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Abstract

Features of microservice architectures such as scalability, separation of concerns and their ability to
facilitate rapid system evolution have made them popular with large organizations employing hundreds
if not thousands of software developers. The same features that make them attractive also demand a
non-trivial amount of complexity and maintenance over the evolution of an application. One of these
complexities is the decomposition of microservice applications, which can have a direct effect on both
the maintainability and performance of a given system. Microservice architecture decomposition evolves
together with the application and is prone to errors referred to as architectural anti-patterns over its
lifetime. Researchers have been successful in detecting simple anti-patterns through the use of both
static and dynamic analysis of service dependency relationships. However, there have not been any
attempts at creating formal mathematical definitions of more complex architectural anti-patterns that
usually depend on developer domain knowledge. Furthermore, no work has been done to help developers
in resolving these architectural anti-patterns. In this work, we introduce a new Granular Hardware
Utilization-Based Service Dependency Graph (GHUBS) model based on multi-graphs that allow for
the detection of complex architectural anti-patterns in an implementation-agnostic manner. We have
created formal mathematical definitions of four architectural anti-patterns and devised algorithms to
detect them in the GHUBS model. Lastly, we attempt to guide developers in their mitigation efforts by
suggesting changes to their application architectures driven by hardware utilization metrics. All of this
was implemented in a tool by the name of Televisor and validated in two case studies on well-known
open-source microservice benchmarking applications, where we found 10 anti-pattern instances divided
among two of our four formalized anti-patterns.
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Chapter 1

Introduction

Microservice application architectures have become more and more popular over recent years because of
their unrivalled support for big organizations with large teams of developers, as opposed to traditional
monolithic designs. Modelling organizations and software after business processes has become the norm,
and microservice architecture excels at facilitating this kind of workflow [1]. However, while microservice
applications provide these benefits, they also tend to grow very large and complex over the evolution of
a system. The size and complexity of microservice applications make it difficult for developers to get a
solid understanding of an application in its entirety. This lack of understanding is non-trivial, as it can be
very detrimental to quality assurance processes, such as debugging, performance optimization and overall
maintainability across multiple services and teams [2]. This is exasperated by the fact that microservice
applications allow for rapid iteration and development of new software. The faster an application evolves,
the faster it can become chaotic and difficult to maintain.

Ensuring that a system remains scalable, maintainable and performance-optimized at every step of the
development process is crucial, as the costs associated with a project are directly dictated by the quality
of the application. The more effort a team of developers has to dedicate to application maintenance,
the less time they will spend developing new features and possible avenues of income. Furthermore,
microservice architectures are already susceptible to high degrees of network overhead, which can be
further exasperated by poor microservice application decomposition. Performance problems like this one
and others stemming from bad decomposition lead to higher infrastructure costs and smaller margins
for the businesses that deploy large-scale applications [3].

One of the overarching problems with decomposition in microservice applications is the reliance on
individuals with domain knowledge about business processes to design a prudent architecture. This is
also reflected in the literature on microservice architecture anti-patterns (also referred to as bad smells)
[4, 5], where these anti-patterns in many cases are indicative of poor decomposition. While mostly
reliant on domain knowledge for both detection and mitigation, the same literature also identifies anti-
patterns that are strictly related to microservice dependency relationships. Examples of these are the
Inappropriate Intimacy, Microservice Greedy, Megaservice and Cyclic Dependency anti-patterns. The
existing work defines these in natural language, which leaves much up to interpretation and makes it
difficult to identify them in microservice applications.

Furthermore, while observability tooling has become quite abundant in the industry, few solutions
make use of it for the explicit purpose of improving architecture design based on telemetry gathered from
production systems. Telemetry from observability tooling usually comes in the form of metrics, logs and
traces. The work that does exist is primarily concerned with automatic service deployment schemes and
dynamic resource allocation [6-8]. That is optimizing applications on the platform level, rather than the
application level. Platform level refers to the hardware, server or servers that the application is running
on. Additionally, the work that detects potential issues with architectural designs on the application
level makes little to no effort to guide developers in mitigating these problems.

1.1 Problem Statement

As touched upon, efficiently managing the complexity of microservice systems during their lifetime is
challenging. This is especially true for rapidly evolving systems involving several different programming
languages and technologies. While there is research that addresses problems regarding optimal resource
allocation and deployment, very little work addresses architectural anti-patterns of microservice applica-
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tions in an implementation-agnostic manner. Both detection and mitigation of architectural anti-patterns
are time and resource-consuming activities. As such, not having well-defined methodologies for how to
perform such work is detrimental.

As we do not have methodologies for performing identification and mitigation of architectural anti-
patterns, there is also a general lack of tooling. There are several tools for visualizing microservice
applications, and other tools for detecting simple anti-patterns. However, they lack support for more
complex anti-patterns such as Inappropriate Intimacy, Microservice Greedy, Megaservice and Cyclic
Dependency and none of the tools support both visualization and detection, not to mention mitigation
guidance [9]. Furthermore, the creation of such tooling has been hampered by informal architectural
anti-pattern definitions [4], lack of consensus on universal microservice decomposition practises [2, 10]
and insufficient observability models.

1.1.1 Research Questions
To tackle these issues, we have set out to answer the following questions:

RQ1 How can we utilize telemetry data to generate a model for automatically detecting instances of
the four architectural anti-patterns, Inappropriate Intimacy, Microservice Greedy, Megaservice and
Cyclic Dependency in microservice applications?

RQ2 How can we provide formal mathematical definitions of known microservice architectural anti-
patterns, and apply them to create automated detection procedures?

RQ3 To what extent can we suggest mitigation techniques for solving the detected architectural anti-
patterns, and determine the viability of said mitigation techniques based on hardware utilization
metrics?

1.1.2 Research Method

The methodology and tooling in this thesis have been inspired by a literature review of existing work
in the area of microservice performance optimization, architectural anti-pattern definition, detection
and telemetry-based analysis. To validate our work we have performed a case study where we apply
our methodology and tooling on two microservice applications from the open-source DeathStarBench
benchmarking suite [11].

1.2 Contributions

In this thesis, we will be looking at how we can make formal mathematical definitions of these anti-
patterns, detect them programmatically in a telemetry-driven model of our creation and finally give
suggestions for mitigation techniques, based on utilization metrics. As we intend to alleviate the guess-
work for developers it is all done in a fully visualized and highly configurable manner. This involves:

1. Creation of a new Granular Hardware Utilization-Based Service-Dependency Graph (GHUBS)
model based on directed multi-graphs generated through the use of telemetry data.

2. Formal mathematical definitions of microservice architectural anti-patterns, and algorithms for
detecting them in the GHUBS model.

3. Automated mitigation techniques for anti-pattern correction in microservice applications, and vi-
ability determination based on hardware utilization metrics.

4. Implementation of the proposed methods in a proof-of-concept tool called Televisor.

1.3 Outline

In Chapter 2, we describe the background of this thesis including concepts that will be needed to
understand the topic matter. Chapter 3 describes related work and the gaps we wish to fill. Chapter 4
introduces a new GHUBS model for microservice architecture analysis. Chapter 5 goes into detail on
how we formalize anti-patterns using directed multi-graphs, and how we utilize the formalization to
create detection algorithms. Chapter 6 explains the process of taking the detected anti-patterns and
creating appropriate mitigation suggestions based on the GHUBS model and the hardware utilization
metrics contained within. Our case study, proof-of-concept tool Televisor implementation details and
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the accompanying results are shown in Chapter 7 and discussed in Chapter 8. Finally, we present our
concluding remarks in Chapter 9 together with future work.



Chapter 2

Background

Microservice applications are complex systems that require solid infrastructure and a non-trivial amount
of tooling to operate efficiently. Here we will have a look at the rationale for their use, some of the
associated challenges, and the concepts needed to understand how we can tackle this complexity. More
importantly, we will need to know these concepts to understand the key contributions of this thesis.

2.1 The Rationale Behind Microservices

The microservice architecture arose from a need to decompose monolithic systems into smaller, more
maintainable individual components or services. A monolithic architecture can be defined as: “a software
application whose modules cannot be executed independently” [1], meaning that changes made to the
system will affect the system in its entirety. The definition of the microservice architecture is: “a
distributed application where all its modules are microservices”, and the definition of a microservice is:
“a cohesive, independent process interacting via messages” [1].

In comparison to the popular monolithic architectures of the past, microservices have many attributes
that make them attractive to large-scale businesses and organizations. Smaller services offer flexibility,
in the sense that individual components can be changed without affecting the system as a whole. Busi-
ness processes today change rapidly, and employing techniques (such as the microservice architecture) to
ensure that the digital side of a business can keep up with its market is critical. Furthermore, microser-
vices are modular, meaning that the individual services contribute to the overall system behaviour rather
than having a single system that offers full functionality. This modularity also makes them reusable,
potentially opening the doors for more effective use of business resources. Perhaps more importantly,
the microservice architecture facilitates the evolution of a system. Individual components can be altered
without necessarily creating the need for compounding changes in other components. The microservice
architecture increases and encourages maintainability if utilized correctly [1]. Organizations are also
able to utilize several more programming languages than they would with most monolithic architec-
tures. Introducing this kind of diversity into a system can be very beneficial as individual services can
be purpose-built from top to bottom. For instance using higher level garbage collected languages for
developer speed in some services, while using lower level languages with manual memory management
for performance in others. Rather than depending on generic “jack-of-all-trades” solutions [2].

As mentioned, a monolithic architecture consists of modules which cannot be executed independently.
This restriction introduces coordination challenges in big teams of hundreds of developers as the interde-
pendencies grow stronger. As there is no separation of concerns, the areas of responsibility might become
muddled between teams and productivity could plummet as a result due to integration errors, a need for
reworks and miscommunication. With the microservice architecture, however, teams can be structured
after business processes and the services they develop mirror these areas in a highly cohesive and lightly
coupled manner [1]. This facilitates the creation of well-defined boundaries for team members to work
within and is commonly referred to as Domain Driven Design [12]. The separation of concerns created by
these boundaries mirrors the way Conway describes the development of systems in [13], and one might
argue that leaning into the structure he observed is beneficial.
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2.2 Microservice Challenges

It is important to note that while microservices bring several advantages and help with scaling in most
businesses, they also increase complexity. The effectiveness of the microservice architecture is determined
by the thoroughness of the decomposition activity at design time. Furthermore, the decomposition has
to be maintained over the evolution of a microservice application to ensure that the benefits are not
lost. From a technical perspective, a bad decomposition can lead to poor performance. This is due to
the network communication overhead being far larger in distributed microservice architectures than in
monolithic architectures with in-memory communication [1, 2, 14].

Problems stemming from a bad application decomposition have definitions and are formally known as
anti-patterns or bad smells. Some anti-patterns are caused by aspects of a microservice application other
than the decomposition, but these are not the focus of this thesis. Generally, architectural anti-patterns
for microservice applications are defined in natural language [4, 5]. This makes them more approachable
for developers and easier to discuss but also makes them more challenging to detect in actual systems.
For instance, the Wrong Cuts anti-pattern has been given the definition: “Microservices should be split
based on business capabilities, not on technical layers (presentation, business, data layers)” [5]. This anti-
pattern describes the preferred decomposition of a microservice application. The approach of splitting
microservices based on business functions suggests that a degree of domain knowledge is required to
architect a solution. As capabilities vary significantly between businesses, a natural language description
is somewhat appropriate. Other anti-patterns could arguably be a symptom of Wrong Cuts, for instance,
the Inappropriate Intimacy smell: “The microservice keeps on connecting to private data from other
services instead of dealing with its own data” [5]. That is, if the Inappropriate Intimacy smell is apparent,
it might be a sign of a bigger architectural issue. It should be noted that the Inappropriate Intimacy
smell is also described in natural language, but has a stricter definition that describes a relationship
between individual microservices.

These challenges and others have prompted the industry to create many tools and solutions to fa-
cilitate and streamline the usage of microservices. Popular examples are Kubernetes for microservice
orchestration, Jaeger [15] and Prometheus [16] for observability and telemetry gathering, and Docker
[17] which has become a staple of containerization technologies. The rise of these technologies has also
prompted a need for talented developers who are experienced with them, meaning that for a business
to effectively employ a microservice architecture they need staff who can manage and develop such an
environment.

2.3 Observability in Microservice Applications

We call the group of techniques and tools used in the process of gaining application insight, observability
tools or techniques. Microservice architectures arguably need more of this kind of tooling than monolithic
applications because of their inherent distributed nature [2]. Static analyses and end-to-end testing of
microservice applications are usually not feasible because of their scale and diversity. As such, we employ
tooling to monitor applications and gather telemetry at runtime. There are several different types of
information we can derive from such tooling, four common ones being: traces, metrics, logs, and baggage.
These four types, also referred to as Signals in the OpenTelemetry documentation [18], each represent
different information about our application. We will be looking at traces and metrics.

2.3.1 Traces and Distributed Tracing

Traces describe a sequence of process execution in an application and is composed of several spans.
A span is a collection of information about the process it describes. According to the OpenTelemetry
definition [18], a span contains at a minimum: a trace ID, representing which trace it belongs to; a unique
span ID, for identification; trace flags, such as start and end timestamps; and trace state, which can
contain vendor-specific information. While spans by themselves can be useful, for instance for spotting
latency bottle-necks in an application, they shine when we introduce distributed tracing. Distributed
tracing allows us to see the causal connections between spans [19], and annotates every span with a link
to their parent’s span ID. With this new information, a trace can cover many microservices and we can
use this to gain more insight about our system. The tools Jaeger and Zipkin [20] allow developers to
query spans and traces and use them to troubleshoot their applications or develop tools to do it for them.

Figure 2.1 shows a trace from the Jaeger UI [15]. On the left-hand side, we can see the names of
the services that have been invoked followed in black text, and to their right the name of the operation
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that is being executed. The Gantt chart on the right-hand side shows the individual spans inside of this
trace. All of the spans have a timestamp and a duration, making it possible to reason about temporal
behaviour in the application. They are composed hierarchically and the indentation of the service names
on the left-hand side describes the parent-child relationships between the spans. By looking at the black
line through the spans we can see the system flow, and how the result is eventually returned to the first
service. Note that this black line does not always take concurrent execution across multiple services into
account.
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Figure 2.1: Trace from the Jaeger Ul

2.3.2 Metrics

Metrics or more concretely time-series metrics is a “measurement of a service captured at runtime.
The moment of capturing a measurement is known as a metric event, which consists not only of the
measurement itself but also the time at which it was captured and associated metadata” [18]. There
are many different kinds of time-series metrics in a microservice application. However, some of the
more common metrics to gather are hardware utilization metrics. For instance, CPU, memory, network
input and output usage. While the means of exposing this information is highly dependent on the
application infrastructure, we can utilize tools such as Prometheus to store the data in time-series
databases. Prometheus, being the most prominent time-series metric database, also provides a query
language for retrieving and manipulating the data. Making it convenient for developers to create further
tooling around.

Figure 2.2 shows the Prometheus UI [16] executing a query to collect the mean CPU utilization
of several microservices over the course of an hour. The query field at the top of the figure contains
the query that has been executed. The colourful lines in the graph are individual microservices, where
the Y-axis shows the percentage mean CPU utilization and the X-axis shows timestamps. Even with a
relatively small number of services and only the last five minutes displayed as in this graph, it is relatively
difficult to decipher.
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Figure 2.2: Graph Visualization of Prometheus Vector Metric
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Related Work

We divide the related work into the following categories: Observability Models, Anti-Pattern Detection
and Microservice Decomposition. We intend to compare existing solutions and research to our own
goals of creating a model, detecting and formalizing architectural anti-patterns and providing mitigation
suggestions. This should illuminate the gaps in the current research and explain our positioning in the
academic landscape.

3.1 Observability Models

To perform anti-pattern detection and mitigation of microservice applications we need data. While
representative of a system, raw telemetry data is not particularly well suited to reason about architectural
design. Therefore, we would like to base our work on a model that gives us the proper abstractions.

The Y-Chart Model [21] contains a separation of application, platform and a mapping between the
two. This is similar to what we need, in the sense that we also need to know something about the
application structure and the platform it is running on. Figure 3.1 shows the relationship between the
elements in a Y-Chart and how insight from the analysis is used to improve the applications and platform
[22]. However, the Y-Chart Model does not require that hardware utilization metrics be included.
Furthermore, the mapping layer has a many-to-one relationship between the application and platform
layer. We want to know the hardware utilization metrics on a per-microservice basis. The state of the
platform is not needed and is usually more prominent in redeployment work. The GHUBS model in
Chapter 4 addresses this by abstracting away the platform layer and only focusing on service-specific
utilization metrics.

-] Application(s) Platform -

.

S —

h 4
o

h

Mapping < !

———————————————————————— Analysis R T EEEE LR R

| S —

Figure 3.1: Y-Chart

Service Dependency-Graphs, also known as SDGs are a popular way of visualizing the topology of a
given microservice application. SDGs have several features that will be beneficial for us in the detection
of anti-patterns, however, they are somewhat lacking in granularity. One example of this is the lack of
separation between application traces. SDGs are typically represented as a directed graph, including
every single relationship and a count for the number of times they have been called on each edge. Fig-
ure 3.2 shows the SDG that is present in the Jaeger Ul [15], visualizing service dependency relationships

10
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and the number of times they have been invoked. Furthermore, SDGs prevent us from distinguishing
individual spans or operations between microservices. Without this kind of information, the traditional
SDG makes it difficult to say much about the relationships between individual microservices, making it
more suitable for application-wide analysis.

nginx-web-server

. user-timeline-service
ext-service

482 media-service

.l\ser-mention-ser\.#ine
48
.url—shorten—ser\rice

42

) _ post-storage-service
.somal-g raph-service

Figure 3.2: Jaeger SDG

Additionally, the traditional SDG does not visualize the separation of concerns on individual requests.
While it can give us insight into the coupling in a microservice application [23, 24], it is not quite granular
enough to say anything about what happens in the application on a per-client request basis. The lack
of this perspective makes it so we cannot reason about system behaviour based on external requests and
the services they invoke, it only offers application-wide composition. It should be noted, that Jaeger
[15] provides Deep Dependency Graphs in their GUI that show an entire trace as an SDG branch. We
see this view in Figure 3.3, showing the same trace as in Figure 2.1. This Deep Dependency Graph is
successful in visualizing the dependency relationships between the services on this request. However, the
anti-patterns we wish to detect and mitigate, require this abstraction in the context of the traditional
SDG and is therefore not sufficient on its own. In Chapter 4 we go into detail on how to solve this
problem.

M T M- T n i
Pragesy e e P s ™ e [ o

Figure 3.3: Jaeger Deep Dependency Graph

As the name suggests, SDGs give us information about the dependency relationships between mi-
croservices. This implies that there is not a whole lot of information about the actual microservices in
the application. We wish to validate our mitigation suggestions and to do so will require some infor-
mation about the state of the microservices, specifically hardware utilization metrics. While we do not
believe that hardware utilization metrics should be a standard feature of the conceptual SDG, it will be
necessary for our work. We will go into detail on how we validate our anti-pattern mitigation suggestions
in Chapter 6.

Neither of the models includes anything about how they should be created, and leave the developers
to their own devices to figure it out. This is another thing that is addressed by the GHUBS model in
Chapter 4.

11
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3.2 Anti-Pattern Detection

When looking into the existing literature on microservice anti-patterns and bad smells [4, 5], we see that
while several of them describe structural patterns in microservice applications, they are all defined in
natural language. There are also quite a few that deal with problems that can only be found on the
microservice level in the code, which we will not address. The analysis approaches we are about to
discuss attempt to find a wide range of anti-patterns, and several of them have interpreted the natural
language anti-patterns to do so.

3.2.1 Static Analysis

There are several approaches for detecting anti-patterns in microservice applications. Approaches such
as the one discussed in [25] analyses compiled Java projects to derive a service-dependency graph. While
this approach is successful in creating a service-dependency graph outside of system runtime, it is limited
to microservice applications written purely in Java.

There has also been research [26] on utilizing reflection, a feature in the Java programming language
(and others) that “allows an executing Java program to examine or “introspect” upon itself, and manip-
ulate internal properties of the program” [27], to create SDGs. The researchers are primarily interested
in using the SDG to calculate test coverage over entire microservice applications, however, they also
detect cyclic dependencies between microservices. In [28], researchers also detect the cyclic dependency
smell, however through extending an abstract syntax-tree-based tool created for detecting technical debt
in monolithic Java applications. They were also able to detect instances of the Hardcoded Endpoints
and Shared Persistence smells [4].

In [23] the authors calculate structural coupling in Java-based microservice applications by gathering
coupling metrics found in the service classes. The researchers also chose to represent and visualize this in
a directed graph, named a Structural Coupling graph. The microservices in the graph are coloured: green
for services with a high degree of connections (hubs); yellow for services working as bridges between two
or more services; blue for services with more outbound than inbound connections; and the rest coloured
red. This graphical representation aids developers in spotting decomposition issues, which services are
critical to the operation of the application, and which are not.

Another approach by Baresi et al. [10] utilizes monolith APT interface definitions (OpenAPI schemas)
to derive decomposition suggestions with adjustable levels of granularity when it comes to size and
number. This is done by matching natural language identifiers on the API routes to an existing reference
dictionary that groups related concepts. This creates cohesive microservice decompositions in about
80% of the cases they tested. The same methodology could arguably be used to solve the Wrong Cuts
anti-pattern, if the correct interface definition files are present.

These static analysis methods are all limited in terms of their applicability. They are usually restricted
to a single programming language, an architectural design pattern or some other technology. As such,
they are not generally applicable. Despite these limitations, they do have the advantage in that they are
usually more performant, and can guarantee complete coverage of the application in question. This is
not always the case with our next topic, telemetry-based analysis.

3.2.2 Telemetry-Based Analysis

Telemetry-based approaches such as the ones in [29, 30], utilize distributed tracing built into microservice
applications to generate a service-dependency graph at runtime. This approach is preferable as it allows
us to analyze microservice applications regardless of the programming languages used in their creation.
This dramatically increases the versatility of the tooling and methodology, which is something we would
like to incorporate in our work. Especially in regard to our model creation.

Another way of dynamically creating an SDG at runtime is through service meshes such as Istio or
Linkerd. In [24], an SDG is created based on service mesh logs, provided by telemetry tooling, containing
information about inbound and outbound requests in order to determine dependency relationships. The
researchers use the generated SDG in order to detect five anti-patterns, of which three are calculated
using “anti-pattern metrics”. The metrics are the number of in- and out degrees of each individual service
and using them they calculate the following smells: Absolute Importance of the Service (AIS), Absolute
Dependence of the Service (ADS) and Absolute Criticality of the Service (ACS). The severity of AIS,
ADS, and ACS anti-patterns are relative to the application in question, and concern the total number
of inbound, outbound and combined dependencies for a service, respectively. This in turn means that
a system will always exhibit these anti-pattern, regardless of size, and leaves it up to the developer to

12
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evaluate their severity as they are ranked in a descending fashion. These anti-patterns that depend purely
on application metrics without any implication of their severity through limiting results with boundary
values, make it difficult to tell if the microservice application actually is unhealthy. Furthermore, they
encourage the developer to compare individual microservices relatively when analysing the data. The
more homogenous the results are, the more difficult it will be for the developer to make effective decisions
regarding the architecture of their system.

Because of the inherent complexity of microservice applications, there are many different optimization
vectors to be considered. In the field of resource management and service deployment, runtime telemetry
is heavily used to aid in and automate performance optimization in microservice applications [6-8]. Some
solutions also use telemetry to evaluate the effectiveness of their findings or perform comparative analysis
[31]. While our goal is not to perform such optimizations, we can see that they garner good results and
accurate representations of the microservice applications in question. This increases our confidence in
the use of telemetry for microservice observability.

3.2.3 Anti-Pattern Definitions

As we have alluded to several times by now, anti-patterns are generally defined in natural language.
A notable exception is the Cyclic Dependency anti-pattern, which is familiar from graph theory and
the ones that can be detected through static code analysis such as Hard-Coded Endpoints [4] which
refers to a lack of service discovery in an application. This lack of formal definitions of anti-patterns
allows for subjective interpretation from the researchers working in this field and is quite detrimental
to the detection and mitigation process as a whole. It creates inconsistencies between different research
addressing the same or adjacent anti-patterns, and while facilitating discussion, does little in the way
of facilitating the creation of universal good practises across microservice applications. In Chapter 5 we
will address how we can begin to resolve this.

3.3 Microservice Decomposition

Most work around microservice decomposition and prevention of the Wrong Cuts anti-pattern revolve
around some sort of developer input, expertise or domain knowledge [12, 32]. For our work, we attempt
to see if there are decomposition patterns or practices that can be proposed and validated without such
input. We are willingly leaving organizational structure out of the decomposition equation, to realize
system decompositions based on objective metrics that might not be readily apparent.
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Chapter 4

Establishing a Basis for Automated
Detection and Mitigation

Now that we have a better idea of the related work, we can proceed with the creation of a model we
believe will facilitate in-depth anti-pattern analysis. Before we can come to a conclusion about what kind
of data structure we will need, we first need to have a look at what we are attempting to do. Thereafter,
explain how we address the problems standing in the way of our goals, and finally what the resulting
model looks like and how it can be created.

4.1 Goals and Motivation

Our methodology consists of three distinct steps: 1) detecting architectural anti-patterns; 2) generating
mitigation suggestions of said anti-patterns and 3) validation of the mitigation suggestions against metrics
collected from the microservice application. Each of the steps requires a certain infrastructure to be set
in place and a way of utilizing that infrastructure. We design our methodology on the basis that the
microservice application in question is instrumented with distributed tracing as one of its infrastructure
requirements. This is in order for us to extract the traces that will be necessary for the creation of
our model, and ultimately steps 1) and 2). Furthermore, step 3), the validation step, will be based on
microservice utilization metrics. This requires monitoring of the hardware the services are running on
and knowledge of to which degree the services are utilizing it.

The detection and mitigation work is dependent on our ability to collect some information. Firstly,
we need to know what services exist in our microservice application. Secondly, we need to know the
relationships between those services. Finally, we need to be able to perform computations that allow us
to detect specific patterns and rectify them in the application. SDGs, allow us to do these things to a
certain degree while utilizing well-known graph-based techniques. However, they are not a silver bullet
and lack the necessary abstractions that we need for all of the anti-patterns we wish to detect, mitigate
and run validation on.

4.2 The GHUBS Model

In order to perform the computations we need, we have extended the traditional SDG with a few
features to accommodate for the limitations discussed previously. This includes increasing granularity
and mapping the microservices to their respective hardware utilization metrics. The result is the Granular
Hardware Utilization Based SDG (GHUBS) model.

4.2.1 Increasing Granularity

In order to first tackle our granularity issue, we need to increase the number of edges that usually
exist in an SDG. Instead of restricting the number of edges between two services to 1 per direction,
we create an edge for each unique span between two services. The resulting graph will show not only
which microservices are dependent on each other, but the actual individual operations that cause the
dependencies. Essentially, we look at every span in the traces and create an edge between their source
and destination service for every unique one that we come across. As opposed to creating a single edge
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between services, regardless of the number of unique spans between them. We can tell if a span is unique
by looking at its source and destination service, as well as its human-readable name and identifier that
indicates its function.

This increase in granularity gives us more information to work with. However, there is still no
separation of concerns and we cannot identify what actions cause the microservice application to operate
the way it does. In other words, we need to be able to group the microservices and their operations by
the requests they are triggered by. Similar to the same way that Jaeger can show us SDG branches of
individual traces in their Deep Dependency Graph, but in the context of the rest of the GHUBS model.
The traces we are primarily interested in, are the ones that we can relate to an action happening outside
of the system (a request).

While the microservice application architecture does not provide any obvious ways for how this should
be handled, there are best practices. The most common of which is the API Gateway architectural design
pattern [33]. In fact, not having an API Gateway is considered an anti-pattern [4]. An API Gateway
serves as a single point of entry for a microservice application. Translating external requests into internal
operations on the communication protocols chosen for the microservice application. The API Gateway
could for instance expose an HTTP REST API to the world, and translate incoming requests to gRPC
[34] for use in the internals of the application. While the API Gateway pattern can have a few other
features, they are not relevant to our intentions. We are interested in the fact that the API Gateway
pattern establishes points of entry into the system that the internal execution depends on. This way
we can group our traces to these points of entry, and thereby see the separation of concerns between
individual traces in the system. In other words, we can link an external request to a set of microservices
(a system flow) with their respective operations and distinguish them from each other, without removing
the ability to see if the services in the group have uses outside of the current request. This facilitates
the detection of architectural smells on a per-request basis as well as the traditional application-wide
perspective, as we can easily move between the two.

Figures 4.1 and 4.2 show the difference in an example with three external requests coming into a
microservice application. Figure 4.1 is the traditional SDG, where the three requests are grouped from
the API Gateway to Service A and we can see the number of executions on each span. Figure 4.2 on
the other hand, shows us that the three requests are unique and labelled R1, R2 and R3. In fact, it can
show us the trace in its entirety in the GHUBS and how it is distinct from the other traces.
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The definition of the API Gateway architectural design pattern says that there should only be a
single point of entry to the application. While our approach utilizes the existence of the pattern, it is
not limited to applications that only have a single point of entry. Our approach does however require
the application to limit external communication to a set of known services and keep the rest closed off
from the greater internet. Fundamentally, what we are looking to find are external stimuli that lead to
a process in the microservice application. Whether that stimuli are data coming from a sensor in an
embedded application, or a user following someone in a social network application is irrelevant for the
types of computations we wish to perform. With that being said, for this thesis, we are primarily looking
at microservice applications with a single API Gateway for the sake of simplicity. With our current
approach, examining multiple points of entry would require multiple iterations of the methodology and
thereafter some manual analysis. However, extending the method to work with more points of entry
would simply be a matter of stitching the resulting GHUBS models together.
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4.2.2 Adding Utilization Metrics

We are using hardware utilization metrics to evaluate the impact and viability of our mitigation strategies.
As we discussed about the Y-Chart in Chapter 3, there are a few different approaches for how to do this.
We can measure the utilization metrics of the platform the microservices are running on; the utilization
metrics of the cluster the microservices are contained within, or we can measure the utilization metrics
on a per microservice basis. Following the theme of the GHUBS model so far, we wish to achieve a high
degree of granularity for our utilization metrics as well. Meaning, that we wish to record the utilization
metrics on a per-microservice basis. While this will be an abstraction of the hardware platform, it will
serve as a more accurate representation of the state of the microservices in an application before and
after a mitigation technique has been employed. As opposed to the hardware layer in the Y-Chart.

We wish to record six utilization metrics in the same time frame that we gather the traces for the
construction of the SDG. The metrics are the 99.7% percentile, mean and standard deviation of the CPU
and memory utilization. However, the GHUBS model is not limited to these metrics, and can in fact
incorporate whatever metrics are most relevant to the work at hand. Some immediate examples could be
network input and output for each microservice, span latency between microservices on a request, and
end-to-end latency for an entire request. Capturing the 99.7% percentile, mean and standard deviation
is not a given either. In our case, we want a pessimistic view of the system when performing validation,
making 99.7% percentiles suitable. However, in use cases where metrics are collected over long stretches
of time, it might not prove as useful. Going with a 100% percentile would give us the most pessimistic
metrics, but this would most likely not be very representative of the system over time.

It is important that the metrics are gathered in the same timeframe as the traces, as in large appli-
cations there could be rarely used processes that would end up misrepresenting the application. There
are two variables that come into play when capturing data from the microservice application. The first
is the capture period, which is the timespan in which we poll the application for metrics. The second is
the polling rate, which is the frequency at which we gather metrics in the capture period. For this work,
we have utilized a capture period of 1 hour and a polling rate of 30 seconds. The capture period can be
considered fairly short, and thereby frequent if executed consecutively. We do this for both traces and
utilization metrics and wish for rare events to be captured in their entirety as they happen. Not as a
blip on the radar. For instance, there could be irregular CRON jobs performing costly computations in
the microservice application, significantly skewing the utilization metrics. The optimal capture period
of telemetry gathering is likely to vary between different applications, because of examples such as this.
However, the intention is to use a capture period that is granular enough to record such events in an
encapsulated timeframe, while still capturing a realistic state of the application. A correct configuration
should result in an accurate snapshot of the running system and is therefore suitable for the types of
mitigation strategies we wish to apply. When it comes to the polling rate within the capture period, it is
usually limited by the platform the tooling is run on. Generally, one can expect that the more frequently
we poll the application, the more accurate utilization metrics can be derived.

Figure 4.3 shows the updated version of the GHUBS model. This version includes hardware utilization
metrics mapped to each microservice. Note that the individual metrics (percentile, mean and standard
deviation) have been abstracted away for better clarity.
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Figure 4.3: GHUBS With Hardware Utilization Metrics
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4.2.3 Formalizing the GHUBS Model

As our GHUBS model is essentially a directed graph, we can take advantage of the established language
for directed graphs to define our anti-patterns as well. That is, define our bad smells according to
patterns of edges and vertices found in the GHUBS model. With our addition of potentially parallel
edges to the traditional SDG, the proper formalism would be a directed multi-graph, more commonly
found in the domain of networking. We let V' be the set of all nodes in the directed multi-graph, where
each node v € V represents a service. Let F be a set of all edges on a request, where each edge u,v,r € E
represents a dependency from service u to service v, and r represents the redundancy count of the edge
from u to v. Then we let i, E € R, where 7 is an identifier for the request, and R is a set of all requests
in the GHUBS model. The GHUBS model can be defined as a direct graph G = (V, R), with nodes V'
and requests R. As opposed to multi-graphs used in the context of networking, the redundant edges in
the GHUBS model do not serve as failovers. Meaning that they do not increase the resilience of the
application, as the redundant edges serve unique functions. As such, they are not necessarily a boon for
the microservice application in question.

4.2.4 Generating the GHUBS Model

As implied, the GHUBS model is generated based on traces and spans from a microservice application
that has been configured with distributed tracing. Furthermore, it utilizes hardware utilization metrics
in order to capture the state of the application and facilitate the validation of anti-pattern mitigation
techniques. The hardware utilization metrics are stored in a lookup table, where the microservice names
act as keys. This way we can perform queries against the table and retrieve the specific metrics we
need. To create the granular SDG part of the GHUBS model we employ an algorithm similar to the
simplified pseudo-code in Listing 4.1. Our function takes in the service name of the API Gateway service
on line 1, and then we extract the names or identifiers of the requests on line 2. Line 3 defines R, the
resulting dictionary of edges grouped by request identifiers. On line 5 we iterate over the request names
and extract the trace from each of the requests on line 6. Line 7 converts the traces to edges, for use in
our model in R. The edges are assigned to an identifier on R on line 8. Finally, we return the R in our
GHUBS where G = (V, R) on line 10. The set of vertices V or services can thereafter be derived from
the same requests and composed together with R to make the GHUBS model G. After which, utilization
metrics can be queried based on the service names and inserted into the aforementioned lookup table.

function createGHUBS (apiGatewayService):
requestNames = getAPIGatewayRequests(apiGetwayService)

R={}

forEach (i of requestNames):
trace = getTraceOnRequest (i)
E = convertSpansToEdges(trace.spans)
R[i] = E

return R

Listing 4.1: Creation of GHUBS Model

Apart from deriving the GHUBS model from an existing system through telemetry, we can also create
a mock GHUBS model. This is done by defining the microservices, their utilization metrics, the requests
in the application, and the dependency relationships in those requests. Having the ability to do so is quite
important as it gives developers the opportunity to evaluate their design before any development begins,
or test a particular idea using artificial data. In fact, the testing and development of this methodology
was done on a mock GHUBS model meant to inhibit the anti-patterns we have sought to detect. Before
finally being validated on actual applications.
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Chapter 5

Formalization and Detection of
Architectural Anti-Patterns

Having defined our new fine-grained GHUBS model, we will proceed in this chapter by formalizing
architectural anti-patterns and showing how they can be detected in the model with pseudo code. The
four anti-patterns we will be looking at are Inappropriate Intimacy, Megaservice, Cyclic Dependency,
and Microservice Greedy. Table 5.1 shows the definition of each smell as stated in [5].

Table 5.1: Selected Microservice Architectural Anti-Patterns

Microservice Anti-Pattern | Description

Inappropriate Intimacy The microservice keeps on connecting to private data from other services instead of dealing with its own data.

. . Teams tend to create new microservices for each feature, even when they are not needed. Common examples
Microservice Greedy . . .
are microservices created to serve only one or two static HTML pages.

Megaservice A service that does a lot of things. A monolith.

Cyclic Dependency A cyclic chain of calls between microservices.

While these anti-pattern descriptions help us facilitate a common language to discuss them, they are
rather vague and leave room for interpretation. This quality is detrimental to the creation of detection
algorithms. In order for us to programmatically detect architectural bad smells we will need formal
patterns which can be repeatably detected in multiple systems, using the telemetry data we have available
to us.

It is important to note that a single anti-pattern definition can materialize in several different ways.
This is due to the inherent vagueness of the natural language definitions. With that in mind, we have
found four instances of the four anti-patterns according to our interpreted understanding of the source
material [4, 5]. While we do believe that the formal definitions we have created are correct, they do not
exclude other instances of the same anti-patterns from existing.

Furthermore, the set of anti-patterns described here should serve as a way of thinking about archi-
tectural smells in general. This means that by utilizing the GHUBS model formalism, developers can
create more detection patterns and potentially develop bespoke patterns serving the needs of their ap-
plications. This idea makes the GHUBS model and associated anti-pattern detection methodology far
more versatile.

With this in mind, we set forth to create formal definitions of each smell.

5.1 Inappropriate Intimacy

Following the definition in Table 5.1, we are looking for microservices that are dependent on each other or
on a specific service in such a way that the separation of concerns between the services becomes blurred.
However, the definition does not tell us anything about the number of microservices that are included.
Neither does it define the interval of these connections or if it matters. The definition of what can be
considered as private data of a microservice is also ambiguous.

The instance of the pattern that we seek to detect in this case is when we have multiple services
dependent on a single service on the same request. If there are several microservices that backwards
propagate this anti-pattern, we also want to know which microservices they are. The consequences of the
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Inappropriate Intimacy anti-pattern are that it can introduce race conditions and unnecessary network
communication. If the processes are synchronous, it could also cause a tail latency bottleneck. Examples
of services with the Inappropriate Intimacy anti-pattern can be seen in Figure 5.1.

4 Service B '4Servioe B }—I

Request APl Service D Request API Service E
Gateway Gateway
h{ Service C

Service C

Service D

Figure 5.1: Instances of the Inappropriate Intimacy Anti-Pattern

In Figure 5.1 we can see two instances of the Inappropriate Intimacy anti-pattern we wish to detect.
In formal terms, we are first looking for a node that has 2 or more inbound edges. We call this node,
the converging node. If we find such a converging node, we want to detect all other nodes on the paths
between the converging node, and a diverging node with two or more outbound edges. The number
of inbound and outbound edges from the converging and diverging nodes does not have to be equal.
If they are not, it is possible that there are multiple nested inappropriate intimacy smells. In which
case the top level one will be considered. The nodes between the diverging and converging nodes are
marked as responsible for the anti-pattern. In formal notation, the Inappropriate Intimacy smell is on a
single request, r, E € R, for some request identifier r. Where two or more sequences of nodes S contain
d,v1, V2, ...,v; € V such that (v;,v;41,1) € E fori=1,...,k —1 and (vg,¢,1) € E, where d,c € V and is
the diverging and converging node respectively.

Listing 5.1 shows a simplified version of the algorithm used to detect instances of the Inappropriate
Intimacy anti-pattern. The pseudo-code shows on line 1 the function definition and our parameter, the
request in question. On lines 2 and 3, we find all converging and diverging nodes respectively. On line 5
we define our result, an array about to become nested. On lines 7 and 8 we iterate over the converging
and diverging nodes, checking if there are paths between them on lines 9 and 10. If we find two or more
paths between them, we add the paths to our result, excluding the diverging and converging nodes ¢
and d. What we end up with is a nested array where each element of the outer array is an array of the
edges responsible for the anti-pattern. We can use this nested array to retrieve the individual services
included later.

function detectInnappropriatelntimacy(request):
convergingNodes = findConvergingNodes(request) // Nodes with >= 2 inbound edges
divergingNodes = findDivergentNodes(request) // Nodes with >= 2 outbound edges

result = []

forEach (¢ of convergingNodes):
forEach (d of divergingNodes):
S = getPathsBetweenNodes(c, d) // Returns nested array of edges
if (paths.length >= 2):
result += [paths...] — [c,d] // Spread and remove c¢ and d from the
result

return result

Listing 5.1: Detection of the Inappropriate Intimacy Anti-Pattern

5.2 Microservice Greedy

For the Microservice Greedy smell we are trying to find services that only serve a singular purpose, and
might be redundant in the microservice application architecture. In [5], the example given is: “Teams
tend to create new microservices for each feature, even when they are not needed. Common examples
are microservices created to serve only one or two static HT'ML pages.” However, as our data model does
not give us insight into what the microservices are actually doing it does not make much of a difference
for our detection. Such services are usually a result of poor planning or inconsiderate additions of new
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functionality [5]. Whatever the case for introduction, they increase complexity and decrease application
maintainability needlessly. An example of the anti-pattern can be seen in Figure 5.2.

R
Equw‘; AP'_ » Service A ‘;| Service B
Gateway |

Figure 5.2: Instance of the Microservice Greedy Anti-Pattern

As opposed to our other detection methods, in the case of the Microservice Greedy anti-pattern we
look at all requests aggregated. This is to prevent flagging microservices that are only responsible for a
singular function in an individual request but have responsibilities in other requests. Every node that
is detected as such will be marked as responsible for the anti-pattern. In terms of our GHUBS model,
create a union of all edges in every request, e; Ues Uez U ... Ue, = E, where i,e € R. We define a
function g : V — ZT that takes a node as input and returns the count of inbound connections to that
node.

g9(v) = {(u,v,7) € E}|

To check if a node has only a single inbound connection, evaluate g(v). If g(v) = 1, then we can
conclude that v has only a single inbound connection. In turn, v also has the Microservice Greedy
anti-pattern.

Listing 5.2 shows the pseudo code for the Microservice Greedy detection algorithm. First, we define
our function and take in a set of all the requests R and another set of all the services V' as parameters.
Thereafter, we take the union the requests and retrieve all of the edges on line 2. On line 3 we define a
variable that will be an array containing the edges responsible for the anti-pattern. On lines 5 and 6 we
iterate over all of the services v € V' and return the edges that end in v. If we find that exactly one edge
ends in v on line 7, we append that edge to our results, and finally return the result on line 10. Once
again, we can derive the involved services from the responsible edges.

function detectMicroserviceGreedy (R, V):
E = unionRequestEdges(R)
result = []

forEach (v of V):
inboundEdges = g(v, E)
if (len(inboundEdges) = 1):
result += inboundEdges

return results

Listing 5.2: Detection of the Microservice Greedy Anti-Pattern

5.3 Megaservice

The Megaservice anti-pattern denotes services that have become monolithic in nature and thereby serve
too many unrelated functions to be considered a microservice. The number of functions a microservice
has to serve before it is considered a Megaservice is not clear following the definition stated in [5]. This
instance of the anti-pattern shown in Figure 5.3 clearly shows the redundant execution between the
“API Gateway” and “Service A”. This implies that the microservice has several exclusive operations,
that require this kind of dependency relationship even on a single request. This could for instance be a
remnant of a legacy monolithic application that has been transitioned into a microservice application,
where the old API is not conforming to the microservice best practices. The redundant execution in
Figure 5.3 is meant to describe a single request that requires executing two operations, in order to
complete the functionality of the new microservice application the monolith has been placed in. This kind
of relationship can cause data races and other unwanted behaviour in the subsequent microservices. In
the figure, we can imagine that the operation from Service A to Service C' is dependent on all operations
being executed on Service A first. If this does not happen, a data race can occur. Furthermore, this anti-
pattern can potentially lead to a service becoming a single point of failure, or performance bottleneck in
the overall microservice application.
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Figure 5.3: Instance of the Megaservice Anti-Pattern

Formally, the instance of the Megaservice anti-pattern we are looking to detect is when a node has
two or more inbound edges coming from a second node. In order to check if we have such redundant
edges, we defined a function f : V x V — Z* that takes in a pair of nodes and returns the redundancy
count between them.

flu,v) = Z T

(u,v,r)EE

Where i, E € R for some request identifier 7. To check if there are two or more redundant edges
between two services u and v, we evaluate f(u,v). If f(u,v) > 2, then we can conclude that there
are two or more redundant edges between v and v. Which in turn means that node v suffers from the
Megaservice anti-pattern according to our definition.

Listing 5.3 shows us the pseudo-code for our Megaservice detection algorithm. On line 1 we find our
function definition and the parameter, which is the request in question. We define our result variable
on line 2, which is a nested array containing arrays with the responsible edges. Lines 4-6 iterate over all
services and retrieve the edges we have between service u and v. If we find that we have more than two
edges between them on line 7, we will add service v to our result array on line 8. Finally, the function
returns the result array which will contain all edges, pointing to a service that inhibits the Megaservice
anti-pattern. As with the Inappropriate Intimacy detection pseudo-code, we can derive the service in
question based on this.

function detectMegaservice(request):
result = []

forEach (u of request.services)
forEach (v of request.services)
edges = f(u,v)
if (len(edges) >= 2):
result 4= edges
return result

Listing 5.3: Detection of the Megaservice Anti-Pattern

5.4 Cyclic Dependency

The Cyclic Dependency anti-pattern is stated to be “a cyclic chain of calls between microservices” and
can cause the microservices involved to be difficult to maintain or reuse in isolation [5]. The cycle could
also cause perpetual loops of computation, although this is something we would expect most developers
to notice before using a method such as this. This definition also leaves out the number of microservices
up to interpretation, however, this is not a deciding factor for the existence of the smell. Figure 5.4 shows
an example of the anti-pattern, with the responsible services and operations marked in red. Again, this
is on a single external request.
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Figure 5.4: Instance of the Cyclic Dependency Anti-Pattern

Of the four smells we are formalizing the Cyclic Dependency smell is the one with the most well-
defined pattern from the literature. A cycle in our SDG is a sequence of nodes S containing vy, va, ..., Vg
such that (v;,v;41) € Efori=1,...k —1 and (vg,v1) € E. Where r, E € R, for some request identifier
r. Note that the elements of E have been reduced to a tuple of two elements, as the number of redundant
edges is irrelevant.

This method allows us to detect cycles with an unlimited amount of microservices in them. Nested
cycles will also be detected, however, they will be identified as several different instances of the smell in
the microservice application.

Listing 5.4 shows the pseudo code for the Cyclic Dependency detection algorithm. We start with
our function definition, taking a parameter containing the request in question on line 1. Thereafter, we
define a variable to hold our array of results on line 2. On line 4 we iterate over the services in the
request and find cycles that start and end in service v on line 5. If we have found a non-nil cycle on line
6, we add it to our results on line 7. Finally, we return the resulting edges on line 9.

function detectCyclicDependency (request):
result = []

forEach(v of request.services):
S = findCycleEndingInService(v, request.edges)
if(len(S) !'= 0):
result 4= S

return result

Listing 5.4: Detection of the Cyclic Dependency Anti-Pattern
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Chapter 6

Utilization Based Mitigation
Recommendations

Now that we have formal definitions for how to detect the chosen anti-patterns, we would like to use this
information to suggest mitigation techniques that will resolve the anti-patterns.

Our approach for doing this will be through altering operation paths and merging or splitting services.
However, while we could simply suggest alterations based on the formal definitions of the anti-patterns,
we want the recommendations to reflect the state of the actual microservice application. In order to
achieve this, we utilize the hardware utilization metrics that we introduced in the GHUBS model. We
use the term state here as the metrics one may choose to collect could consist of many things in addition
to hardware utilization metrics, although these additional metrics will not be our focus here. Recall
that we pay special attention to the frequency of our metric capture in order to prevent edge cases from
skewing our results.

When we execute recommendations on the granular SDG, we need to be careful that we do not create
new smells as a result of the resolutions. Furthermore, we also have to be attentive to the data paths in
the microservice application. That is, we do not wish to sever communication paths in the microservice
application that would prevent a particular microservice access to the data it depends on. After executing
a recommendation we also need to evaluate the application again and ensure that additional anti-patterns
are not introduced.

6.1 Merging Services

The first mitigation technique we utilize is the merging of two or more services in the GHUBS model.
When merging services we are intentionally absolving separation of concerns in order to create bigger
services. It is important we make sure that we do not create services that become too big or monolithic.

6.1.1 Inappropriate Intimacy

For the Inappropriate Intimacy anti-pattern there are two mitigation options with regards to our for-
malized smell pattern. The first option would be to split the data service that our responsible services
converge upon and divide the resulting services among the responsible services. However, as we do not
have any knowledge of what data that service is responsible for, or if it even can be logically split, this
would not yield a useful suggestion. Furthermore, if we make the assumption that the designers of the
microservice application have divided their data boundaries on the principles of Domain Driven Design
[12], the data service is most likely only responsible for a collection of data that logically belongs together
and thereby should not be split. Assuming that a system is properly decomposed while still inhibiting
anti-patterns such as this is somewhat contradictory. However, while a system might have had proper
data boundaries at its conception, it could have deteriorated over its evolution. Ultimately, we cannot
see what the data boundaries are, and as such we cannot provide guidance on such a split. This leads
us to the alternative solution to resolve the Inappropriate Intimacy smell. By merging the services that
are responsible for the smell, we will be able to resolve the smell and still maintain data accessibility for
the services involved.

However, we cannot simply merge services together. We also need to account for the performance
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implications such an action could induce. To do this, we attempt to create a pessimistic scenario, by
summing the 99.7% percentile (quantile) CPU utilization metrics of the services involved. This means,
that if we have three services that are marked for merging with 10%, 15%, and 20% quantile CPU
utilization respectively, the resulting merged service would have a quantile CPU utilization of 45%.
To see if the resulting merge is acceptable, we compare the utilization metrics to a single or a set of
boundary requirements specified by the developer and reject or accept the recommendation based on this.
A developer could, for instance, decide that the limit for their application is a quantile CPU utilization
below 60%, in order to make it easier to reason about the temporal behaviour of the microservices.
The resulting mitigation technique can be seen in Figure 6.1a and 6.1b, showing the before and after
respectively. Service A, B and C have been merged, as well as the relevant operations.
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Figure 6.1: Mitigating the Inappropriate Intimacy Anti-Pattern

Merging the services in this way helps us consolidate the microservices into a cohesive unit and should
increase maintainability and reduce coupling as a result. However, there are some cases where this might
not be true. If the number of microservices is exceedingly large, it might be more feasible to merge
them into several microservices instead of one, creating a pipeline pattern. This could be the better
choice even if the number of services is small but the utilization metrics are large. To arrive at how to
compose the new merged services, the developer should look to consolidate small services with highly
dependent workloads. For instance, one service could cause a significant amount of latency because of
the network overhead alone. Other services might be halted waiting for a callback that could be avoided
with better composition. Alternative options involve following practices from Domain Driven Design
[12], or a dictionary reference method such as the one in [10]. Furthermore, if the microservices serve
as unique components of parallel execution, merging them could simply degrade the performance of the
application. However, if they do in fact serve such a purpose we believe it to be prudent to merge the
services into a cohesive unit and rather scale the number of instances of that microservice. This way
maintaining low coupling while retaining the performance-oriented architecture.

6.1.2 Microservice Greedy

The second smell where we potentially want to merge services together is the Microservice Greedy smell.
If we detect a service that has this smell, we wish to merge the greedy service with its parent service as
the greedy service is most likely redundant. However, we have to account for the utilization metrics of
both services in question. The service that has been annotated as greedy could previously have been the
result of a split, creating the current structure, because it had a particularly high workload. Therefore, in
the same manner, as with the Inappropriate Intimacy smell, we check if the summed quantile utilization
metrics of the two services under question exceed the requirements set by the developer. If they do, the
merge will not be recommended. Furthermore, we also make sure that the parent service is not the API
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Gateway, as we do not want to introduce business logic there. Figure 6.2a and 6.2b show the merging of
the “Greedy Microservice” with its parent microservice.
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Figure 6.2: Mitigating the Microservice Greedy Anti-Pattern

As we cannot say anything about the operations happening in a particular microservice, this anti-
pattern is the one that is most susceptible to wrongful mitigation suggestions. Services that are not highly
coupled could be chosen. In order to combat this, we suggest that the utilization metric requirements
for a merger to take place should be very strict. In Figure 6.2b we can see that the merged microservice
L/M only has a 99.7% percentile CPU utilization of 13% which is comparatively low to the rest of the
microservices in the application. Despite this weakness, the detection pattern and mitigation technique
are successful in making the developer aware of potentially long branches of unnecessary microservices
in the application. It should be noted, that a parent service might have several greedy services as its
children. In this case, we will consider the summed utilization metrics across all of the microservices
involved.

6.1.3 Performing a Merge in the GHUBS Model

When performing a merge in the GHUBS model we need to create a new service, composed of the
merged services and update the edges that used to refer to the merged services. Listing 6.1 shows the
steps we take to merge services in simplified pseudo-code. We define our function on line 1 and take the
responsible (bad) services and edges as parameters. Thereafter, we continue by creating a new service
and then assigning it a name derived from the service to be merged, as well as utilization metrics summed
from the same services on lines 2-4. Then on line 6, we iterate over the bad edges. For each edge, we
check if it connects with a service outside the set of bad services. We do this for both the source and
destination service on lines 7-9 and 11-13 respectively. If it has a source outside of the bad services we
add the source to the new service. If the destination is outside, we add it as a dependency to the new
service. We also make sure to point the edges to the new service. Finally, we remove all edges that refer
to one of the now merged services as well as duplicates on lines 15 and 16. We also remove duplicates
from the dependents and dependencies of the new service on lines 18 and 19. The function finally returns
the new service and a new set of edges on line 21. The old ones can be removed, and replaced with the
new ones. Note, that we also have to adjust healthy edges that used to have a dependency relationship
with our bad services to now point to or from our new merged service. If not we might end up with a
graph that is not strongly connected.

function mergeMicroservices(badServices, badEdges):
mergedService = new Service ()
mergedService. utils = sumServiceUtilizationMetrics (badServices)
mergedService .name = joinServiceNames (badServices)

forEach(e of badEdges):
if (! badServices.contains (e.from)):
mergedService.dependents += e.from
e.to = mergedService .name

if (! badServices.contains(e.to)):

mergedService.dependencies += e. to
e.from = mergedService.name
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updatedEdges = removeEdgesReferringToServices (badEdges, badServices)
updatedEdges = removeDuplicates (updatedEdges)

mergedService.dependents = removeDuplicates (mergedService.dependents)
mergedService.dependencies = removeDuplicates (mergedService.dependencies)

return mergedService, updatedEdges

Listing 6.1: Merging Services

6.2 Splitting Services

For the second mitigation technique, we employ the splitting of microservices. Splitting a service is done
with the intention of creating new separations of concern and limiting the responsibility of an existing
microservice. When splitting a service we need to make sure that we do not sever any data connections
unnecessarily. Furthermore, splitting a service leaves us susceptible to introducing the Inappropriate
Intimacy smell in our microservice application if the resulting services converge into a single data service.

6.2.1 Megaservice

In the case of the Megaservice anti-pattern, we wish to split the responsible service into several smaller
services. The number of resulting services is determined by the number of incoming operations to the
service on the request in question. As opposed to our merging technique, splitting a service will result
in the split services retaining their respective fraction of the total utilization. This approach will most
likely not give us realistic predictions, and an argument could be made for increasing the metrics by some
factor to make the predictions more pessimistic. The microservices that were previously dependent on
the responsible microservice will in turn be allocated to the newly created microservices in a round-robin
fashion, preventing the creation of a new Inappropriate Intimacy smell. Figure 6.3a and 6.3b shows a
visualization of the applied mitigation technique for the Megaservice anti-pattern.
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Figure 6.3: Mitigating the Megaservice Anti-Pattern

Allocating the dangling microservices in this way could be disadvantageous. In the case that there
are fewer dependent services than resulting services after the split we will potentially sever important
data connections. However, we do not know which dependent services would logically go together with
the resulting services. Therefore, this is considered to be a best-effort approach and represents the new
structure of the system regardless of incorrect labelling. With that being said, the developer should
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be able to identify if the split would result in severance of the data connections and adjust the data
boundaries and scope of the split accordingly. Let us look at the example from section 5.3 with the
application that is transitioning from a monolith to a microservice architecture. In this case, the developer
intends to transition the application into cohesive and lightly coupled microservices. The process of doing
so includes defining new data boundaries and ensuring the separation of concerns. As such, we believe
that the suggested structure made by the mitigation technique should serve as a basis for further design
iterations. Rather than an absolute law.

6.2.2 Performing a Split in the GHUBS Model

As mentioned, we need to be wary of creating instances of the Inappropriate Intimacy anti-pattern when
splitting services in the GHUBS model. The pseudo-code in Listing 6.2 shows a simplified version of our
algorithm. We start by iterating over the redundant edges (bad edges) we detected during our detection
step on line 5. For each bad edge, we create a new service on line 6, with a fraction of the old utilization
metrics of the old responsible service (bad service) on line 7, and a new name on line 8 based on the
name of the bad edge. We then append our newly split service to an array and point the bad edge to
the new service, making it “healthy” on lines 11 and 12.

Then we need to handle the dependencies of the bad service. We iterate over the dependencies and
create new edges for each of them on lines 14 and 15. The new edges are assigned one of the new split
services in a round-robin fashion on lines 16 and 17, ensuring that we will not create an instance of the
Inappropriate Intimacy anti-pattern. Finally, we return the new services and the updated edges on line
20. We also have to make sure to redirect any other edges that still refer to the bad service to the new
services, but this is not included in the pseudo-code.

function splitService (badService, badEdges):
splitServices = []
updatedEdges = []

forEach (e of badEdges)
service = new Service ()
service . utils = divideServiceUtilizationMetrics(badServices, badEdges.length)
service .name = e.operationName 4+ badService.name
splitServices 4= service

e.to = service .name
updatedEdges 4= e

forEach(i = 0; i < badService.dependencies.length; i++4):
edge = new Edge()
edge.from = splitServices[i % splitServices.length]
edge.to = badService.dependencies [1i]
updatedEdges += edge

return splitServices , updatedEdges

Listing 6.2: Splitting Services

6.3 Removing Operations

The third and final mitigation technique we employ is the removal of operations or edges from the GHUBS
model. By removing an operation from a request path in a microservice application, we are signalling to
the developer a transfer of functionality. That is, we want the functionality of the dependent service to be
transferred to its parent on the same request. The developer could also choose to clone the functionality,
effectively creating two forks or externalising it into a library or something similar if it is needed on
another independent request. The most appropriate approach would depend on the functionality in
question and how good the communication between the parties responsible for the services is.

6.3.1 Cyclic Dependency

For our Cyclic Dependency this is a viable solution. In order to find the operation to be removed, we
simply attempt to remove individual operations until we find one which can be removed without leaving
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any isolated services. This is the (vk,v1) € F edge from the formalism in Section 5.4. Doing it this way
means that the data will still be transferred through all of the microservices and they should be able to
continue serving their purposes. This mitigation technique can be seen in Figure 6.4a and 6.4b.
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Figure 6.4: Mitigating the Cyclic Dependency Anti-Pattern

The alternative to removing an operation would be to merge the microservices that are involved in
the cyclic dependency. However, that is not always desirable in this situation. While doing so would
resolve the cycle, it could lead to consolidating more microservices than necessary. If we were to merge
the microservices shown as an example in Figure 6.4b, we would end up with a service that would be
a union of services I, J and K, with a 99.7% percentile CPU utilization metric of 26%. In this case, it
might be completely viable to merge the services. In cases with many more microservices, however, it
might not be feasible. In contrast with the Inappropriate Intimacy mitigation technique where we could
do several smaller merges, the Cyclic Dependency mitigation technique would require us to merge all the
responsible services in order to remove the cycle.

6.3.2 Removing an Operation in the GHUBS Model

When removing an operation in the GHUBS model we want to avoid leaving any dangling services and
ensure that our graph is still strongly connected. That is, we prevent leaving services that do not have a
parent service. Listing 6.3 shows the pseudo-code of a simplified algorithm for achieving this. First, we
iterate over the responsible edges (bad edges) on line 2, and create a copy of the edges without the edge
currently being iterated over on lines 3 and 4. Thereafter, we create an array of the destination services
in our set of bad edges on line 5, the destination service being the v in u,v € E. To check for dangling
services, we check if any of the services are not included in this array by iterating over them on line 8
and performing the check on line 9. If any service is excluded from the array we flag this on line 10 and
repeat with removing another edge. However, if they are all included in the array we return the services
and the set of edges, excluding the currently iterated over edge on lines 13 and 14.

function removeOperation(badServices, badEdges):
forEach (be of badEdges):
badEdgesCopy = badEdges
badEdgesCopy . remove (be)
badEdgesDestinations = spreadEdgeDestinations (badEdgesCopy)

leavesIsolatedService = false
forEach (s of badServices):
if (!badEdgesDestinations. contains (s.name)):
leaveslsolatedService = true
break

if (!leavesIsolatedService):
return badServices, badEdgesCopy

Listing 6.3: Removing Operations
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Chapter 7

Prototype and Validation

In order to verify the viability of our research we have created a proof-of-concept tool that automatically
applies the methodology on microservice applications. We used the same tool to perform two case studies
on two microservice applications from a well-known open-source microservice application suite.

7.1 Implementation

The methodology described in Chapters 4, 5 and 6 was implemented as a two-module application by the
name Televisor (Telemetry-Advisor). Our first module, which we will refer to as the backend module, is
responsible for the creation of the GHUBS model (both mocked and real), detection of the anti-patterns,
creation of mitigation suggestions and validation against utilization metrics. The second module, which
we will refer to as the frontend module, is responsible for displaying the results to the developer and
conveying the information in a human-friendly manner. In fact, the before and after figures shown in
Chapter 6 are from the frontend module. Figure 7.1 shows the architecture of Televisor, the dependency
relationships between the different services and how the developer can use insight from Televisor to
improve their microservice application.
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Figure 7.1: Televisor Architecture

7.1.1 Televisor Backend Module

The backend module was written in Go [35] and interfaces with a Jaeger and Prometheus client running
on the target system. In order to retrieve application traces we query a Jaeger client running on the
target system. The backend implements the Jaeger gRPC ProtoBuf specifications and executes requests
towards the client on the :16685 port by default. In order to retrieve utilization metrics, the backend
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queries the Prometheus REST API instance on the target machine. The queries are written in PromQL,
which is a versatile querying language supplied by Prometheus. However as Prometheus only provides us
with a time-series database and a querying language, we still need software to monitor our microservices.
We use cAdvisor to monitor Docker containers running on a system and configure Prometheus to use
the cAdvisor instance as a collection target.

The program can be configured and then compiled as an executable. This means that it is easy to
use it wherever a developer may please, for instance in a Continuous Integration pipeline with some form
of benchmarking procedures. When executing the program, two JSON files are produced. The first file
describes the system-as-is and annotates the services and operations with detected anti-patterns. The
second file describes the system in an “anti-pattern free” state and will simulate the implementation of
the mitigation techniques on the microservice application. Both of these JSON files can then be fed into
the frontend module for visualization to the developer. This entire flow can be seen in Figure 7.1.

7.1.2 Televisor Frontend Module

The frontend module was written in Typescript utilizing the React and ReactFlow libraries for visualizing
the GHUBS model as well as providing interactivity. By supplying the JSON files generated by the
backend module, developers have two modes of visualization, which can be easily toggled between through
a button. The first shows the system-as-is, with anti-patterns annotated in a list on the left-hand side.
The second mode of visualization shows the “anti-pattern free” state, in which mitigation techniques have
been applied. This “before and after” look has been shown in Figures 6.1, 6.2, 6.3 and 6.4. Effectively
showing a before and after view of the system and the suggested mitigation techniques. Furthermore,
the services are coloured in a heatmap fashion, depending on the CPU quantile utilization metrics of
the services. As discussed, the GHUBS model provides granularity in the context of the rest of the
application. As such we also give the developers the option to filter the visible edges based on requests.
If the developer wishes to inspect a particular anti-pattern, on a particular request, they may do so
without the noise of other requests. Additionally, there are visualization features such as zoom, pan and
functionality to move services around to further help with visibility. All of these features were used to
create Figures 6.1, 6.2, 6.3 and 6.4, and can be contrasted against the upcoming Figures 7.2 and 7.4.

7.2 Case Studies

In order to validate our findings, we have run experiments on two of the benchmark applications found
in the DeathStarBench microservice application suite [11]. The chosen applications were the Social
Network and the Media Application and both of them exhibited anti-patterns. The number and types
of anti-patterns detected can be found in Table 7.1.

Table 7.1: Anti-Patterns Detected in DeathStarBench Applications

Inappropriate Intimacy | Megaservice | Cyclic Dependency | Microservice Greedy
Social Network 0 0 0 6
Media Application | 1 0 0 3

The process of validating our mitigation techniques in the cases above could be used as an example
of how a developer may reason about an architectural change in their own system. While we have not
spent time analyzing the source code of these applications, we can still make quite a few observations
based on the information we have and come to certain conclusions about the viability of the mitigation
suggestions generated by the Televisor tool.

7.2.1 Social Network

The scope of the Social Network application as described by the paper introducing the DeathStarBench
is as follows: “The end-to-end service implements a broadcast-style social network with uni-directional
follow relationships” [11]. Across the three requests we gathered from running the benchmark workloads
provided by the DeathStarBench suite [11] on the Social Network application we found six instances
of the Microservice Greedy anti-pattern. Surprisingly, all six instances were to be found on the same
request (/wrk2—api/post/compose). Figure 7.2 shows the services flagged with the Microservice Greedy
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smell in red for the /wrk2—api/post/compose request in the Social Network application. The services that
are marked in the same box are grouped as they would be merged into the same parent service. Note that
as all of the anti-pattern instances were apparent on a single request, we have used the filter feature of
the Televisor frontend to abstract away the other edges for visibility purposes. The black dots apparent
on the left-hand side of the post—storage—service, home—timeline—service and user—timeline—service without an
incoming edge are points of ingress on other requests.

post-storage-service
| Mean Quantile Stdev

| cpPu 008%081% 00020
¢ Memory 003%003%  0.0000

home-timeline-service
'| Mean Quantile Stdev | T
e 4 CPU 0.13%121% 00032 T
Memory 0.03% 0.03%  0.0000

unique-id-service
Mean Quantile Stdev
| CPU 003%043% 00010
Memory 0.02% 0.02%  0.0000
media-service
Mean Quantile Stdev
It CPU  0.03%042% 0.0010
Memory 0.02% 0.02%  0.0000
user-service
Mean Quantile Stdev

CPU 0.03%0.44% 0.0010
Memory 0.03% 0.03%  0.0000

user-timeline-service
T Mean Quantile Stdev |
{ CPU 007%1.11% 0.0025
Memory 0.13%0.13%  0.0000 =
user-mention-service
Mean Quantile Stdev
"WT
Mean Quantile Stdev i

social-graph-service
Mean Quantile Stdev

CPU 0.09%142%  0.0031
Memory 0.03% 0.03%  0.0000

nginx-web-server compose-post-service
Mean Quantile Stdev | Mean Quantile Stdev

CPU  0.00%0.00%  0.0000 - CPU 033%523% 00118 T
Memory 0.00% 0.00%  0.0000 Memory 0.03% 0.05%  0.0000

CPU  0.10%154% 00035
Memory 0.03%0.03% 00000

CPU 015%244% 00055 | url-shorten-service
Memory 0.06%0.06% 00000 | Mean Quantile Stdev

CPU 0.09%140% 0.0032
*Microservice Greedy Anti-Pattern Memory 003% 003% 00000

Figure 7.2: Social Network Anti-Patterns

Before we can attempt to validate our mitigation suggestions, we need to have a look at the utilization
metrics and see if merging the services with their parents is feasible. For our experimental setup, we
have set our requirements to be that the summed CPU 99.7% percentile utilization metric across the
microservices in question should be below 25%, and the corresponding metric for memory to be below
15%. We are being generous with our requirements here to facilitate some validation, although as
Figure 7.1 shows, the utilization metrics are quite low. The first merge 1) involving microservices unique—
id—service, media—service and user—service into compose—post—service, has summed 99.7% percentile utilization
metrics of 6.51% and 0.12% for CPU and memory respectively. The second merge 2) with services user—
mention—service and url—shorten—service into text—service, has summed 99.7% percentile utilization metrics
of 5.38% and 0.12% for CPU and memory respectively. The third and final merge 3) involves the social —
graph—service into the home—timeline—service and has summed 99.7% percentile utilization metrics of 2.63%
and 0.06% for CPU and memory respectively. As the utilization metrics are within our requirements for
the mitigation technique we can go ahead with the validation.

Validation and Reasoning

To evaluate whether or not the suggested merges are feasible we will be looking at dependency relation-
ships illustrated by the GHUBS model, hardware utilization metrics, and analyze a Jaeger trace of the
/wrk2—api/post/compose request to reason about temporal behaviour. The trace in question can be found
in Figure 7.3. In merge 1) we can see that the unique—id—service, media—service and user—service all perform
minuscule amounts of work. In fact, most of the time compose—post—service is waiting for a callback so
that it can proceed to execute on the text—service. In merge 2) we can see that the text—service also
performs very little work and that most of the processing time happens in the user—mention—service and
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the url—shorten—service. From looking at Figure 7.2 we can also see that the text—service is not invoked
on any other requests either, and is effectively serving as a wrapper for its child services. We see the
same story for merge 3), however in this case the home—timeline—service does serve a purpose on another
request.

tion ous 1.2ms. 365ms sa7ms 7ams

Text-service does relatively little processing

Tiny amount of work Ly Dependence causes halt

1

Home-timeline-service does minimal processing

Figure 7.3: Social Network Jaeger Request Trace

With this information, we can draw a few conclusions about each of the proposed merges. In merge
1), we can tell that the child services are already tightly coupled with the compose—post—service because
of the callback dependency. We can also tell that their workloads and hardware utilization metrics are
nominal, and most of the latency is due to network communication overhead. Merging these services
could help alleviate this. For merge 2), the microservices are also tightly coupled and their only path
of execution is on this request. This indicates that we can safely merge these services, without creating
problems for other requests in the application. Merge 3), while exhibiting the same symptoms as merge
2), is more complicated. There is some latency going from the home—timeline—service to the social —graph—
service however it is minuscule. Furthermore, the home—timeline—service is invoked on another request. As
such, the question is whether or not merging them would be detrimental to the separation of concerns.
By their names and domain, we can perhaps argue that the home—timeline—service is sufficiently dependent
on the social —graph—service to justify a merge. Ultimately, for merge 3), the developer has to be the one to
investigate the feasibility of the mitigation technique and it is not something we can make a good decision
about solely based on the information provided by the Televisor tool. However, the tool is successful in
alerting the developer to a potential issue and does provide information that can be invaluable in the
beginning of such an investigation.

7.2.2 Media Application

The scope of the Media Application, as described in the DeathStarBenchPaper is as follows: “The
application implements an end-to-end service for browsing movie information, as well as reviewing,
rating, renting, and streaming moves” [11]. The Media Application has six requests to analyze after
running a script for seeding the database, as well as the provided wrk2 benchmark. We found anti-
patterns in one of the six requests. Namely, three instances of the Microservice Greedy anti-pattern,
and one instance of the Inappropriate Intimacy anti-pattern. The request in question is on the \wrk2
—api\review\compose route. Figure 7.4 shows the GHUBS model of the Media Application. Once again,
the Televisor frontend filter functionality has been used to hide the edges that are not present on this
request. The services that inhibit the Microservice Greedy anti-pattern are highlighted in red, while the
services that have the Inappropriate Intimacy anti-pattern are highlighted in purple.
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Figure 7.4: Media Application Anti-Patterns

Our utilization metric merging thresholds for the microservices responsible for the Microservice
Greedy anti-pattern are the same as for the Social Network application. For the microservices respon-
sible for the Inappropriate Intimacy smell, however, we will accept a merge if the summed CPU 99.7%
percentile utilization metric is less than 40%. Our CPU requirement for the Inappropriate Intimacy
anti-pattern is more lenient than for the Microservice Greedy anti-pattern, as with the latter we want
to avoid a situation where the entire application is suggested to be merged. We are not taking memory
utilization into account here, but as alluded to previously this is configurable on a per application and
anti-pattern mitigation technique basis. One reason for excluding it could be that it is generally easier to
add more memory to a system than to increase the number of cores or the clock speeds of a CPU. In our
case, however, it is more a matter of showing off the versatility of the metric requirement functionality.
Our first merge 1), consisting of the review—storage—service, movie—review—service and the user—review—service
accounts for the Microservice Greedy anti-pattern. The CPU 99.7% percentile utilization is 8.28%, and
the corresponding memory utilization is 0.09%. These metrics are acceptable with our requirements for
under 25% CPU and under 15% memory, 99.7% percentile utilization metrics respectively. The second
merge 2), consisting of the movie—id—service, text—service, unique—id—service, user—service and the rating—service
accounts for the Inappropriate Intimacy anti-pattern. Here we have a summed CPU 99.7% percentile of
11.03%, which is also acceptable with our requirement. As such, we can go ahead with the mitigation
technique validation.

Validation and Reasoning

Again, to evaluate whether or not the suggested merges are feasible we will be looking at dependency
relationships illustrated by the GHUBS model, hardware utilization metrics and analyze a Jaeger trace
of the /wrk2—api/review/compose request to argue about temporal behaviour. Figure 7.5 shows the trace.
For our first merge 1) marked in red, we can see that both the user—review—service and the movie—review
—service are waiting for a callback from the review—storage—service before proceeding with the database
updates. This sort of dependency relationship and their temporal behaviour indicates that the services
involved are tightly coupled. The temporal behaviour of the second merge 2), does not have any obvious
performance problems. However, we can see that a relatively large amount of time is being spent on
network communication and waiting for callbacks. By looking at the GHUBS model in Figure 7.4 in
conjunction with the Jaeger trace, we can also see that there are two dependencies between the movie
—id—service and the compose—review—service. The first one is directly between the two, while the other is
a transitive connection through the rating—service. This could potentially be avoided with different data
boundaries between the microservices.
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Figure 7.5: Media Application Jaeger Request Trace

For merge 1), it is apparent that the dependency relation between the user—review—service and the
movie—review—service waiting for a callback from the review—storage—service is not ideal. The three services
perform strictly related tasks and are tightly coupled, making them suitable for a merger. Furthermore,
the three services all interact with separate databases, however, they are only invoked on this particular
request. As the user—review—service and the movie—review—service are also dependent on data from the review
—storage—service, there strictly is no need for separate databases. In fact, merging the services and utilizing
a single database with multiple schemas would facilitate the use of database transactions, enhancing data
integrity and possibly increasing maintainability by simplifying error handling. With this in mind, we
believe that merging the services responsible for the Microservice Greedy smell in the Media Application
would be beneficial.

While we did not find much in terms of detrimental temporal behaviour for merge 2), we can still tell
that the anti-pattern has introduced unnecessary latency into the application. After all, the incoming
data on the request is diverged into five different services and they all converge on the same service.
Additionally, the service data boundaries do not seem to follow business processes, and certainly not
Domain Driven Design [12]. Because of the number of services involved in this anti-pattern, we do not
think that a single merge would be feasible. However, we could make an attempt at recomposing the
system after business processes. For instance, merging the services into three new services: a movie—
service, user—service and a review—service. Now we could reduce the number of operations on this request
to three. We can make a call to the new movie—service to retrieve the movie ID, at the same time retrieve
or authenticate the user in the user—service and lastly upload our review in the review—service.

If we were to do this, it would also be prudent to consider the other microservices in the application
that are not involved in this request. Say including the movie—info—service and the plot—service in the
creation of the new movie—service. While the cast of a movie usually is closely related to the concept of a
movie, the cast—info—service should continue to be independent. As we can see, the CPU 99.7% percentile
utilization metric is rather high at 20% and we assume that we would like to be able to make changes
to actors and such independent of the movies they have played in. Merge 2) is not as clear-cut as the
other anti-pattern mitigation suggestions we have looked at so far. While merging all of the services
into a single service would probably be detrimental to the separation of concerns in the application, the
Televisor tool did provide us with information that could guide us in creating a more maintainable and
reliable system. Most importantly it made us think about the application composition by bringing it to
our attention.

34



Chapter 8

Discussion

Now that we have run two experiments on the benchmarking applications from the DeathStarBench [11],
we can evaluate how well our model, detection and mitigation suggestions worked. We will discuss the
successes and shortcomings of our model, formalization, detection and mitigation based on the results
of these case studies.

8.1 The GHUBS Model

We set out to create a model that is granular enough to detect cases of architectural anti-patterns
that apply to individual requests, but also anti-patterns that first become apparent when considering
multiple or all requests in a microservice application. Keeping the model relatively simple, and being able
to formalize it with well-known mathematical notation was also key for facilitating automatic detection
of the architectural anti-patterns. Furthermore, we wanted to extend the model with utilization metrics
from the microservices to ensure requirements conformance after implementing changes to the model or
an application.

Our use of the API Gateway architectural design pattern was useful in determining where to start
the trace collection. Furthermore, the requests ingressing the application through the API Gateway
are more often than not representative of business processes which helps in reasoning about particular
system flows.

In order to evaluate the validity of our formalized anti-pattern detection algorithms, we created a
mock GHUBS model reflecting an application that had all of the anti-patterns. This made prototyping
and testing of the anti-pattern detection algorithms very efficient. However, we also found that the results
of creating a testing model could lead to a false sense of security if we did not test enough variations
of the patterns. Feedback from practitioners suggests that the ability to create a mock GHUBS model
is very valuable, as it can be used by developers to evaluate a proposed microservice application design
before developing it.

8.2 The Anti-Pattern Detection and Formalization

The work presented in this thesis lays the foundation for further formalization and work in the area of
automatic detection of microservice anti-patterns. The anti-pattern that has been reported as the most
prevalent and harmful by practitioners is the Wrong Cuts anti-pattern [4]. As described in Chapter 3,
being able to detect, and mitigate, this anti-pattern is highly dependent on the domain knowledge of the
developer and is non-trivial with telemetry data alone. While Wrong Cuts is a standalone anti-pattern,
we believe that the four anti-patterns we have worked with could be considered elements of a hypothetical
set of Wrong Cuts anti-patterns. Similarly to the Wrong Cuts anti-pattern, the four also lacked formal
definitions, however, they did describe microservice dependency relationships in natural language. By
formally defining more architectural anti-patterns we might come closer to a set of universal guidelines
for proper microservice application decomposition agnostic to domain knowledge. With this in mind,
we set out to create formal mathematical definitions of anti-patterns we believe to be instances of these
smells.

Our definition of the Inappropriate Intimacy anti-pattern instance is perhaps the most complex of
the four and is a result of our interpretation of the available literature. As such, the anti-pattern we
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chose to detect is unlikely to be the only one that can be considered an instance of the Inappropriate
Intimacy anti-pattern. We were able to detect a single instance of this smell on the Media Application
from the DeathStarBench [11], and also reach a conclusion about the system decomposition based on the
microservices that were highlighted by the detection algorithm. As we saw in that case, a large number
of microservices were included in the anti-pattern and we were able to detect that the granularity of
the microservice decomposition in the system was very fine. In fact, the Media Application consisted of
several services that executed a single function across all of the requests in the application.

The Microservice Greedy anti-pattern was the one we detected the most instances of, which was not
a surprise considering the simplicity of the anti-pattern. In fact, before running the experiments in the
case studies, we suspected that we would come across several false positives. However, the detection
algorithm ended up detecting several cases where we could find performance and maintainability gains
by performing a merge. These findings once again made it apparent that the benchmark applications
had a very granular decomposition, and as such the anti-patterns did not appear to be false positives. If
the services were bigger in terms of responsibility and functionality this could have turned out differently.
It should be mentioned that the goal of the DeathStarBench suite is to have applications with enough
microservices to make them representative of real-world systems and their inherent complexities [11]. As
such it is not surprising if they were eager to create new services, even if they were small.

We were not able to find cases of the Megaservice anti-pattern. As mentioned in Chapter 5, we
believe that this smell would be most prevalent in microservice applications that have transitioned from
a monolithic architecture, which is not the case for the DeathStarBench [11] applications. A thing to
note with several of the microservice application benchmarking suites that are currently out there is that
they are mostly created by following best practices. This means that attempting to detect anti-patterns
in them can be challenging.

Of our four anti-patterns, Cyclic Dependency is the only one that had a formal definition using
graph notation, but in natural language. We did not find any instances of this anti-pattern across our
experiments either. However, this is a smell that has been reported to be fairly common by microservice
architects and other practitioners [4], and as such it was natural to include it.

We also discovered that the Inappropriate Intimacy and Cyclic Dependency anti-patterns can manifest
themselves as nested. With our current algorithms, we would be able to detect the nested anti-pattern
instances, however, we do not perform any checks to see if one is a subset of another. In the case of
the Inappropriate Intimacy anti-pattern, it would be prudent to subsume the nested instance into the
parent when applying a mitigation technique. While for the Cyclic Dependency anti-pattern, we would
prefer to treat them separately as we would have to employ multiple transfers of functionality in order
to mitigate the anti-patterns.

8.3 The Mitigation Suggestions

Our mitigation technique for the Microservice Greedy and Inappropriate Intimacy anti-patterns was to
merge the services flagged as responsible for the anti-pattern. While merging the responsible services
into a single new microservice seemed to be feasible for our Microservice Greedy anti-patterns, this was
not the case with the Inappropriate Intimacy anti-pattern in the Media Application. We believe this
is due to the number of microservices that were flagged as responsible for the Inappropriate Intimacy
anti-pattern. The flagged services had use cases on other requests, and their separation of concerns was
highly granular. As explained in Chapter 7, we believe that merging them into several services according
to business processes would be the better choice. This implies that the reliability of our mitigation
suggestion for the Inappropriate Intimacy anti-pattern is weakened for situations involving many services.
Perhaps this is something that could be addressed by basing the number of resulting services after a
merge on the number of unique requests that invoke the involved services. While we still would not
be able to create merges that would conform to business processes, we could get a better estimate of
the number of resulting services. This would be more akin to the splitting technique we employ with
the Megaservice anti-pattern, where the number of resulting services after a split is dependent on the
number of inbound edges to the Megaservice.

Unfortunately, we did not come across the Megaservice or Cyclic Dependency anti-patterns in our
case studies. While we did test our detection and mitigation schemes for these anti-patterns in the mock
application, it would be highly beneficial to see their impact on a real application.

In hindsight, we see that we were quite dependent on Jaeger to validate our mitigation suggestions
for the Microservice Greedy anti-pattern. The ability to see which service on a request demands the
most resources is quite useful when reasoning about a suggestion. While we do believe it is beneficial
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to use several tools in order to validate potential changes to the application architecture, it is an area
in which our model is unnecessarily insufficient. If we were to make a change at this point, we would
propose to add latency mean, percentile and standard deviation to the GHUBS model edges between
services on each request. With this information, we could extend the functionality of our requirements
conformance checking to include network overhead gains from merging services. We also relied on Jaeger
for the ability to see in which order executions were made. The Gantt chart view in Jaeger is ideal for
this kind of visualization, and while we could add timestamps to the edges in the GHUBS model it would
be an inferior solution.

8.4 Threats to Validity

Here, we discuss aspects of our method that are prone to degrading the quality of our research. We are
primarily concerned about the implications of telemetry-based methods, our approaches for predicting
utilization metrics in microservices after applying a mitigation technique, our coverage of the anti-
patterns, and the applicability of our tool and methodology.

8.4.1 Telemetry Based Methodologies

A weakness of any run-time approach is that the workload that is run in an application has to cover
most if not all system flows in order to be representative of the application. By this, we mean that the
telemetry gathered from an application is only as good as the coverage of executions. For instance in
our case, if we were to gather telemetry in a timeframe where one of the API Gateway requests was not
invoked, we would be missing edges and potentially be unable to detect anti-patterns on that request.
This can be prevented by increasing the length of the telemetry capture timeframe so that we are more
likely to gather all possible request executions in a system, however, this weakness needs to be accounted
for.

8.4.2 Predicting Hardware Utilization Metrics

A clear weak point of our requirements conformance checking is the way we handle utilization metrics
when merging, splitting and moving microservice functionality. Predicting this kind of behaviour is a
separate field of research altogether, and our approach is unlikely to be accurate. With that being said,
it is successful in conveying to the developer that performing a mitigation technique will come with a
change in utilization metrics across the microservice application. We feel fairly certain in the fact that
merging services will increase utilization metrics, and splitting them will do the opposite. For the moving
of functionality between services, we can expect a rise in computation at the service that ends up being
extended. However, guessing the degree to which it will rise is speculative at best and as such we decided
against doing so. Another approach would be to check the utilization metrics of the individual services
before employing a mitigation technique and ensuring they are within some requirements. Rather than
the current check that happens on the predicted utilization metrics of the resulting services after a
mitigation suggestion. Thereafter, we could present the predicted values to the developer and allow
them to reason about the metrics themselves.

8.4.3 Coverage of Anti-Patterns

The instances of the four natural language anti-patterns we chose to detect depend on our interpretation
of the available literature. While we believe that the instances we are detecting are correct, it is important
to keep in mind that these are instances of anti-patterns and not completely comprehensive. This means
that there may be other instances of the same anti-patterns that our formal definitions and software are
not able to detect. With that being said, this is a problem that can only be solved by creating more
specific anti-pattern definitions and our work lays the foundation for just that.

8.4.4 The Applicability of the Tool

We have tested the tool and methodology against two widely used open-source benchmark applications
and one internal mock application. As such, we do not have a very big sample size to determine the
applicability of our work. Specifically, we would have liked to test an industrial application that is
actually in use. However, the technologies used to develop the Televisor tool are completely open-source,
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highly available and already prevalent in many microservice applications. As such, we believe that our
tool and methodology could easily be extended and integrated into existing workflows.
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Conclusion and Future Work

Now that we have explained our methodology, demonstrated it in a case study through the use of the
Televisor tool and discussed our results we can look at whether or not we were able to answer the research
questions we set out on this journey with. Having answered our questions and learned a lot on the way,
we have also found several topics that can serve as future work in this area of research.

9.1 Conclusion

We formulated three research questions that aimed to solve concrete problems in the current research on
architectural anti-patterns in microservice applications. To answer the research questions we made four
novel contributions to the field.

RQ1: How can we utilize telemetry data to generate a model for automatically detect-
ing instances of the four architectural anti-patterns, Inappropriate Intimacy, Microservice
Greedy, Megaservice and Cyclic Dependency in microservice applications?

For RQ1, we wanted to know how we could use telemetry data to create a model that would be suitable for
detecting architectural anti-patterns, such as Inappropriate Intimacy, Microservice Greedy, Megaservice
and Cyclic Dependency in microservice applications. Through researching currently used models and
the works they are used in we were able to get an understanding of what makes them good, and what
features they are missing to detect these more complex anti-patterns. We found that a lack of granularity
and detailed information about individual microservice metrics were detrimental and that if we wanted
to attempt detection of more advanced anti-patterns it would be required. We ended up creating the
Granular Hardware Utilization-Based SDG (GHUBS), a formal but versatile model which can be used for
the detection and eventual mitigation of such anti-patterns. Furthermore, we developed our methodology
in a way that would ensure it is agnostic to the technologies used in the microservice applications.

RQ2: How can we provide formal mathematical definitions of known microservice archi-
tectural anti-patterns, and apply them to create automated detection procedures?

We created formal mathematical definitions of known architectural anti-patterns and automated detec-
tion procedures based on the formalizations, just as we set out to do with RQ2. The four instances of
the anti-patterns Inappropriate Intimacy, Microservice Greedy, Megaservice and Cyclic Dependency all
seem to be correct and successful in detecting the patterns. We did this by utilizing pre-existing formal
notation of directed multi-graphs to define anti-patterns in our GHUBS model. These anti-patterns could
then be translated into algorithms and be used for automated anti-pattern detection. Furthermore, our
efforts in doing so were successful in creating a platform on which further work can continue. Despite
microservice benchmarking suites being designed to comply with best practices, we also managed to
detect 10 anti-patterns in the DeathStarBench suite [11] and fruitfully reason about them.
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RQ3: To what extent can we suggest mitigation techniques for solving the detected archi-
tectural anti-patterns, and determine the viability of said mitigation techniques based on
hardware utilization metrics?

Our work with suggesting mitigation techniques and determining their viability, as alluded to by RQ3,
was perhaps the most foreign concept in the existing literature. The approach we chose, merging, splitting
and moving functionality around in the application is somewhat superficial. As such, the work involved
in actually performing these mitigation techniques would be monumental in comparison. However, the
method is successful in creating radical change and showing the potential effect of such a change. We
did find that when suggesting mitigation, especially a merge, it would be prudent to consider related
requests when determining the number of resulting services. Instead of defaulting to merging services
into a single new service, regardless of the number of services that are involved. Furthermore, the work
of predicting utilization metrics is too simple to be considered realistic. With that being said, we do
believe that the state of the microservice should be taken into account when making such a change.
Our concept of using simple summations and divisions to predict mitigation outcomes is a starting point
and should be treated as such. Recommendations for solving architectural anti-patterns have not been
attempted in previous research. As such, taking a first step is important, even if it is not perfect.

Contributions

Overall, we managed to answer the questions we set out to and made four novel contributions: the
GHUBS model, formally defined anti-patterns and detection algorithms, mitigation techniques and the
proof-of-concept Televisor tool for performing our method automatically. This was then validated in a
case study, with accompanying reasoning for how to use the Televisor tool effectively. We used industry-
standard technologies in the creation of our method and tool, and such it can be easily adopted in existing
workflows without being intrusive or otherwise problematic. In Chapter 3 we said that we would “leave
organizational structure out of the decomposition equation”, and we did. We found that we can detect
decomposition issues without intimate domain knowledge, however, some degree of familiarity is required
in validating those findings.

9.2 Future Work

Practitioners have identified a set of 20 microservice anti-patterns [5], and we have covered instances of
four anti-patterns. While not all of the 20 anti-patterns are suitable for this kind of dynamic analysis
and would require some degree of static analysis, we believe there are several more that could be formal-
ized. The methodology we have developed is as we have shown effective in creating formal anti-pattern
definitions, and as such makes for a good opportunity for further research in the field. To facilitate this
it would be convenient to have a GUI tool for creating GHUBS models that have novel anti-patterns
that need testing, rather than the code-driven approach we are currently using. Such a tool could rather
easily be implemented as an extension of our Televisor tool, as it already has an implementation of the
GHUBS model and a way of visualizing it.

We noted that the current microservice application benchmark suites that exist are fairly well com-
posed. This brings to question, what would a badly designed microservice application benchmark look
like? Such a benchmark could prove useful in testing new tools and methods. With formal anti-pattern
definitions creating such an application would be rather trivial, and only a matter of stitching them
together in a believable manner.

The utilization metrics we chose to consider in this work are far from the only ones that could be
considered. As we alluded to in Chapter 8, adding metrics such as latency and timestamps to the edges
could help in creating more accurate mitigation suggestions. Furthermore, they would remove the need
for using Jaeger for validating mitigation suggestions, if visualized properly. Predicting utilization metrics
when implementing mitigation suggestions is a very difficult task, and the outcome of implementation
is highly dependent on the practitioner and the individual microservices. Investigating what would be
required to perform such a prediction would be very interesting.

For the splitting mitigation technique, it would also be interesting to look at the internal spans of the
responsible service on the function level and see if it is possible to derive more accurate decompositions
based on this. One could for instance determine which sequence of executions is responsible for the
monolithic behaviour.

40



Acknowledgements

This work would not have been possible without the help of Dr. Benny Akesson, Dr. Ben Pronk and
the rest of the team from TNO-ESI. Thank you very much for the many discussions, feedback sessions
and unyielding enthusiasm for the project.

41



Bibliography

[11]

[12]

[13]

N. Dragoni et al., “Microservices: Yesterday, Today, and Tomorrow,” en, in Present and Ulterior
Software Engineering, M. Mazzara and B. Meyer, Eds., Cham: Springer International Publishing,
2017, pp. 195-216, 1sBN: 978-3-319-67425-4. DOI: 10.1007/978-3-319-67425-4_12. [Ounline].
Available: https://doi.org/10.1007/978-3-319-67425-4_12 (visited on 12/01/2022).

P. Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov, “Microservices: The Journey So
Far and Challenges Ahead,” vol. 35, no. 3, pp. 24-35, May 2018, Conference Name: IEEE Software,
ISSN: 1937-4194. poI: 10.1109/MS.2018.2141039.

M. Kolny, Scaling up the prime video audio/video monitoring service and reducing costs by 90%,
Mar. 2023. [Online]. Available: https://www.primevideotech.com/video-streaming/scaling-
up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90.

D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad Smells,” vol. 35, no. 3, pp. 56—
62, May 2018, Conference Name: IEEE Software, 1SSN: 1937-4194. DOI1: 10.1109/MS.2018.2141031.

D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices anti-patterns: A taxonomy,” Microservices:
Science and Engineering, pp. 111-128, 2020.

Y. Gan et al., “Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in
Cloud Microservices,” in Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ser. ASPLOS '19, New York, NY,
USA: Association for Computing Machinery, Apr. 2019, pp. 19-33, 1SBN: 978-1-4503-6240-5. DOTI:
10.1145/3297858.3304004. [Online|. Available: https://doi.org/10.1145/3297858.3304004
(visited on 01/11/2023).

H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “Firm: An intelligent fine-
grained resource management framework for slo-oriented microservices,” in Proceedings of The
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI ‘20), 2020.

M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery machine: End-to-end
performance analysis of large-scale internet services,” in 11th { USENIX} symposium on operating
systems design and implementation ({OSDI} 14), 2014, pp. 217-231.

G. Parker et al., “Visualizing anti-patterns in microservices at runtime: A systematic mapping
study,” IEEE Access, 2023.

L. Baresi, M. Garriga, and A. De Renzis, “Microservices Identification Through Interface Analysis,”
en, in Service-Oriented and Cloud Computing, F. De Paoli, S. Schulte, and E. Broch Johnsen, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2017, pp. 19-33,
ISBN: 978-3-319-67262-5. DOI: 10.1007/978-3-319-67262-5_2.

Y. Gan et al., “An Open-Source Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems,” in Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS
19, New York, NY, USA: Association for Computing Machinery, Apr. 2019, pp. 3-18, 1SBN: 978-
1-4503-6240-5. DOI: 10.1145/3297858.3304013. [Online]. Available: https://doi.org/10.1145/
3297858.3304013 (visited on 12/01/2022).

E. Evans, Domain-driven design: tackling complezity in the heart of software. Addison-Wesley
Professional, 2004.

M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4, pp. 28-31, 1968.

42


https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MS.2018.2141039
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013

BIBLIOGRAPHY

[14]

[27]

[28]

[29]

[30]

[31]

R. Heinrich et al., “Performance Engineering for Microservices: Research Challenges and Direc-
tions,” in Proceedings of the 8th ACM/SPEC on International Conference on Performance Engi-
neering Companion, ser. ICPE ’17 Companion, New York, NY, USA: Association for Computing
Machinery, Apr. 2017, pp. 223-226, 1SBN: 978-1-4503-4899-7. DOIL: 10 . 1145/3053600 . 3053653.
[Online]. Available: https://doi.org/10.1145/3053600.3053653 (visited on 12/01/2022).

[Online]. Available: https://wuw.jaegertracing.io/.

Prometheus, Prometheus - monitoring system & time series database. [Online]. Available: https:
//prometheus.io/.

Sep. 2023. [Online]. Available: https://www.docker.com/.
[Online]. Available: https://opentelemetry.io/docs/.

A. Bento, J. Correia, R. Filipe, F. Araujo, and J. Cardoso, “Automated analysis of distributed
tracing: Challenges and research directions,” Journal of Grid Computing, vol. 19, pp. 1-15, 2021.

[Online]. Available: https://zipkin.io/.

B. Kienhuis, E. F. Deprettere, P. Van der Wolf, and K. Vissers, “A methodology to design pro-
grammable embedded systems: The y-chart approach,” Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and Simulation—SAMOS, pp. 18-37, 2002.

J. Lapalme, B. B. Theelen, N. Stoimenov, J. J. Voeten, L. Thiele, and E. M. Aboulhamid, “Y-
chart based system design: A discussion on approaches,” 2009. [Online]. Available: https://api.
semanticscholar.org/CorpusID:14617463.

S. Panichella, M. I. Rahman, and D. Taibi, “Structural coupling for microservices,” arXiv preprint
arXw:2103.04674, 2021.

A. Al Maruf, A. Bakhtin, T. Cerny, and D. Taibi, “Using microservice telemetry data for system
dynamic analysis,” in 2022 IEEFE International Conference on Service-Oriented System Engineering
(SOSE), IEEE, 2022, pp. 29-38.

F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic detection of instability archi-
tectural smells,” in 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2016, pp. 433—-437.

S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh, “Using Service Dependency
Graph to Analyze and Test Microservices,” in 2018 IEEFE 4/2nd Annual Computer Software and
Applications Conference (COMPSAC), ISSN: 0730-3157, vol. 02, Jul. 2018, pp. 81-86. DOIL: 10.
1109/COMPSAC.2018.10207.

G. McCluskey, Using java reflection, Jan. 1998. [Online]. Available: https://www.oracle.com/
technical-resources/articles/java/javareflection.html#: ~:text=Reflection’20is%
20a%20feature’,20in, its%20members?20and’20display%20then. .

I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards microservice smells detection,”
in Proceedings of the 3rd International Conference on Technical Debt, ser. TechDebt ’20, New York,
NY, USA: Association for Computing Machinery, Sep. 2020, pp. 92-97, 1SBN: 978-1-4503-7960-1.
DOI: 10.1145/3387906 . 3388625. [Online]. Available: https://doi.org/10.1145/3387906 .
3388625 (visited on 02/01/2023).

S. Luo et al., “Characterizing microservice dependency and performance: Alibaba trace analysis,”
in Proceedings of the ACM Symposium on Cloud Computing, 2021, pp. 412-426.

X. Guo et al., “Graph-based trace analysis for microservice architecture understanding and prob-
lem diagnosis,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1387-1397.

G. Somashekar and A. Gandhi, “Towards Optimal Configuration of Microservices,” in Proceedings
of the 1st Workshop on Machine Learning and Systems, ser. EuroMLSys ’21, New York, NY,
USA: Association for Computing Machinery, Apr. 2021, pp. 7-14, 1SBN: 978-1-4503-8298-4. DOI:
10.1145/3437984 .3458828. [Online|. Available: https://doi.org/10.1145/3437984 .3458828
(visited on 01/02/2023).

M. Gysel, L. Kolbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic approach
to service decomposition,” in Service-Oriented and Cloud Computing: 5th IFIP WG 2.14 Furopean
Conference, ESOCC 2016, Vienna, Austria, September 5-7, 2016, Proceedings 5, Springer, 2016,
pp- 185-200.

43


https://doi.org/10.1145/3053600.3053653
https://doi.org/10.1145/3053600.3053653
https://www.jaegertracing.io/
https://prometheus.io/
https://prometheus.io/
https://www.docker.com/
https://opentelemetry.io/docs/
https://zipkin.io/
https://api.semanticscholar.org/CorpusID:14617463
https://api.semanticscholar.org/CorpusID:14617463
https://doi.org/10.1109/COMPSAC.2018.10207
https://doi.org/10.1109/COMPSAC.2018.10207
https://www.oracle.com/technical-resources/articles/java/javareflection.html#:~:text=Reflection%20is%20a%20feature%20in,its%20members%20and%20display%20them.
https://www.oracle.com/technical-resources/articles/java/javareflection.html#:~:text=Reflection%20is%20a%20feature%20in,its%20members%20and%20display%20them.
https://www.oracle.com/technical-resources/articles/java/javareflection.html#:~:text=Reflection%20is%20a%20feature%20in,its%20members%20and%20display%20them.
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3437984.3458828
https://doi.org/10.1145/3437984.3458828

BIBLIOGRAPHY

[33] C. Richardson, Microservices pattern: Api gateway pattern. [Online]. Available: https://microservices.
io/patterns/apigateway.html.

[34] [Online]. Available: https://grpc.io/.
[35] [Online]. Available: https://go.dev/.

44


https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://grpc.io/
https://go.dev/

	Introduction
	Problem Statement
	Research Questions
	Research Method

	Contributions
	Outline

	Background
	The Rationale Behind Microservices
	Microservice Challenges
	Observability in Microservice Applications
	Traces and Distributed Tracing
	Metrics


	Related Work
	Observability Models
	Anti-Pattern Detection
	Static Analysis
	Telemetry-Based Analysis
	Anti-Pattern Definitions

	Microservice Decomposition

	Establishing a Basis for Automated Detection and Mitigation
	Goals and Motivation
	The GHUBS Model
	Increasing Granularity
	Adding Utilization Metrics
	Formalizing the GHUBS Model
	Generating the GHUBS Model


	Formalization and Detection of Architectural Anti-Patterns
	Inappropriate Intimacy
	Microservice Greedy
	Megaservice
	Cyclic Dependency

	Utilization Based Mitigation Recommendations
	Merging Services
	Inappropriate Intimacy
	Microservice Greedy
	Performing a Merge in the GHUBS Model

	Splitting Services
	Megaservice
	Performing a Split in the GHUBS Model

	Removing Operations
	Cyclic Dependency
	Removing an Operation in the GHUBS Model


	Prototype and Validation
	Implementation
	Televisor Backend Module
	Televisor Frontend Module

	Case Studies
	Social Network
	Media Application


	Discussion
	The GHUBS Model
	The Anti-Pattern Detection and Formalization
	The Mitigation Suggestions
	Threats to Validity
	Telemetry Based Methodologies
	Predicting Hardware Utilization Metrics
	Coverage of Anti-Patterns
	The Applicability of the Tool


	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

