak termination?

Can rules be identified to generate a compo-
nent model from the original component model
which, when fused with this component model
can verify for weak termination?

Are these rules strict enough to be implemented
as an algorithm? How would a program apply-
ing this algorithm be defined?

Research contributions:

1.

The

Definition of an Open Coloured Petri Net
(OCPN) that extends the CPN definition with
Input and Output Places. Definition of a Mir-
rorable Open Coloured Petri Net (MOCPN)
that extends the OCPN with the archetypes of
data movement in a system, which are needed
during mirroring.

The concept of Mirroring a MOCPN without
a client, to allow verification of a Component
Model in a CBS, using weak termination. By
generating a (Mirrored) verification MOCPN

The process and rules of Mirroring and The in-
teractions of Guards and Arc Inscriptions dur-
ing Mirroring and creating a Prototype to vali-
date this process and these rules.

thesis is structured as follows:

In Chapter 2 we discuss the preliminary con-
cepts on which this Thesis is build.

In Chapter 3 we will introduce Mirroring and
Mirroring definitions.

In Chapter 4 we define the methodology to ap-
ply Mirroring for Verification Client generation,
and a software tool which applies this theory.

In Chapter 5 we will use this tool to investigate
the validity of the theory, and identify some of
the limits.

In Chapter 6 we look at related work.

In Chapter 7 we will answer the research ques-
tions, including further theorising the usefulness
and limits of Mirroring for Verification Client

generation. We will also identify some subjects
which we could not address in this Thesis.

Chapter 2

Preliminaries

Pack Picnic Picnic Ready

Thermos

Figure 2.1: Picnic

In this chapter, we will explain the existing theories
of Petri Nets, Coloured Petri Nets, and Inversion of
Coloured Petri Nets, which are the basis for under-
standing the theory of mirroring to create a verifica-
tion client.

Example: During the organizing of a picnic, there
are tasks involved, some of which can only start after
others have been completed. Others can be done at
any time. A way to visualize this is shown in Figure
2.1. It has circles where things are available, and
squares where activities for the picnic are done.

2.1 Component-Based Devel-
opment

Component-based development (CBD) is a software
engineering approach that emphasizes the reuse of
software components to build larger software sys-
tems. In component-based development, a software
system is decomposed into smaller, modular compo-
nents that can be developed, tested, and maintained
independently of each other. These components can
be combined and configured to build a larger system,
reducing the complexity and effort involved in soft-

ware development. Different formal models support-
ing component-based development have been pro-
posed, like Cadena [3] and SaveCCM [1] This thesis
specifically looks at systems that consist of two com-
ponents: the client (a component that needs a ser-
vice) and the server (a component which supplies a
service), and how to validate the proper function of
one of these when the other does not exist, by calcu-
lating/generating a version of the other component
specific for verification.

In the picnic example 2.1 the activities can be seen
as different components, a different person can be
responsible for making the sandwiches, making the
tea and packing the picnic. These people are work-
ing together to make the picnic, each with their own
activity.

2.1.1 Asynchronous communication
systems

Asynchronous communicating systems are a type of
system in which components or processes communi-
cate with each other through asynchronous message
passing. In an asynchronous communication system,
processes can send and receive messages at any time,
independent of each other, and without the need for
global synchronization. Asynchronous communicat-
ing systems are commonly used in distributed sys-
tems, concurrent programming, and software engi-
neering, where components or processes need to in-
teract with each other.

In the picnic example 2.1 it does not matter if the
tea is made before during or after the sandwiches are
made, only that everything is made before the picnic
is packed.

Bread Picnic pasket
Q Make Sandwich

Cheese .

Sandwiches Made Sandwiches Made

Pack Picnic Picnic Ready

Boiling Wat

Tea Bags

Thermos

Figure 2.2: Picnic Components

2.1.2 Software interfaces

a software interface is a defined boundary be-
tween two or more software components or systems,
through which they can interact with each other.
The purpose of a software interface is to provide a
standard way for components or systems to commu-
nicate and exchange information, regardless of the
underlying implementation details. In asynchronous
communication systems, it is the definition of the
messages being sent. It is also the name of the loca-
tion (Place in a Petri Net, see below) which sends a
message or receives a message.

When redrawing the picnic example as Figure 2.2,
"Sandwiches Made” and "Tea” can be viewed as the
boundary of the "Make Sandwich” and "Make Tea”
systems. The person making the tea places it in
"Tea” and the person who packs the picnic takes it
from "Tea”.

2.2 State Machine

A state machine is a mathematical model used to
represent the behaviour of a system. It defines a
set of states, which represent the possible configura-
tions of the system, and a set of transitions, which
represent the possible changes between the states.

In a state machine, the system can be in only one
state at any given time, and transitions can occur
only between adjacent states. The transitions can
be triggered by events or conditions and can cause
actions or side effects to occur in the system.

The picnic example 2.1 is a state machine. The dif-
ferent states of a State Machine can be visualized
with a State Space Graph, which is described later
in the Petri Nets chapter 2.3.4.

2.3 Petri Nets

The picnic example 2.1 is a state machine, but to
be more precise, it is a Petri Net. In computer sci-
ence, engineering, biology, and others this is used
to understand and manage complex processes. In
this system the checklist items are represented with
circles called "places”, these places hold check marks
called "tokens”. There may be more tokens per place,
for instance, the place "sandwiches made” can con-
tain one token per sandwich made, like a counter.
Then some activities have to be done, which are
represented with squares called "transitions”, for in-
stance, "make sandwich”, or "pack picnic” which
should only be done once the predetermined num-
ber of sandwiches and drinks have been made. Fi-
nally, there are lines connecting the places to the
transitions called "arcs”, which guide the process of
making the picnic. So this Petri Net is an interactive
map of tasks that need to be done to create a great
picnic.

A Petri Net, is a Mathematical and Graphical no-
tation to describe a state machine, it consists of
data (called tokens), Places that can contain to-
kens, Transitions that change the state of the ma-
chine, and the relation between Places and Transi-
tions (called Arcs). A Petri Net starts with a num-
ber of tokens in places, which defines the starting
state. During execution, one Transition that is en-
abled (based on the state) is Triggered, which moves
and /or changes tokens to other (or the same) Places.
After the Triggering of a Transition, the Petri Net
has a new State. This cycle of Triggering transitions
and moving tokens continues until a pre-defined end
state is reached, or no further Transitions are en-

abled.

Carl Adam Petri, who gave his name to the Petri
Net, first formally introduced this type of net in his
paper "Kommunikation mit automaten” [5][6]. The
notation gets more formalised in his later work [7].
Other early works on the theory of Petri Nets come
from Wolfgang Reisig [3][9].

The original Petri Net is focused on token communi-
cation and manipulation without a value associated
with the token. This Thesis focuses specifically on
Coloured Petri Nets, which replaces tokens with
coloured tokens where the colour specifies the data.
A lot of theory on Coloured Petri Nets is written by
Kurt Jensen and collaborators [10].

2.3.1 Terms used describing Petri
Nets

Tokens

A token is a symbol that represents the presence or
absence of a resource or token type within a place.
Tokens are placed in the places and flow through the
Petri Net (or are created/destroyed) during Execu-
tion.

Tuple

A tuple when used in a Coloured Petri Net is a To-
ken that contains multiple values, which can be used
to combine multiple tokens into a single token. This
is particularly useful when multiple tokens are trans-
ferred between two Coloured Petri Nets.

Places

A Place can have 0 or more tokens defined for its
Initial State. During the execution of the Petri Net,
this usually changes. In programming, a Place can
be seen as a variable, where the colour defines the
type, and the token defines the value.

Arcs

Arcs transport tokens to and from Transitions. An
Arc is always from a Place to a Transition or from a
Transition to a Place. An Arc is never from a Place
to a Place or from a Transition to a Transition. An
Arc has an inscription which can contain rules, and
the name by which the Transition refers to the Token
transported

Transitions

Transitions define when Tokens move between
Places. Tokens can only move if all the Incoming
Arcs of the Transition have a Token in the connect-
ing Place. Additionally, a Transition can have a
Guard, which is a Boolean function on the incom-
ing Tokens, and only if this Guard evaluates to True
the Transition is said to be Enabled and Tokens can
move across the Transition. The inscription on the
outgoing Arcs then defines the Tokens that move to
their connecting Place.

Transition Trigger

During execution only the movement of tokens
across one Transition is calculated at a time: this
Transition is Triggered. After a Transition is trig-
gered, the new state of the Petri Net is calculated,
and based on this, a new Transition is selected to be
Triggered. There is not an assigned order in which
Transitions are Triggered; any enabled Transition
can be Triggered during execution.

Nodes

Node is a generic term for Places and Transitions.

Colours

For Coloured Petri Nets, defined later in this chap-
ter, a token represents a specific data value. This
value is said to be its Colour, and every Colour is
part of a Colourset (data type). A (classic) Petri
Net can be defined as a Coloured Petri Net with one
Colourset which contains one Colour: Black.

2.3.2 Petri Net

Scientifically a Petri Net is a tuple N with the fol-
lowing definition. N = net structure. N = (P, T, F)
P = set of places

T = set of transitions

F =set ofarcs. F C (P xT)U(T x P)

PNT =0

node € (PUT)

*r = pre-set of a node. *z = 4ot {y|(y,) € F'} [3]
x* = post-set of a node. z* = 4t {y|(z,y) € F} [3]

2.3.3 Open Petri net

In our second picnic example (figure 2.2), the per-
son is not making it alone, but they have their kids
helping them. One is making the sandwiches, one is
making the drinks, and one is putting everything in
the basket. The activity of packing the basket de-
pends on the other activities. In this case, the place
"Sandwiches Made” of the "Make Sandwich” Petri
Net is linked to the place "Sandwiches Made” of the
"Pack Picnic” Petri Net. The place is called "Out-
put Place” in the "Make Sandwich” Petri Net, and
"Input Place” in the "Pack Picnic” Petri Net.

10

An open Petri net (OPN)[11] is a subclass of Petri
nets which is suitable for modelling client/server
systems. An OPN is a tuple N with the following
definition:

N=(PI,O0,T,F)

P = set of Internal places

I = set of Input places with *1 = &

O = set of Output places with O°® = @

T = set of transitions

F =setofarcs. F' C ((PUIUO)xT)U(T x(PUIUO)
I UO = the interface places of the net

The sets P, 1,0 and T are pairwise disjoint.

note: P U I U O is the set of all places, which
is defined as P in the classical definition of a Petri
Net (chapter: 2.3)

Software Interface of an Open Petri Net

The software interface of an OPN (chapter: 2.3.3) in-
cludes a set of input and output places, which serve
as the boundary between the OPN and the exter-
nal software components. The input places receive
input data from the external software components,
while the output places send output data back to the
external software components.

Two OPNs can be composed by fusing their shared
interface places. We say two OPNs are composable
if and only if the set of input places of one net is
equal to the set of output places of the other net, and
vice versa.[l1]

The input and output places of an OPN are typi-
cally connected to the transitions of the OPN, which
perform the actual processing of the input data and
produce the output data. The connections between
the input/output places and the transitions of the
OPN form the interface specification, which defines
the behaviour of the OPN from the perspective of
external software components.

The interface specification can be designed to be
flexible and customizable, allowing different exter-
nal software components to interact with the OPN
using different protocols or formats. The interface
can also be designed to be scalable and extensible,
allowing additional input/output places and transi-
tions to be added to the OPN as needed to support
new functionality or integration with other systems.

Fusing two Open Petri Nets

Fusing two Open Petri Nets combines them into one
Petri Net. Fusing combines the Output Places of one
net with the Input Place into one Place. This The-
sis only looks at fusing nets with a 1 to 1 mapping
between Output places and Input Places.

If there are two (fusible) nets:
Ny = (P, 11,01, Ty, F1)

Ny = (Py, I3, 02, T3, F)
Then:

2.3.4 State Space

The state space[l0] of a Petri Net lists all the states
a Petri net can be in. A state in a Petri net is de-
termined by the tokens in different places. The size
of the Statespace is determined by the number of
places in the Petri Net and the number of tokens of
each colour that can be present in each place. The
state space of a Petri Net can be represented us-
ing a state space graph or reachability graph, which
shows the possible transitions between markings of
the Petri Net. Figure 2.4 and 2.5 show two states
of a coloured Petri Net which we will explain in the
next section.

Reachability Graph and State Space Graph

For a state machine, a state space graph is typ-
ically represented as a directed graph, where the
nodes (circles/squares) represent the states, and the
edges (arrows) represent the transitions between the
states. Each node in the graph represents a single
state, and each edge represents a possible transition
from one state to another.

A State Space Graph can be created based on an
initial state, and only contain all states which are
possible based on that initial state. But a State
Space Graph can also be created based on all pos-
sible states of the State Machine. Depending on
the state machine, this Graph can contain a huge
amount of nodes and edges.

A Reachability[10] Graph is another name for a state
space graph and shows the possible transitions be-
tween markings of a Petri Net. In a reachability
graph, each node represents a unique marking of the

11

Make SancMake Tea

Make SancMakeMake Sandwich

Make SantMakeMake Sandwich

@

MakeMake Sandwich

Pack Picnic

Figure 2.3: Picnic

Petri Net, and each edge represents a possible transi-
tion from one marking to another. The reachability
graph can be used to analyze the behaviour of the
Petri Net and to identify properties such as dead-
locks and weak termination.

Figure 2.3 shows the state space/reachability graph
for the picnic example.

2.3.5 Weak Termination

Weak Termination[l 1] is the property that from any
reachable state in a Petri Net it will always be pos-
sible to reach a final state of the Petri Net. This is
opposed to Strong Termination which requires that
the Petri Net reaches a terminal marking from any
initial marking.

This Thesis only regards Closed Nets, meaning that
the Final State is the same as the Start State. This
will allow the Petri Net to run forever without gen-
erating a Deadlock or a State Space Explosion. (De-
fined below)

For Non Closed Nets, Weak termination guarantees
that the system will eventually come to a stable state

from which no further transitions are possible.

Deadlock

A Deadlock[!2] occurs when all the tokens in the
Petri Net are blocked and unable to move to any
other places, and hence no Transition is enabled.
Note: Reaching a terminal marking and terminat-
ing is desired, but a deadlock occurring at any other
time is not.

State Space Explosion

A State Space Explosion occurs when the Petri Net
generates new tokens and states without reaching a
Final State. We also use the term State Space Ex-
plosion when the number of states being generated
is so numerous that analysis (even with a computer)
will take an excessive amount of time.

2.4 Coloured Petri Net

In the picnic example, sandwiches and tea can be
regarded as picnic items and more picnic items can
be envisioned, like a picnic blanket. Rewriting the
left side with that in mind creates figure 2.4. Note:
The green elements are discussed later. In this dia-
gram, every Place has more information. The place
"Bread” has a marking ”3‘()” and a marking of
"BREAD”, which means there are three tokens of
type "BREAD”. "BREAD” is called the Colour Set.
For "BREAD?” this works the same as in the origi-
nal Petri Net, there is only one type of "BREAD”,
so the "BREAD” tokens are said to have the colour
black. Black tokens in a CPN are identical to tokens
in a Petri Net. The colour set "PICNIC ITEMS”
can have tokens of colour "sandwich” or "tea”, which
can’t be seen in this figure, so let’s show them. Fig-
ure 2.4 contains green elements, these are used for
simulating the CPN, and these are the start tokens
of the simulation and this is called the start state.
Executing this simulation to its final state creates
figure 2.5. In the final state, we see ”(4) 1‘tea ++
3‘sandwich” which means that "picnic items” now
contain 4 elements, of which 1 has the colour tea
and 3 have the colour sandwich.

A Coloured Petri Net[10] is a 8-tuple N =
(P, T,A, %, V,C G, E), where:

1. P is a finite set of places.

12

()
@3 70

CHEESE

bread

sandwich

PICNIC_ITEMS

Boiling 3
Water Do

0

Tea .

TEA_BAGS

thermos

THERMOS

Figure 2.4: Picnic CPN start state

3
BREAD

CHEESE

0

sandwich

1 tea++
3’ sandwich

PICNIC_ITEMS

Figure 2.5: Picnic CPN end state

. T is a finite set of transitions 71" such that P N
T =10.

. AC(PxT)U(T x P) is a set of directed arcs.
. 2 is a finite set of non-empty colour sets.

.V is a finite set of typed variables such that
Type [v] € X for all variables v € V.

. C: P — ¥ is a colour set function that assigns
a colour set to each place.

. G:T — EXPRYy is a guard function that as-
signs a guard to each transition ¢ € T" such that
Type [G(t)] = Bool

. F:A— FEXPRy is an arc expression function

that assigns an arc expression to each arc a € A
such that Type [F(a)] = C(p), where p € P is
the place connected to the arca

When a transition ¢ € T is enabled in a CPN, it can
be fired, which means that the tokens in its input
places (pi, € P where there exists an arc (pi,,t) €
A) are consumed, and tokens are produced in its
output places (pows € P where there exists an arc
(t,pout) € A)), according to the following rules:

e The tokens in the input places must match the
specified colour and value constraints of the
transition’s input arcs. If any token in the in-
put places does not match the constraints, the
transition cannot fire.

o If the input tokens match the constraints, the
transition can fire, and the input tokens are con-
sumed. The transition then produces output
tokens in the output places, according to the
constraints of the output arcs.

o If multiple transitions are enabled at the same
time, only one of them can fire, and the choice
of which transition to fire is determined by a
scheduling policy, such as random selection or
priority.

2.4.1 Unrolling a CPN into a Petri
Net

Unrolling a CPN into a Petri Net involves trans-
forming the CPN into an equivalent Petri Net that
preserves its behaviour and properties but does not
use colours to differentiate tokens. This allows a
CPN to be analysed with the techniques and tools
designed for Petri Nets. The unrolling process con-
verts each coloured place and transition of a CPN
into multiple places and transitions in a Petri Net,
one for each colour present in the original CPN.
"MCC: A Tool for Unfolding Colored Petri Nets in
PNML Format” [13] explains the unrolling process
in detail.

2.4.2 Inverse of a Coloured Petri Net

The inverse of a CPN is simply put the CPN running
backwards. The inverse of the previous CPN picnic
example 2.5 is shown in figure 2.6. All the arrows
point in the opposite direction, and the start state

13

picnicltam = sandwich

cheese

picnicltem

CHEESE 1 tea++

3" sandwich

1 tea++

3" sandwich
PICNIC_ITEMS

picnic

picnicltem

Tea
Bags

TEA_BAGS

THERMOS

thermos

Figure 2.6: Picnic CPN inverse start state

@3 30
bread picnicitem = sandwich

BREAD

Unmake
andwicl

cheese

@3: 70

CHEESE

picnicltem

1 tea++
3" sandwich

PICNIC_ITEMS
picnicltam

Tea | — teaBag

TEA_BAGS

thermaos

Figure 2.7: Picnic CPN inverse end state

has the tokens in the "picnic items” place. Executing
this CPN results in the final state shown in figure 2.7.
So the inverse completely undoes the process which
the original CPN did. The "picnicltem = sandwich”
is a guard to ensure that the Inverse only unmakes
a Sandwich when the picnicltem is a sandwich.

This Thesis only looks at Transition Inversions which
can be directly inferred, (called Trivial and Basic
Transformation). There are more elaborate ways to
calculate inversions, as investigated in the papers of
Khalfaoui [11], Bouali, Barger and Schon [15] [16],
Bouali, Rocheteau and Barger [17].

X P
Trans
INT INT
X Inverse X Inverse
Trans B
INT INT

Figure 2.8: Transition with 1 var and Inverse

Trivial and Basic Transitions

A Trivial Transition is when one token is passed
through a transition (figure 2.8). The inverse of this
is itself with the arcs inverted. If the Transition has
a related Guard, this stays the same.

A Basic Transition can have more input and output
places. For our research, we are interested in Basic
Transitions with outgoing constants and Constants
in the Transition Guards. These have an important
place when communication between client and server
uses one input and one output port.

When a Transition also sends a constant to another
place (figure 2.9), we know that the value coming
from C is always 10, but we do not know if C can
receive any other values, so we will need to Guard
against other values. Hence the inverse of this transi-

tion is a Transition with a Constant as Guard (figure
2.10)

The opposite is also true, when a Transition has a
Constant as Guard (figure 2.10), then we know the
value of the associated variable (y). So the inverse
of this transition, is shown in figure 2.9, where the
variable (y) on the inscription is replaced with the
Constant that was part of the Guard.

We can also combine multiple input tokens into one
token (a tuple) which is shown in figure 2.11.

Inversion calculation

The inverse (¢') of Transition ¢ can be calculated as
follows:
Let

e a be the set of all the incoming token values
for t.

e b be the set of all outgoing token values for ¢

14

Trans

INT

y =10 INT
X Inverse
Trans y
INT \.@
INT

Figure 2.9: Transition with 1 outgoing constant and
Inverse

e t be a transition which maps a to b such that
t(a) =10

e g(a) be the guard function for ¢
o all values/formulas above are known
and

e a is also the set of all the outgoing token values
for t'.

e b is also the set of all incoming token values
for t'.

e t' is the mirror transition which maps b to a
such that such that ¢(b) = a

e ¢'(b) is the guard function for ¢/
then

o Solve t" where t'(b) = a. This should give the
outgoing arc inscriptions.

» Solve ¢’ where ¢'(b) = g(a) = g(t'(b))

Example: We have a transition which is triggered
when the input token (x) is larger than 10, this then
calculates an output token(y) which is 2 times the
input token.

Trans

e

INT

Inverse X
Trans
10

INT

Inverse

6
—

NT

Figure 2.10: Transition with a Constant as Guard
and Inverse

X
INT INT

xy) . xy)
Connection

Inverse

Trans

INTXINT

ver:
B
INT

INT

Figure 2.11: Using a tuple to combine tokens

Inverse:

 Solve t’ by substitution using t(a), b, and a.

—t'(b)=a
- t'(b)==x
-) =1

 Solve ¢’ by substitution using g(a) and #'(b).
— §(b) = 9la) = g(#()) : 2> 10
—g(%):z>10
— g'(b) 1y >20

Example: We have two input places with tokens x
and y and we want to combine these in a tuple. In
the mirror, we will receive the tuple and extract the
two tokens again (figure 2.11)

e (1 = fL’, y
e g(a) : true (no guard)

e b=12z

15

C ta) 2= (2,9)

Inverse:
o t'(2): (ny,n2)|z =nily = ng
o ¢'(2) :true

Which can be written as the original transition with
the arcs moving in opposite direction

16

Chapter 3

Mirroring

We will now discuss the way we can create a Client
based on the definition of the CPN of the server
(Specifically a Mirrorable Open CPN, which will be
defined later in this chapter). We start with the def-
inition of an OCPN. Then we look at an analogy,
to get a feeling for the difference between a Mirror
and an Inverse, and the relationship between arc an-
notations and guards. Then we will go into more
detail about what we want to accomplish and how,
and define the definition of an MOCPN

3.1 Open Coloured Petri Net
(OCPN)

Like an OPN compared to a PN, an OCPN is a CPN
with Input and Output Places.

The Communication Protocol Petri Net defined by
Jensen [10] models a process of 2 computers (a client
and a server) and their communication, as shown
in figure 3.1. When we are only modelling one of
the systems (e.g. the Client), the resulting Petri
Net contains a gap. It has Places A and D which
consume and generate tokens, but they don’t seem
to have a way to do this. However as we can see
from the figure, they are places where they connect
to another Petri Net, and this is where they send
and receive tokens from. We are calling this type
of Petri Net an Open Coloured Petrinet and A and
D Input and Output Places. So the figure shows 3
Open Coloured Petri Nets and the interfaces between
them.

The definition of a OCPN: N

(P, T,A, %, V,C,G,E,I,O), where:
1. P is a finite set of places.

2. T is a finite set of transitions.

Figure 3.1: Communications Protocol with Systems

3. A are all Arcs
4. ¥ is a finite set of non-empty colour sets.

5. V is a finite set of typed variables such that
Type [v] € ¥ for all variables v € V.

6. C: P — X is a colour set function that assigns
a colour set to each place.

7. G: T — EXPRy is a guard function that as-
signs a guard to each transition ¢ € T" such that
Type [G(t)] = Bool

8. E:A— EXPRYy is an arc expression function
that assigns an arc expression to each arca € A
such that Type [E(a)] = C(p), where p € P is
the place connected to the arca

9. I:1 C P is the set of Input Places.

10. O : O C P is the set of Output Places.

Such that:
11. PNT = 0.
12. INnO = 0.

17

Server

ball = RED

2°RED ++
1°BLUE ++ Luke
3" GREEN ball takes
Red Ball

ball = BLUE
Rick

takes
Blue Ball

puts
Blue Ball

Frank
Puts
Ball

Figure 3.2: Moving Balls Analogy

3.2 Analogy of Mirroring

As an analogy, we are going to use moving a ball
between two containers by three persons (figure 3.2).
We have divided the figure in a Server side and a
Client side. We see that the Server and the Client
side are both OCPNs where Luke/Rick/Frank are
Input and Output places. If we look at the Server
and ignore the Client, we find that Luke and Rick
have kept taking balls, and Frank does not have balls
to put back. We add a place for Luke and Rick to
put the balls "Also Balls” and we have Frank take
balls from this place. Now we have a way for the
balls to move around without restriction.

When looking at the client, we see that it is the In-
verse of the server. The "... Puts Ball” and the ”...
Takes Ball” transitions are each other’s inverse/mir-
ror transitions. "Luke”; "Rick” and "Frank” are the
Input and Output places of the Server and Client.
When we simulate this Petri Net, the balls can move
freely, so the red balls can be in ”"Balls”, "Luke”,
"Frank” or ”Also Balls” place (or any combination),
and the blue ball can be in "Balls”, "Rick”, "Frank”
or "Also Balls” place (or any combination), the green
balls stay in "Balls” and won’t move. Because the
balls can move freely, and without much control, we
regard this as an asynchronous system. This may be
desired, but most of the time, when creating a clien-
t/server system, we want more control, the server
sends data (a ball), and the client responds with (a
ball), we regard this as a synchronous system. To
create a synchronous system, we have to add more
control, as shown in figure 3.3

In figure 3.3 additional places and arcs are included,
which we call "Process Flow” since it controls when
tokens (data/balls) are sent/received from/to the
client. The Mirrored Client also includes a Pro-

Server
ball = RED

Luke
puts
Ball

Rick
puts
Blue Ball

Frank
Takes
Balls

Luke RED
takes
(Red Ball

2'RED ++ha||

Also
Balls

ball ball = BLUE

takes
Blue Ball

Puts
Ball

Server
ball = RED

Luke RED
takes
Red Ball

Figure 3.4: Moving Balls Analogy Inverse

cess Flow which activates the mirrored transitions
on the client in the same order as the Process flow
activates the transitions on the server, this is the
difference with an Inverse Client (figure 3.4). While
with the mirrored client the balls move as expected,
with only one ball moving to the client and back, in
the inverse client, the balls stop moving, because the
transitions on the client are triggered in the wrong
order. In these figures, the blue-coloured arcs are
inversed, while the black-coloured arcs are not in-
versed.

The annotations of the arcs have changed from "ball”
to "RED” and "BLUE”, this is to assist in the (auto-
matic) mirroring process. This information is needed
during mirroring. In figure 3.5 the relationship be-
tween those changed annotations with the guards of
the transitions is shown. The annotation of the arc

18

Luke
takes
Red Ball

Luke
puts
Ball

Rick
uts
Blue Ball

Frank
Takes
Balls

2'RED ++ha||

Also
Balls

Figure 3.5: Moving Balls Analogy: Guards and Arcs

"RED” on the server gets translated in the mirror to
"ball = RED” (Marked with orange boxes), and the
guard of "ball = RED” on the server gets translated
in the mirror to the arc annotation "RED” (Marked
with green boxes).

Side note: The updated annotation of the arcs on
the server could be derived from the guards on the
server, but this is not always the case. We can envi-
sion a pre-processing step which would derive these
types of annotations before mirroring. This is out of
scope for this thesis, since it specifically focuses on
the Mirroring itself.

Finally, in this CPN; the server sends two balls, while
the client only sends one ball back. This will eventu-
ally lead to the situation that the "Balls” place will
run out of BLUE or RED balls, and either Luke or
Rick can no longer take a ball. So this Petri Net
does not weakly terminate. This is what the process
of creating a Mirrored Client is checking. In this
case, we could resolve this by adding a player who
also moves a ball back.

3.3 Mirroring Elaboration

When we have a Client/Server system, and create
one of its parts, let’s say the Server. To verify the
functionality of the server, we also need a client. De-
pending on the complexity of the Server, a client
may not be available. If we have the CPN of the
Server, we can create the CPN of the client by using
Mirroring. This mirror is suitable for exercising the
possible states of the CPN of the Server.

To explain Mirroring, let’s look at what we want to
accomplish:

1. Tokens from a place on the server that passes
through an Input/Output place should end in
place on the Mirrored client.

2. Transitions triggered on the server related to
communication should also trigger on the Mir-
rored client.

(a) The transitions on both sides should trig-
ger in the same order, to keep the systems
synchronised.

3. If tokens are combined in a tuple on the server,
these tokens should be extracted on the Mir-
rored Client.

4. If the Server needs to do a specific action for
the client (e.g. do a complex calculation), the
Mirrored client should not do the same action.
(See below for an example)

In 1 and 3, we can see that these work exactly the
same as with Inversion 2.4.2, but 2 works differently
from inversion. In an inversed CPN the transitions
are triggered in reverse order, and that is not desir-
able during Mirroring. Thus when creating a mirror,
only the flow of tokens that move between the two
open nets should be inverted. The significance of
that is demonstrated with Figures 3.6 and 3.7. The
only difference between the two is the direction of
the arcs between CSend, CA, CReseive, CB. In the
Mirrored Client, this is the same as in its Server, but
in the Inverted Client, this is the inverse of its Server.
If both Clients start with a token in CA, then the
Inverted Client will deadlock, waiting for an ACK to-
ken from the Server. The Mirrored Client however
sends the data and receives the ACK as expected.
If the Inverted Client would have started with a to-
ken in CB then it would be functioning identically
to the Mirrored Client. For a simple send/receive
loop this is often correct, but as soon as we intro-
duce additional communication steps 3.12, this does
not hold.

4 is only useful when creating a Mirrored client for
verification. In general, we expect the Server to do
an activity for the client. If we mirror all arcs and
transitions, the client may be created to also do this
activity itself, or it may be created in a way that does
not allow proper validation of the Petri Net. e.g. If

19

Figure 3.6: Server with Mirrored Client

1'1++2'2++53

DataToSend

INT

N X Csend

RECEIVED
ssend ou

ACK

Figure 3.7: Server with Inverted Client

the function of the server is to add 2 numbers and
return the result, then the Mirrored client should
not also add the 2 numbers and calculate its own
result. If we would create a Mirrored client without
removing the related arc, the Mirrored client would:
Calculate the result itself and/or Tries to separate
the result value into the original values. Neither is
useful for verification, so the related arcs should not
be copied to the Mirrored Client.

During Mirroring, the Input Places of the Original
are identical to the Output Places of the Mirror and
vice versa. The Client Server Data Flow in a Mirror
is inverted while the Internal Data Flow is the same
as in the original CPN and the order in which the
Interface places are accessed is also the same (con-
trolled by the Process flow). The Client Server Data
Flow is defined as Tokens which Flow between two
Places in two different Open Coloured Petri Nets
to transfer data between those Places. The Pro-
cess Flow is defined as the order in which transitions
handling the Client Server Data flow are triggered,
usually defined with black tokens. This is further
explained in 3.5.

There is one additional transition that may be use-
ful during mirroring which should not be used dur-
ing inversion. This is when the data flows through a
Transition and sets a data place (3.11). This transi-
tion should be handled with suspicion since it does
not transfer data between the Petri Net and its Mir-
ror, but it sets the dataplace in the Petri Net and

Trans

INT INT

) (-

X

INT

Inverse X
Trans

INT

-

Figure 3.8: Transition with 1 var and Mirror

the Mirror to the same value. This can be useful
when the tokens that are being transferred are not
inserted in a data place, but for instance in the in-
terface places during verification.

3.4 Definition of a Mirrorable
Open Coloured Petri Net

To enable mirroring we have to add additional
information to the OCPN tuple defined earlier.
This additional information can sometimes be in-
ferred from the Petri Net itself, but not al-
ways. In the mirror some arcs stay the same,
some are inverted and some are removed. Com-
pared to the definition of an OCPN we split A
into multiple parts depending on the function of
the Arc. The definition of a MOCPN: N =
(P,T,A,, Ay, 41,2, V,C,G,E, 1,0, M), where:

1. P is a finite set of places.
2. T is a finite set of transitions.
3. A, are all Arcs which are for Process flow

4. Ay are all Arcs which are for Client Server Data

20

Trans

INT \GD
INT

Mirror
Trans

Figure 3.9: Transition with 1 outgoing constant and
Mirror

10.

11.

12
13
14

flow

A; are arcs which calculate a result before send-
ing it to the Mirrored Client. (Item 5 in the
introduction of this chapter)

. We define A as: A=A,U A;U A; (This is the
same A as in the tuple defined in 2.4, see above)

Y is a finite set of non-empty colour sets.

V' is a finite set of typed variables such that
Type [v] € ¥ for all variables v € V.

C: P — ¥ is a colour set function that assigns
a colour set to each place.

G : T — EXPRy is a guard function that as-
signs a guard to each transition ¢ € T" such that
Type [G(t)] = Bool

E: A— EXPRYy is an arc expression function
that assigns an arc expression to each arca € A
such that Type [E(a)] = C(p), where p € P is
the place connected to the arca

. I : 1 € P is the set of Input Places.
. O :0 € P is the set of Output Places.

INT X
Trans

Y
INT

—
=
3

NT Mirror X
Trans
10

INT

=4
3

Note.
direction of the arc, it also changes the arc expression
function F and the guard function G. This definition
has a minor redundancy by defining both M and the

Figure 3.10: Transition with a Constant as Guard
and Mirror

the mirroring rule M as a function that assigns
a mirror rule to each arc.

Such that:
15. PNT = 0.
16. INO = 0.

17. (ApNA)UApNA)UAINA) =0

18. The mirror rule M is an integer with the fol-

lowing meaning;:

-1 The arc is inverted during mirroring.
M(a) = —1 when a € Ay

0 The arc is removed during mirroring.
M(a) =0 when a € A4

1 The arc is not changed during mirroring.
M(a) =1 when a € A,

Inverting an arc does not only change the

. M: Is the mirroring rule per Arc. We define 4 types of A, this is to assist in the explanation.

21

X
(: 5 E ; Trans
NT old_x

I

old_x
Mirror
Trans X
INT X
I

Figure 3.11: Transition with in and out var and Mir-
ror

3.5 Logical groups of Places,
Arcs and Transitions

In the mirroring process, we separate 2 types of (to-
ken) flow through the CPN. Arcs are always part of
-Client Server Data flow- or -Process Flow, but this
restriction does not apply to Transitions and Places.

The next examples are referencing figure 3.12

e Process Flow. The Places, Arcs and Transitions
that control the order the Petri Net is executed
and the order in which communication between
client and server occurs. The Process Flow con-
tains 1 token, and it needs to be a closed loop.
Example: "flow 17, "receive command”, "flow
2”7, ”send confirmation”, "flow 3”, ”send result”
and the connecting arcs. It usually only uses
a black token but may use a coloured token if
the token contains data which is relevant for the
synchronisation of the client and the server (the
”id” tokens).

o Client Server data flow. The Places, Arcs and
Transitions that transport data from one place

22

COMMAND CCOMMAND_MESSAGE

result
flow_3 RESPONSE_MESSAGE

RESPONSE

Figure 3.12: Command Server

to the Client Server Input/Output Place and
vice versa. Example: Command”, "receive com-
mand”, "Execution Command” and the con-
necting arcs.

Chapter 4

Methodology and Tools

Methodology Tool Chain
CPNTools
MOCPN
|
MOCPN
| MOCHN-MT
OO, L
Mirroring Mirroring
—

M o:c PN B
N FNT NINT T,
Fusing Fusing
GPN FIPN

NP NF NN NF N
Determine weak Exporting
termination of CPN {Unrolling)
Petri Net
(Reachability Graph)
Snakes

Figure 4.1: Methodology and Tool chain

The objective of this thesis is to identify a way to
verify if an open-coloured petri net is weak termi-
nating by its design. We do this by Mirroring, fusing
the OCPN with its Mirror and then checking if the
resulting net is weakly terminating.

4.1 Methodology

The methodology starts with a MOCPN, which we
defined in the previous chapter.

Figure 4.1 on the left side:

1. We model the component or interface as a
Mirrable Open Coloured Petri Net,

2. Mirror the MOCPN

3. Fuse MOCPN with its mirror by merging the
connecting places this creates a fused CPN

4. Calculate the weak termination property

4.2 Alternative

In the work of Bera [1 1] and Hildebrand|[2], this pro-
cess has been investigated for Open Petri Nets. Since
a CPN can be turned into a Petri Net, this gives
the option to use their methods to do this analysis.
When we first turn an OCPN into an OPN the rest
of the process is difficult to impossible to be scruti-
nised visually or mathematically, while this is rela-
tively easy when we stay with Coloured nets as long
as possible. It also does not result in CPN that can
be used as a guide for designing/developing clients.
During unrolling, the size of the net may expand ex-
ponentially, so an OCPN with four transitions, may
turn into an OPN with one million transitions de-
pending on the number of colours in the different
coloursets. Another advantage of using a MOCPN
is that this makes it easier to validate the OCPN for
specific use cases. In that case, the relevant tokens
for the Use Case can be introduced into the merged
CPN, in theory, this is still possible in the PN but
requires an understanding of the unrolled PN and
which states in the PN relate to the Use Case.

4.3 Tooling

To assist in the process we developed a tool that does
most of the work for us. The MOCPN Mirroring
Tool (MOCPN-MT) takes a MOCPN as input. We

23

Server

ball = RED

Luke

takes
Red Ball

2'RED ++ha||
1'BLUE ++

Figure 4.2: Moving Balls

create a MOCPN by using CPN tools and colouring
every place/transition and arc which is part of the
data flow Blue, any other colour will be regarded as
part of the Process Flow or Internal data flow.

4.3.1 Tool selection

During the investigation which tools are the most
useful to implement this process, we settled on CPN-
Tools, Snakes and PNaT. There is a short descrip-
tion and links to these tools and the other ones we
looked at in Appendix B

We use CPN-Tools since this is a well-known CPN
editor which allows us to colour the arcs. The use
of Snakes has the advantage that we can create the
whole tool in Python, and because of this have full
control over every part of the mirroring process. We
use PNaT since this is a proven tool for calculating
Weak Termination of a Petri Net.

4.3.2 Tool Chain

The full toolchain is shown in Figure 4.1 on the right
side, and the corresponding part of the methodology
on the left side. We use the Moving Balls from Chap-
ter 3 for visualisation (repeated here as Figure 4.2)

CPNTools

In CPN Tools we create a MOCPN like the Server
side of figure 4.2. CPN Tools does not have direct
support for MOCPN, so we use blue arcs to mean
M = —1, red arcs (not shown) to mean M = 0, and

black lines to mean M = 1 (see the definition of a
MOCPN, Chapter 3.4), M is defined in rule 18). We
also assume that any place with only input arcs is an
Output Place, and any place with only output arcs
is an input place.

Process of MOCPN-MT

1. Import the Mirrorable Open Petri Net created
in CPN Tools/

2. Take M from the definition of the MOCPN.
(Which we defined with a color in CPN Tools)

3. We Mirror each transition in the Petri Net,
by inverting the Arcs and Guard-Components
for M(a) = -1 (including creating or re-
moving Guards-Components), removing Arcs
and Guards-Components where M (a) = 0 and
keeping the Arcs and Guard-Components for
M (a) = 1 and combine the Guard-Components
calculated back into a Guard. (This gives us
the Client side of figure 4.2)

4. We fuse the Original Net with the Mirror. (This
gives the full figure 4.2)

« We have to make sure that the Places,
Transitions and Arcs have unique names,
to make sure the process does not confuse
the versions in the original and the mir-
ror. This does not apply to the Input and
Output Places since these are fused (I use
N1 and N2 to differentiate Transitions and
Places and nl and n2 to differentiate Vari-
ables)

e The Input and Output Places of the Orig-
inal are fused with their Mirror. After
merging an Input Place has Original Arcs
going out and Mirror Arcs coming in, and
an Output Place has Original Arcs coming
in and Mirror Arcs going out.

5. Calculate State Space using snakes and then
Export the State Space to PNaT format

PNaT
1. Import the created file from MOCPN-MT

2. Calculate the properties (PNaT)

24

3. Check the weak termination property of the
fused CPN

Note. In MOCPN-MT we immediately create the
state space of the CPN using Snakes instead of un-
rolling, since this simplifies the PnAT analysis. Un-
rolling means that all possible values of the different
colour sets in the CPN need to be mapped to their
target PN black tokens, which can easily cause a
state space explosion. By using the state space we
only take the coloured tokens we assign for verifica-
tion in consideration to calculate the Petri Net which
serves as input to PNaT.

25

Chapter 5

Tool Verification

To verify the functionality of the mirroring process,
we use a couple of reasonably simple nets, for which
we can still draw the diagrams. We show that the
mirror behaves as an appropriate client. We start
with a version that does not contain a process flow
and show why including a process flow is important
but not always required for the functionality of the
net. After this, we look at what happens when we
break the MOCPN to show that the methodology
identifies when a net is not weakly terminating or
has an unbounded state space. We are following the
steps of figure 4.1 in the previous chapter.

5.1 Introduction

We have a component in a component-based system
that can be turned on and a balance can be assigned
to it from another component. In this case, we are
only modelling an interface, we do not further specify
what happens with the balance in the component.
We also define a rule, that a balance can only be set
if the component is turned on.

We are going to model this in 4 ways, to highlight the
different aspects of the behaviour of the process, to
clarify the reason for the process flow, and to show
what happens when it is applied to a component
which does not behave as intended.

5.2 Verification Experiment 1

5.2.1 Objective

Demonstrate what happens when we use a correctly
defined OCPN, without using a process flow to keep
original and mirror synchronised.

5.2.2 Experiment

We first use CPN Tools to model a MOCPN, which is
shown in figure 5.1. We import the MOCPN into the
mirroring tool (MOCPN-MT). To show that the im-
port is correct, we output the OCPN from MOCPN-
MT using snakes. This is shown in figure 5.2 and
when compared with the original MOCPN we see
that they show the same Petri net. We let MOCPN-
MT do the mirroring, fusing, and calculating the
state space. The fused net is shown in figure 5.3.
Snakes hangs when trying to create a diagram for
the state space, but we can export it to PNaT. PNaT
can also not generate a diagram for the state space,
but by using the PNaT version which excludes dia-
gram creation, it does identify that this net is weakly
terminating, as expected.

5.2.3 State space explosion

Since we can not visually inspect the state space, we
analyse the state space by looking at the file gener-
ated for PNaT. The data in this file shows that the
state space has 3242 states and 16215 transitions be-
tween these states. This explains why neither Snakes
or PNaT can visualize it.

5.2.4 Findings

The methodology can handle a correctly defined
OCPN which does not contain a process flow, but
this can result in state space explosion because to-
kens can move unrestricted. This confirms that the
methodology can handle Petri Nets which has mul-
tiple tokens going through it.

26

msg_type = ON_OFF
old_status
Stat:

1
OonOff |

>
7] setonoff

(msg_type, status)

1" (ON_OFF, 0) ++ 1" (ON_OFF, 1) ++ 1'(SET, 60) ++ 1 (SET, 80)

status (msg_type, value)

status

type = SET andalso status =

status status

SetBalance

vahre

balance

m: e = SET andg|gb status = 0

(ERR, value)

MSG

(msg_type, value)

(ON_OFF, status)

Balance UnableToSetBalanc

INT

Figure 5.1: Verification 1: Model

5.2.5 Resolving the state space ex-
plosion

This example creates a relatively large state space.
If we would scale up the Petri Net, it could result in
a state space explosion. The reason for this is, that
we don’t include a process flow. So let’s add this.
This is shown in Figure 5.4. We added a transition
to the net "Ready” and included this in a process
flow. This makes sure both nets are synchronised,
since if there is only one transition between IN and
OUT, putting the transitions in a process flow would
not have any effect when the verification tokens are
directly available to the transition. The original net
waits for the mirror to be ready before reading the
next token. In the next example, we will explore a
variant of this net, which has a smaller state space,
but similar behaviour. There are alternative ways
to prevent verification tokens from being available
to the server before the client is ready, but these
would require the client to have additional logic to
do this, and the client would not be created with
only the mirroring rules.

5.3 Verification Experiment 2

5.3.1 Objective

We verify an example OCPN, with a process flow to
synchronising original and mirror. We expect to see
weak termination and not an unexpected state space
size.

5.3.2 Experiment

We use the net as described in "Resolving the state
space explosion” of Verification Experiment 1 5.4.
In this case, we want the client to update its Bal-
ance and OnOff places to the same values as the
server. The fused net with process flow is shown in
figure 5.5. Because we want the client to get the
same values as the server, only the arcs connecting
to the IN and OUT places are mirrored. The client
first sends a READY msg to the server, after this,
a token of IN is processed by the transitions of the
server, and this token is sent back to out. If it is an
SET msg, then the client Balance is updated, if it is
an ERR msg, the client Balance is not updated, if it
is an ON__OFF msg, OnOff is updated. The token
is put back in IN for further verification, note that
the ERR token is turned back into a SET token. Af-
ter both Server and Client have finished, the Clients
Ready transition is enabled, and the Servers Ready
transition is waiting for a READY msg.

Generating the Reachability Graph creates the fig-
ure 5.6. Analyzing this with PNaT shows that it is
weakly terminating, as expected.

5.3.3 Findings

Using a process flow to synchronise the original net
and its mirror will result in a smaller state space,
and assures that tokens do not move through the
net unrestricted.

27

N
{1,60, 80, 0}

nl_value
Y

N1_SetBalance
nl statng==1

nl_statug nl_status
N1_OnOff
{0}
nl_value nl_old_statug

nl statug ol status

nl_status nl_value

nl balance \nl old balance

N1_SetOnOff
True

N1_TUnableToSetBalance
nl statng == 0

nl_status

nl_balance

nl_balance

nl_balance

N1_Balance
0L
Lo

Figure 5.2: Verification 1: Example Snakes render of Model

5.4 Verification Experiment 3

5.4.1 Objective

In this experiment, we want to see if a deadlock can
be identified, by creating a MOCPN which we expect
to not be weakly terminating once fused with its
mirror.

5.4.2 Experiment

If we decide that there is no need to inform the client
of the fact that the balance can not be set, by not in-
cluding an Arc connecting UnableToSetBalance with
OUT, we get figure 5.7. We still use the Process Flow
connecting the Model with its Mirror. This results
in the Reachability Graph shown in Figure 5.8. This
version is not weakly terminating, since it consumes
tokens when UnableToSetBalance is triggered.

5.4.3 Findings

As we can see, this net is not weakly terminating,
it has multiple end states in the Reachability Graph

(the red states). These end states are deadlocks, and
the Petri Net can not return to its original state.

5.5 Verification Experiment 4

5.5.1 Objective

Identify what happens when a transition is com-
pletely free to trigger, without a process flow to make
sure that the original and mirror stay synchronised.

5.5.2 Experiment

The experiment states with figure 5.9 for the fused
net. This experiment does not include a Process
Flow, and it also does not include an Arc connect-
ing UnabletToSetBalance to out. When calculating
the state space for this, it is shown to be unbounded
(Calculating the state space takes an unreasonable
amount of time). This happens because with the
removal of the Arc, the Transition UnableToSetBal-
ance in the Mirror can now always trigger.

28

msq_type = ON_OFF 1'(ON_OFF, 0) ++ 1'(ON_OFF, 1) ++ 1" (SET, 60) ++ 1" (SET, 80) msg_type = ONOFF .
g old_status 9
AT > setonoft (msg_type, status) (ON_OFF, status) M_Setonoff [T status
INT
status (msg_type, value)
type = SET andalso status = msq_type = SET
status (SET, value)
(ON_OFF, status)
(msg_type, status)
sg_type, value)
ge = SET andals6
ERR, val I
UnableT (ERR, valve) (msg.type, valve) M_UnableT
INT
Figure 5.3: Verification 1: Fused Net
msg_type = READY
10 (msg_type, status)
pf_ready
msg_type = ON_OFF
old_status 1'(ON_OFF, 0) ++ 1'(ON_OFF, 1) ++ 1" (SET, 60) ++ 1’ (SET, 80)
- (msg_type, status)
tatu: SetOnOff |« IN
MSG
(msg_type, value)
\type = SET andal: statik (msg_type, value)
status
SetBalance
/ (ON_OFF, status)
\ e = SET agdals6 status = 0
(ERR, value)
UnableToSetBalanc: ouTt
S MSG

A
e

pf_done

Figure 5.4: Verification 1: Resolving state space explosion

5.5.3 Findings

If a transition can always be triggered and is not re-
stricted by the process flow, a state space explosion
can occur. In this case, this results in an unbound

state space, because not all tokens created are even-
tually consumed.

29

msg_type = READY.

(msg_type, value)

of

msg_type = ON_OFF

old_value
B msg_type, value)
i | setonorr (mes.tye d

Z(ON_OFF, 1) ++ 1" (SET, 60) ++ 1°(SET, 80) ++ 1" (ON_[FF, 0)
(SET, value) meg_typ

o_value

0
o
1_onor)

— foer

(ON_OFF, value)

status
o
o (msg_type, value)
(ERR, value)
o
e status = 1 andalso msg,’el/v/ -
T M_SetBalance |
msg_type, value) = o Ve
<[P (s e, i) |
o > [(SET, value)
old_value
2 of
INT O
ft_ready)

(msg_type, value)

Figure 5.5: Verification 2: Fused Net

Figure 5.6: Verification 1: PNaT Reachability Graph

30

msg_type = READY

(msg_type, status)

pf
msg_type = ON_OFF pf
0 old_status ’7“ 1°(ON_OFF, 1) ++ 1'(SET, 60) ++ 1'(SET, 80) ++ 1’ (ON_OFF, 0)
6\0?), tatm: | Setonoff (msg_type, status)
INT MSG
(ON_OFF, status)
status = 0 andalso ms
status
UnableT
of status (msg_type, value)
pf| [pf
status = 1 andalso msg_type = S|
status
- ot I
msg_type, value;
b } SetBalance (msg_typ)
(SET, value)
old_value
0 of
INT 0
pf_ready) out

Figure 5.7: Verification 3: Model

31

50_N2 .:.:1|C|1gll g

45_N1_SatOnOff
!

35_N2_SetOnOf
3

48_N2_SetOnOff

16_M2 aala-1an"’75? 25 N1_SatOn /%
e
-“\ ‘ l13_l\2_59|Baa'!a"‘-.__ ke

Mg SatBH0 cin D4_N2_SetBalancs
11_N1_SatOn "4
- , M1_SetBalance N1 __,led.l_,J
% 1 ¥hz_Set0nofi 2yN1S 24 N1_SetBalaje
% o e i11l\1_5‘=\|0' o IE‘I\Z SetBalar Iﬁ ,\ uE
1_r\ti' nablaToSatBalance MR N15 -
L_NT_LAnEae g alEnce 6_M2_SetOnOff

2T N2 : 22| m .::Hdel.ar.Z SatOonOff

AN
,1_!.1_5'—_“0'10”}{_’ 7_N1_SatBalanca
alanca
]
32_NZ_SelB
28_N2_SatBalanca e alance

12 N2 .35le4114=11 SelBaanes

FE N1_SelBal
!2 M1_SatOn
31_N2_SelOn0 A |
% 1_SetOnOff ot

.

20 N7 SotRglance
MN1_SetBalance

47_N2_SelOnOff

30_MZ_SetOnOff
i
40_N1_SetOnOff

Nab

39_NJ UnablaTas, lanca
NaT

48 M2 .:u:tICHDﬂ

N35

N4t

Figure 5.8: Verification 3: PNaT Reachability Graph

32

N
{('ON_OFF'.0), (ON_OFF', 1). (SET". 60). (‘SET', 80). (‘SET". 0)}

(nl_msg_type, nl_balance)

N1 SetBalance
nl_msg_type=="SET" and nl_statug ==

(n1_msg_type, nl_balance) [nl_balance nl_old_balance /nl_status nl_status (nl_msg_type, nl_status)

N1 Balance
)
[}

N1_OnOff
J00
W

nl statug nl statug \nl statug \nl old status ('SET", nl_balance ('ON_OFF'. n2_status)

N1_TUnableToSetBalance

N1_SetOnOff
nl_msg type =="SET" and nl_statug ==

nl_msg type == "ON_OFF"

('"ON_OFF'. nl_status) ('SET". n2_balance) ("SET", n2_balance)

' ON_OFF, n2_sfatis)

N2_SetOnOff
var_ON_OFF =="ON_OFF"

(var_SET, n2_balance)

n2_status [n2_old_status

N2 OnOff
0L
v

n2_status n2_status

N2 SetBalance N2 UnableToSetBalance
var_SET =="SET" True

n2 balance |n2 old balance

N2_Balance
J00
[

Figure 5.9: Verification 4: Fused Net by Snakes

33

Chapter 6
Related Work

The process of wvalidating Components in a
Component-based system has been the subject
of multiple studies, like: ”Compatibility of Soft-
ware Components - Modeling and Verification” [18],
"SaveCCM: An Analysable Component Model for
Real-Time Systems” [1], and "Interface Theories for
Component-Based Design”[19]. These focus on strict
frameworks, strict component modelling languages
with clear semantics and the relations between CBS
and Interfaces between components. Some of these
assume that the Interface of the components are al-
ready defined, and can be compared between com-
ponents. We assume that the Interfaces of other
components are not available and analyse the model
earlier in the process to check if the Interface will
work. Some ignore the relevance of Data as part of
the execution of a Component, whereas we focus on
Data guiding part of the execution.

There are also papers which use the model of a Com-
ponent as a way to generate runtime validation by
creating a monitoring tool [20]. But this would not
be right for critical systems, getting an error message
after something is wrong may be too late. Even when
the issue is found during integration of the compo-
nents, correcting this may be very expensive, and
may require a redesign of the component. The ap-
proach we take in this thesis can be applied much
earlier in the lifecycle of a component, preferably al-
ready during the investigation and design phases.

The papers of Bera [I1] and Hilbrands [2] discuss
similar techniques as we use in this Thesis to iden-
tify weak termination using Petri Nets (as opposed
to Coloured Petri Nets). And also defines a specific
type of OPN called Port Net, which enforces Weak
Termination by design. But Petri Nets do not deal
with data as part of the Process Flow (the order
in which Transitions are executed). The addition of
Data (Colours) to the net, makes that the techniques

discussed here can not be applied as is. An OCPN
can be unrolled into an OPN, but we need the Mir-
roring Rule (M) included in the MOCPN to make
sure that the client works as intended. The MOCPN
definition does not have an equivalent OPN at this
time. It is also questionable if this would be a use-
ful extension to an OPN. Unless an OPN is unrolled
from an OCPN, there is no need for this, and if we
already have a MOCPN, then the methodology dis-
cussed in this thesis would be more practical.

During the preliminaries, we discuss Inversion 2.4.2.
[14], [15], [16] and [17] look at inversion of a CPN.
Mirroring and Inversion use the same techniques to
calculate Guards based on Arc Inscriptions and Arc
Inscriptions based on Guards. We identified that the
arcs which are part of the Process Flow in the Mir-
ror needs to be pointing in the same direction as in
the original. The arcs which are part of data move-
ment get inverted in the mirror. So a Mirror is not
the same as an Inversion, but they are similar. The
function of an Inverse is completely different from
the function of a Mirror. An Inverse allows a CPN
to be executed backwards. Inversion of an OCPN
and then merging the two nets is not very useful,
since the Inverse does not function as a verification
client, except in some edge cases. At the same time,
Mirroring a CPN (as opposed to an OCPN) is also
not very useful, since Mirroring specifically creates
a client which can exercise the original.

34

Chapter 7

Conclusion

To summarise the findings of the thesis:

o It became evident that the subject of verifica-
tion client generation by using Mirroring of an
OCPN is much larger than anticipated.

e An Open Coloured Petri Net can be mirrored
to generate a client to exercise the Petri Net, to
calculate a Reachability Graph and validate for
Weak Termination.

e There are restrictions and rules for generating
the (Mirrored) Verification Client, but we did
not identify all of them.

o Mirroring is a partial Inversion of a net, and
it has overlapping, but also distinct rules from
Inversion.

¢ The use of a MOCPN allows it to be automated
fully.

We will now answer our original research questions,
the limitations of this methodology as applied in this
Thesis, and future work to expand on the subject and
possibly remove some of the restrictions we applied
in this thesis.

7.1 Answers to Research

Questions

How can a Component or the Interface of a
Component, which exchanges data with other
components in a Component-based system,
and this data changes the behaviour of this
component, be verified for weak termination?

The problem of verification of a component or inter-
face is being investigated from several different an-
gles by researchers, but there is no perfect solution.
The most common problem is state space explosion

during analysis. By using a Coloured Petri Net, and
restricting the verification to verification Tokens, we
can verify weak termination, with only moderate or
no state space explosion (depending on the Net).

Since a component or interface is not a complete
Coloured Petri Net, but one which has a boundary
where tokens enter or exit the Petri Net, it means
that the weak termination can not be fully estab-
lished. Only looking at the skeleton of the Petri Net,
does not capture the interaction with other compo-
nents. Identifying which transition to trigger is not
affected by the Data (Tokens) coming from other
components. Not knowing exactly which transition
to trigger does not give a complete picture to estab-
lish the weakly terminating property. Therefore we
needed a new class of CPN, which we define as an

OCPN (3.1).

After this, we needed a way to create a closed CPN
from this OCPN. We found that using Inversion
(2.4.2), we could create a counterpart which can
be used with the OCPN. However, a fully inversed
OCPN does not always behave correctly to be used
to complete the CPN. The OCPN and its mirror
do not synchronise their actions, and this is im-
portant. This identified another issue, how do we
know exactly in which order the Transitions needed
to be triggered? There was not enough information
in the OCPN to reliably detect in which order the
Transitions need to be triggered (the Process Flow).
We introduced the Mirroring Rule (M), to keep the
original and calculated version synchronised, where
M =1 identifies the Process flow. Therefore this in-
formation needed to be added to the original OCPN,
and the MOCPN was defined to address this (3.4).

We also restricted ourselves to mirroring transitions,
not allowing calculations on arcs or comparators (ex-
cept for equals) on the guards.

35

When we have the MOCPN of a component or its
interface, we can generate a mirrored version of this
MOCPN. Fusing these two MOCPN creates a CPN
which can be verified for weak termination.

Can we identify rules to generate a com-
ponent model from the original component
which, when fused with this component
model can verify for weak termination?

The need to manually mark the arcs with the Mir-
roring Rule (M) makes the automatic application
to any Open Coloured Petri Net difficult. How-
ever once a MOCPN is made it can be mirrored and
there are specific rules and constraints for both the
MOCPN and the mirroring methodology (4.1).

We identified the base rules needed for this to func-
tion. The MOCPN can only use a subset of the
guards and arc inscriptions compared to a CPN. In
this Thesis, we restrict this severely. Tuture work
on this topic may show that guards and Arc Inscrip-
tions can be less restricted, or another type of OCPN
could be created which gives more freedom. When
we restrict ourselves to this subset, we can calculate
the guard of a Mirrored Transition based on the arc
inscriptions going to this Transition. We can also
calculate the Mirrored arc inscription(s) going from
this Mirrored Transition based on the Guard of the
Transition.

We identified that the arcs which are part of the Pro-
cess Flow in the Mirror needs to be pointing in the
same direction as in the original. The arcs which are
part of data movement get inverted in the mirror.
There may be a need for some arcs to be removed in
the Mirror (to assure certain tokens are only gener-
ated in the original and then send to the mirror).

Are these rules strict enough to be imple-
mented as an algorithm? How would a pro-
gram applying this algorithm be defined?
After identifying the rules needed, we created the
MOCPN-MT program, which applied the mirroring
rules, and then fusing the two MOCPN to create
on CPN for verification. With the addition of the
Mirroring Rule (M), the rules are strict enough to
automate the methodology.

Combined with the full tool chain (4.3.2) it can check
for weak termination based on the MOCPN of the
original, and can generate the needed Mirror based
on strict rules. We however did not identify strict

rules for the tokens needed for verification.

7.2 Future Work

The subjects listed in the limitations are interesting
for further research.

7.2.1 Expansion of Guards and Arc
Inscriptions

Mirroring arc calculations is problematic. These cal-
culations have a clear inverse, but applying this in-
verse to a mirror affects the functions of the mirror.
We have an arc that increments a value to be used
as an identifier f(x) y = x + 1 then the inverse is
f(y) x = y - 1, which would set the identifier in the
mirror to x and not to y. From this questions arise:
Can a calculation be mirrored? The same can be
said for mirroring guards with comparators. Can
we Mirror Guards which contain "or”, "less than”,
"greater than” and "not equals”, how can we identify
the outgoing values of the Transition?

7.2.2 Full Petri Net Mirroring

In this study, we Mirror every Transition separatly
from every other Transition. But the paper [l0]
which looks at Coloured Petri Net Inversion does not
limit itself to one transition for inversion, but com-
bines information of the whole net. Can a similar
approach can be used for mirroring” Using a sim-
ilar approach may be able to create Mirrors which
do not have all the restrictions (On the Guards and
Arc Inscriptions).

7.2.3

In Black Token Petri Nets we have the variant of a
Port Net, which has specific rules which, when fused
with its mirror, are always Weakly Terminating [11].
Can similar rules be found for a Coloured Port Net?

Mirrorable by Design

7.2.4 MOCPN-MT

Although the MOCPN-MT program allowed us to
validate this Thesis, it is not a mature tool. The
parser for the Arcs and Guards is temperamental,
and Snakes does not handle integers and black to-
kens properly. Snakes also does not use ColourSets.

36

This creates unexpected and difficult-to-identify ex-
ceptions in the tool.

It would be best to write a new version of MOCPN-
MT which addresses these issues and does not rely
on Snakes. It would also be nice if the tool could
check for the Weakly Terminating property in stead
of exporting to PNaT.

7.2.5 Complimenting Methodologies

In Related work 6 we mention [20]. It may be possi-
ble that Mirroring can be used to generate a client.
The server can then be run with this client and
the Monitoring technique described in the paper can
monitor the system while it is being exercised by the
client. Allowing a monitoring check to be done ear-
lier in the development process. There is however
the problem that we define our server as a MOCPN
while [20] uses the BIP (Behavior, Interaction, and
Priority) framework [21] to define the server.

37

Appendix A

Identifying M

M defines the function of the Arc, this may not al-
ways be derivable from an OCPN definition. The
following steps can be used to identify M but keep in
mind that the function of an Arc is not always clear,
in that case, M should be identified by analysing the
function of the Arc.

A.1 Arcs from or to an inter-
face place

Interface places are the places where the Client and
Server connect: o € O

All arcs connecting to Interface places are Client
Server Data Flow Arcs and have M (arc) = —1

M (arc) = —1 when arc = (*0,0) or (o, 0°)

A.2 Process Flow Arcs

When executing the Petri Net and identifying the
firing sequences Ty — Ty — T3, the Process Flow
Arcs are arcs which connect T), to T,,.; with only
one Place between them.

If the order of execution is not known (because a
client is needed), the OCPN can be transformed as
follows to find it:

e Remove all interface places o € O

o Replace all tokens with Black tokens and all
Coloursets with the Black Token Colourset

e Remove all guards

o Execute this Petri Net. The Process Flow Arcs
are arcs which connect 7}, to 7}, 1 with only one
Place between them.

A.3 Other Client Server Data
Flow Arcs

For every Transition ¢ connecting to an Interface
place o, there is now an M for most of the connect-
ing arcs. The other arcs are likely Client Server Data
Flow Arcs when:

o The data of the arc, is coming from or going to
the arc connecting to o

e The data of the arc, is defining the data, or is
defined by the data of the arc connecting to o

o The arc is incoming or bidirectional, and the arc
connecting t to o is outgoing.

e The arc is outgoing or bidirectional, and the arc
connecting t to o is incoming.

These arcs have M (arc) = —1
If the data of the arc is only used by the guard func-

tion of ¢, this arc is most likely not a Data Flow Arc
M (arc) = 1.

A.4 Other Arcs

The other arcs have to be checked for their function
and how they are expected to behave in the Mirror.
The Process Flow and the Client Server Data flow
may not have any other joint transitions as the ones
above.

M (arc) = 0 is used for arcs with tokens calculated
by the Server, which the client is not allowed to cal-
culate itself. For instance, a unique identifier for the
communication.

38

Appendix B

Tools Overview

The following tools have been looked at as part of
the selection process. Quite a lot were not suitable
for the purpose we needed, but they are listed here
for completeness.

e Snakes
A net algebra kit for editors and simulators
https://snakes.ibisc.univ-evry.fr

« MCC
A Tool for Unfolding Colored Petri Nets
https://github.com/dalzilio/mcc

o CPN Tools

A tool for editing, simulating, and analyzing
Colored Petri nets

https://cpntools.org
e Neco

Compiles a Petri Net into efficient C code
which is then compiled into a native library that
can be loaded as a Python module.

https://github.com/Lvyn/
neco—-net-compiler

https://code.google.com/archive/p/
neco-net-compiler/wikis

« ABCD

A language for formal modelling and anal-
ysis

https://hal.archives-ouvertes.fr/
hal-01352028

« ePNK

The ePNK is a platform for developing Petri
net tools based on the PNML transfer format.

39

http://www.imm.dtu.dk/~ekki/
projects/ePNK/index.shtml

MISTA

A Tool for Automated Test Code Genera-
tion from High-Level Petri Nets

Unable to locate online
Petri Net Kernel

An infrastructure for building Petri net
tools.

https://sourceforge.net/projects/
pnk/

GreatSPN

a software package for the modelling, val-
idation, and performance evaluation of dis-
tributed systems using Generalized Stochas-
tic Petri Nets and their coloured extension,
Stochastic Well-formed Nets.

https://github.com/greatspn/SOURCES
MARIA

a reachability analyzer for concurrent sys-
tems that use Algebraic System Nets (a high-
level variant of Petri nets) as its modelling for-
malism.

http://www.tcs.hut.fi/Software/
maria/index.en.html

Tapaal

A tool for Verification of Timed-Arc Petri
Nets

Website: https://www.tapaal.net/

Documentation: https://leanpub.com/
tapaalusermanual/read

https://snakes.ibisc.univ-evry.fr
https://github.com/dalzilio/mcc
https://cpntools.org
https://github.com/Lvyn/neco-net-compiler
https://github.com/Lvyn/neco-net-compiler
https://code.google.com/archive/p/neco-net-compiler/wikis
https://code.google.com/archive/p/neco-net-compiler/wikis
https://hal.archives-ouvertes.fr/hal-01352028
https://hal.archives-ouvertes.fr/hal-01352028
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
https://sourceforge.net/projects/pnk/
https://sourceforge.net/projects/pnk/
https://github.com/greatspn/SOURCES
http://www.tcs.hut.fi/Software/maria/index.en.html
http://www.tcs.hut.fi/Software/maria/index.en.html
https://www.tapaal.net/
https://leanpub.com/tapaalusermanual/read
https://leanpub.com/tapaalusermanual/read

e Snoopy

A software tool to design and animate hier-
archical graphs, including Petri nets.

https://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/Snoopy

— Marcie

a tool for qualitative and quantitative
analysis of Generalized Stochastic Petri
nets with extended arcs.

https://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/Marcie

— Charlie

an extensible software tool to analyse
(extended) place/transition nets

https://www-dssz.informatik.
tu-cottbus.de/DSSZ/Software/
Charlie

Note: The Snoopy software does not con-
tain a license, which may be problematic for
commercial use. Marcie has the statement that
it is "free for non-commercial use only” on the
website without further details.

40

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie

Appendix C

Tool Details

C.1 Import CPN from CPN-Tools

For this thesis, we use CPN-Tools to create the OCPN which we supply to MOCPN-MT. In CPN-Tools
we use different colours of the arcs to define whether an arc is a Process Flow Arc (black) or a Data Flow
Arc (blue).

CPN-Tools save a Petri net in XML, we can transform this into Python code by using an XML trans-
formation (xIst). The code to apply the xIst to the CPN-Tools save is straightforward by using the lxml
library.

After the transformation, we execute this Python code to create the NetDefinition.

C.2 Calculating the Mirror

At this point, we have the NetDefinition of the OCPN, and we need to calculate the Mirrored NetDefinition.

Create an empty NetDefinition which we will call MirrorDef.
Copy all NetDefinition.Places to MirrorDef.Places without the Arcs.
For each Transition in NetDefinition.Transitions
Create an empty MirrorTransition with the same id as the original Transition
For each Arc in Transition.Arcs
If the Arc is a Data Process Arc
Inverse the Arc, which may include changing the Arc Inscription
Calculate the inverse Guard function related to this Arc
Add the MirrorArc to: MirrorDef.Arcs, MirrorTransition, the Place it connects.
Else
Copy the Arc
Assign the original Guard function to the mirrored Guard function.
Add the Arc to: MirrorDef.Arcs, MirrorTransition, the Place it connects.
Combine all the mirrored guard functions into one, and update the Transition.
Add the Transition to the MirrorDef.Transitions

C.3 Merge the Nets

At this point, we have the NetDefinition of the OCPN, and the Mirrored NetDefinition.

Create an empty NetDefinition which we will call MergedDef.

41

https://cpntools.org/
https://lxml.de/

Copy the Interface Places to MergedDef once (From either net, but not from both)
Except for Interface Places:
Copy all Transitions, Places and Arcs from both nets to MergedDef
rename all places based on their origin (We prefix them with N1_ and N2_)
rename all variables based on their origin (we prefix them with nl_and n2)

We now have a merged net where the Interface places still have the same name as in the original OCPN,
and all other elements of the net have a new name identifying if they are part of the original net or the
mirror net.

C.3.1 Create Snakes Net

During the creation of the Snakes Net, we do some transformations on the Guard and Annotation objects
to align them with the expected input of Snakes, but aside from this, it is as simple as adding all the
NetDefinitions. Transitions, NetDefinitions.Places and NetDefinitions.Arcs to the SnakesNet.

C.3.2 Create State Chart

This is a function of Snakes itself, which takes the SnakesNet as input and creates the StateChart.

C.3.3 Export for PNaT

Navigate through the StateChart, every state becomes a PNaT Place and every transition between states
becomes a Transition with an incoming and outgoing arc connecting the places which correspond with the
States it connects

42

Appendix D

Class Diagram of MOCPN-MT

We need to transform the Petri Net before having it processed by Snakes, so we need an internal repre-
sentation of the Petri Net which we can manipulate. The main class in this system is the NetDefinition
which holds our definition of the Petri Net as well as the generated SnakesNet and StateCharts. The
NetDefinition is used for the original OCPN, the Mirrored OCPN and the Merged CPN, so during
execution we will have 3 instances of NetDefinition related to the different steps in the process. We
excluded the Import class from the class diagram since this is specific to MOCPN-MT which creates the
OCPN. The Import class is expected to create all the objects in the diagram based on the OCPN with the
exception of the StateChart and SnakesNet, this is the first NetDefinition. The other two NetDefinitions
are calculated based on this.

We combine MOCPN: N = (P, T,A,, A4, A, A1, 3, V,C,G,E, 1,0, M) (Chapter 3.4) with the Snakes
notation, using A = A, U A; U A,, U A; and move the functions C, G, I, M into the elements they operate
on.

Since we know that the Transition Guards and the Arc Inscriptions impact each other during mirroring,
we also split the Guards into their components to simplify inversions and recombination.

The class diagram is shown in figure D.1

43

Class.
@ transitions

€ quard

4 Fields

4 Fields

© name @ innerGuards | @A value
» Methods 4 Methods
@ Guard
@ transition
irecti ¥
@ stateChart LrEction
Enum
G arcs € direction
NetDefinition ﬁ\[A A EqualsGuard
Class Class Class Class
?J— - Guard - Guard -+ Guard
@ rule T T
@ arcs MirrorRule ¥
Enum
G snakesNet @ place
Place A
Class
T @ ri
' % right
G placss 4 Fields il
Class
@y isnterfacePlace €y annotation 7|8
G markin .
Qﬁ 4 4 Fields @ innerAnnotations
% name @ v
% value
Variable _ Constant A Tupple
© varisbles | class Clase Clasz
+ Annotation P Annotation + Annotation
T T
@ enumvals

Figure D.1: Class Diagram

44

Bibliography

[10]

[11]

Staff, “Sunk by Windows NT,” WIRED, Jul.
1998. [Online]. Available: https : / / www .
wired.com/1998/07/sunk-by-windows-nt.
B.-J. Hilbrands, D. Bera, and B. Akesson,
“Partial specifications of component-based
systems using petri nets,” in CEUR Workshop
Proceedings, CEUR, 2022.

J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung,
and V. P. Ranganath, “Cadena: An inte-
grated development, analysis, and verification
environment for component-based systems,” in
25th International Conference on Software En-
gineering, 2003. Proceedings. 2003, pp. 160
172.

J. Carlson, J. Hakansson, and P. Petters-
son, “SaveCCM: An Analysable Component
Model for Real-Time Systems,” FElectron.
Notes Theor. Comput. Sci., vol. 160, pp. 127—
140, Aug. 2006, 1SSN: 1571-0661. DOI: 10 .
1016/j.entcs.2006.05.019.

C. A. Petri, “Kommunikation mit automaten,”
1962.

C. A. Petri, COMMUNICATION WITH AU-
TOMATA: Volume 1 Supplement 1. 1966.

C. A. Petri, “Introduction to general net
theory,” in Net Theory and Applications,
W. Brauer, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1980, pp. 1-19, 1SBN: 978-
3-540-39322-1.

W. Reisig, Understanding petri nets: model-
ing techniques, analysis methods, case studies.
Springer, 2013.

C. A. Petri and W. Reisig, “Petri net,” Schol-
arpedia, vol. 3, no. 4, p. 6477, Apr. 2008, ISSN:
1941-6016. por: 10 . 4249 / scholarpedia .
6477.

K. Jensen and L. M. Kristensen, Coloured
Petri nets: modelling and wvalidation of con-
current systems. Springer Science & Business
Media, 2009.

D. Bera, K. M. Van Hee, M. Van Osch, J. M. E.
van der Werf, et al., “A component framework

45

[13]

[14]

[15]

[16]

[17]

[18]

[19]

where port compatibility implies weak termi-
nation.,” in PNSE, 2011, pp. 152-166.

W. Wu, Z. Xing, H. Yue, H. Su, and S. Pang,
“Petri-net-based deadlock detection and recov-
ery for control of interacting equipment in au-
tomated container terminals,” IET Intelligent
Transport Systems, vol. 16, no. 6, pp. 739-753,
2022.

S. Dal Zilio, “MCC: A Tool for Unfolding Col-
ored Petri Nets in PNML Format,” in Appli-
cation and Theory of Petri Nets and Con-
currency, Cham, Switzerland: Springer, Jun.
2020, pp. 426-435, 1SBN: 978-3-030-51831-8.
DOI: 10.1007/978-3-030-51831-8 23.

S. Khalfaoui, “Méthode de recherche des scé-
narios redoutés pour I’évaluation de la stireté
de fonctionnement des systéemes mécatron-
iques du monde automobile,” Ph.D. disser-
tation, Institut National Polytechnique de
Toulouse-INPT, 2003.

M. Bouali, P. Barger, and W. Schon, “Back-
ward reachability of colored petri nets for sys-
tems diagnosis,” Reliability Engineering €9 Sys-
tem Safety, vol. 99, pp. 1-14, 2012.

——, “Colored petri net inversion for back-
ward reachability analysis,” IFAC' Proceedings
Volumes, vol. 42, no. 5, pp. 227-232, 2009.
M. Bouali, J. Rocheteau, and P. Barger,
“Backward reachability analysis of colored
petri nets,” in The European Safety and Relia-
bility Conference (ESREL’09), Taylor & Fran-
cis Group, vol. 3, 2009, pp. 1975-1981.

D. Craig and W. Zuberek, “Compatibility
of software components - modeling and ver-
ification,” in 2006 International Conference
on Dependability of Computer Systems, 2000,
pp. 11-18. DOL: 10.1109/DEPCOS-RELCOMEX .
2006.13.

L. de Alfaro and T. A. Henzinger, “In-
terface Theories for Component-Based De-
sign,” in Embedded Software, Berlin, Germany:
Springer, Sep. 2001, pp. 148-165, ISBN: 978-3-

https://www.wired.com/1998/07/sunk-by-windows-nt
https://www.wired.com/1998/07/sunk-by-windows-nt
https://doi.org/10.1016/j.entcs.2006.05.019
https://doi.org/10.1016/j.entcs.2006.05.019
https://doi.org/10.4249/scholarpedia.6477
https://doi.org/10.4249/scholarpedia.6477
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.13
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.13

[20]

[21]

540-45449-6. DOI: 10 . 1007 /3 - 540-45449 -
7 11.

Y. Falcone, M. Jaber, T.-H. Nguyen, M.
Bozga, and S. Bensalem, “Runtime Verifica-
tion of Component-Based Systems,” in Soft-
ware Engineering and Formal Methods, Berlin,
Germany: Springer, 2011, pp. 204-220, I1SBN:
978-3-642-24690-6. DOT: 10.1007/978-3-642~
24690-6_15.

A. Basu, M. Bozga, and J. Sifakis, “Model-
ing Heterogeneous Real-time Components in
BIP,” in Fourth IEEE International Confer-
ence on Software FEngineering and Formal
Methods (SEFM’06), IEEE, pp. 11-15, ISBN:
978-0-7695-2678. DOI: 10.1109/SEFM . 2006 .
27.

46

https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Component-Based Development
	Asynchronous communication systems
	Software interfaces

	State Machine
	Petri Nets
	Terms used describing Petri Nets
	Petri Net
	Open Petri net
	State Space
	Weak Termination

	Coloured Petri Net
	Unrolling a CPN into a Petri Net
	Inverse of a Coloured Petri Net

	Mirroring
	Open Coloured Petri Net (OCPN)
	Analogy of Mirroring
	Mirroring Elaboration
	Definition of a Mirrorable Open Coloured Petri Net
	Logical groups of Places, Arcs and Transitions

	Methodology and Tools
	Methodology
	Alternative
	Tooling
	Tool selection
	Tool Chain

	Tool Verification
	Introduction
	Verification Experiment 1
	Objective
	Experiment
	State space explosion
	Findings
	Resolving the state space explosion

	Verification Experiment 2
	Objective
	Experiment
	Findings

	Verification Experiment 3
	Objective
	Experiment
	Findings

	Verification Experiment 4
	Objective
	Experiment
	Findings

	Related Work
	Conclusion
	Answers to Research Questions
	Future Work
	Expansion of Guards and Arc Inscriptions
	Full Petri Net Mirroring
	Mirrorable by Design
	MOCPN-MT
	Complimenting Methodologies

	Identifying M
	Arcs from or to an interface place
	Process Flow Arcs
	Other Client Server Data Flow Arcs
	Other Arcs

	Tools Overview
	Tool Details
	Import CPN from CPN-Tools
	Calculating the Mirror
	Merge the Nets
	Create Snakes Net
	Create State Chart
	Export for PNaT

	Class Diagram of MOCPN-MT
	Bibliography

