
SPARQL2Git: Transparent SPARQL and Linked
Data API Curation via Git

Albert Meroño-Peñuela1 and Rinke Hoekstra1,2

1 Department of Computer Science, Vrije Universiteit Amsterdam, NL
{albert.merono, rinke.hoekstra}@vu.nl

2 Faculty of Law, University of Amsterdam, NL

Abstract. In this demo, we show how an effective and application ag-
nostic way of curating SPARQL queries can be achieved by leverag-
ing Git-based architectures. Often, SPARQL queries are hard-coded into
Linked Data consuming applications. This tight coupling poses issues in
code maintainability, since these queries are prone to change to adapt
to new situations; and query reuse, since queries that might be use-
ful in other applications remain inaccessible. In order to enable decou-
pling, version control, availability and accessibility of SPARQL queries,
we propose SPARQL2Git, an interface for editing, curating and storing
SPARQL queries that uses cloud based Git repositories (such as GitHub)
as a backend. We describe the query editing and management capabil-
ities of SPARQL2Git, its convenience for SPARQL users that lack Git
knowledge, and its combination with grlc to easily generate Linked Data
APIs.

Keywords: SPARQL, Git, Query curation, Query update, Query his-
tory

1 Introduction

The SPARQL Protocol and RDF Query Language [10] is a well known method of
accessing Linked Data that allows users to query a wide variety of Linked Data
sources [9]. Its implementation over HTTP, and the availability of libraries for
using it in various programming frameworks, has also enabled its use by Linked
Data consuming applications.

Usually, developers who want to retrieve Linked Data hard-code SPARQL
queries into their code. This gives raise to two important issues. First, SPARQL
queries become a critical component in the execution of such applications, mak-
ing these applications harder to maintain. For instance, changes introduced in
datasets of the queried endpoints may oblige these queries to change accord-
ingly; often in more than one place, if the same query is used among various
applications. Secondly, queries buried into application source code are harder to
discover and reuse, even if the application is open source. Users are forced to
scan code and copy-paste these queries, with little attribution to the provenance
of the reused queries.



Some query catalogs have been developed to overcome these issues. For in-
stance, LinkedWiki3 has a query sharing service where SPARQL queries can be
found and reused, including code snippets for various programming languages.
Another example is LSQ, the Linked SPARQL Queries dataset [8], which de-
scribes queries extracted from the logs of public SPARQL endpoints as Linked
Data. In the CEDAR [4] and CLARIAH [3] projects, we have adopted a Git-
centric approach, in which we curate queries independently of consuming ap-
plications. This query centralization has decoupled SPARQL queries from the
various applications, like map visualizations4, query interfaces5, and even on-
the-fly generated Linked Data APIs 6 with grlc [6], that depend on them to
function. Moreover, by using Git and the API of Git repository managers such
as GitHub, we enable versioning, unique identification, and de-referenceability
of queries at a fine-grained, commit level, among other features of modern dis-
tributed version control systems.

In this paper, we describe SPARQL2Git, a system that builds on these foun-
dations, and leverages the Web-based SPARQL editor library YASQE [7] and
features of the Linked Data API generator grlc [5], to enable the curation
of SPARQL queries, and their associated Linked Data APIs, in an effective,
application-decoupled, and Git-agnostic way (Section 2). In Section 3 we show
the contents of our demonstration, focusing on the user interaction workflow and
the technology involved, and we discuss future work.

2 SPARQL2Git

SPARQL2Git is an open source7 server and user interface for editing, docu-
menting, and committing SPARQL queries to GitHub repositories. The public
instance of SPARQL2Git is available at http://sparql2git.com.

The welcome screen asks the user to log in using GitHub’s OAuth, thus a
GitHub account is required in order to use SPARQL2Git. SPARQL2Git needs
the user to grant permission to read/write the user’s public repositories, and the
user’s personal information (username and email). In the next screen, the repos-
itory selection screen shows the complete list of repositories of the authenticated
user. The user can either choose and existing repository, or create a new one.
This repository will be used to store SPARQL queries.

The next screen is the query editing screen, shown in Figures 1 and 2. In this
screen, users first select the query they are interested in editing, from the left
pane (Figure 1). Users can also create a new query, or delete an existing one.
After this, users create or edit a query in two steps: query metadata, and query
body. Query metadata are necessary to create compliant API specifications on

3See http://linkedwiki.com/searchExample.php
4See http://www.nlgis.nl/
5See http://lod.cedar-project.nl/data.html
6See http://grlc.io/api/CEDAR-project/Queries/ and http://grlc.io/api/

CLARIAH/wp4-queries/
7See https://github.com/albertmeronyo/SPARQL2Git

2

http://sparql2git.com
http://linkedwiki.com/searchExample.php
http://www.nlgis.nl/
http://lod.cedar-project.nl/data.html
http://grlc.io/api/CEDAR-project/Queries/
http://grlc.io/api/CLARIAH/wp4-queries/
http://grlc.io/api/CLARIAH/wp4-queries/
https://github.com/albertmeronyo/SPARQL2Git


Fig. 1. SPARQL2Git metadata form. Users can select SPARQL queries in the left
pane, and edit their API relevant metadata (query name, summary, endpoint, etc.) on
the right.

top of SPARQL queries, and consist of (see Figure 1): a query name; a brief
summary; the SPARQL endpoint where the query should be sent; a MIME type
(if the endpoint is an RDF dump or an HTML page with embedded RDFa);
one or more tags, which are used to neatly organize queries in equivalent APIs;
enumerations, which are used to create dropdown lists for parameter values in
equivalent APIs; HTTP method (GET, POST, etc); and a pagination number n,
provided the user wants the query results to be returned in pages of n elements.

The query body is the SPARQL query itself, and can be edited below the
metadata as shown in Figure 2. We use the YASQE and YASR UI libraries of
[7] for prefix autocompletion, syntax highlighting, and other user friendly fea-
tures. Users can press the play button to test their queries against the endpoint
specified in Figure 1, and see the results in the table below the SPARQL editor
(Figure 2). Once they are satisfied with the result, users can click on the commit
button, which is placed on top of the query editor with a cloud sign (Figure 2).
After this, a dialog appears requesting a comment on the commit; this will be
used as a commit message with the GitHub API interaction. After confirming,
SPARQL2Git sends a request to the GitHub API to commit a new version of
the file, with the supplied comment, metadata and body, over the file’s last com-
mit SHA hash. Users can always click on the link to the GitHub page of their
repository to check the outcomes.

Many of the features of SPARQL2Git are in place to generate grlc compliant
APIs, in addition to the curation of SPARQL queries. SPARQL2Git transforms
the contents of the data supplied in this screen (Figures 1 and 2) to grlc’s
notation for Linked Data APIs [6]. This way, Linked Data APIs can be generated
on the fly right after users commit changes to their queries. To check these APIs,
users can click on the grlc link below the query list pane (see Figure 1).

3



Fig. 2. SPARQL2Git query editor. We use the YASQE and YASR UI libraries [7] for
user friendly editing and testing of SPARQL queries. The commit button at the top
allows users to commit and push the query to their GitHub repo, documenting the
changes.

3 Demonstration

The demonstration will consist of the following parts: (1) basic SPARQL2Git
workflow; (2) coherence with the GitHub repository contents; and (3) generating
Linked Data APIs with grlc. In the first part, visitors to the demo will be able
to interact with their GitHub repositories using their own credentials, following
the workflow described in Section 2. A screencast of the general SPARQL2Git
workflow is available online8, and will be used as main guide for this part.
In the second part, users will check the results of the first part by exploring
their modified GitHub repository, exploring the resulting annotated SPARQL
queries, and whether their commit history is coherent with their previous edits
in SPARQL2Git. Additionally, we will prompt users to use well-known tools,
such as Git2PROV [1] and PROV-O-Viz [2], to better understand this commit
history as PROV triples and visualizations. Finally, in the third part visitors
turn their SPARQL queries into Linked Data APIs using grlc with no addi-
tional effort, combining different API specification values (see Figure 1). More-
over, different Linked Data access methods other than SPARQL will be used in
combination with the SPARQL2Git curated queries to generate universal access
APIs to Linked Data.

8See https://vimeo.com/207296874

4

https://vimeo.com/207296874


We plan to further extend SPARQL2Git in different ways. First, we will in-
tegrate additional Git features into SPARQL2Git, such as branching, specific
commit SHA hash editing, etc. Second, we will integrate and make better ac-
cessible the PROV generated by Git2PROV and visualized by PROV-O-Viz
into SPARQL2Git; and we will link the PROV triples of the commit history of
SPARQL queries with the PROV of grlc generated at API creation time. Fi-
nally, we will implement caching mechanisms for a more efficient synchronisation
and editing of SPARQL queries and their related metadata.

Acknowledgements This work was funded by the CLARIAH project of the
Dutch Science Foundation (NWO) and by the Dutch national programme COM-
MIT.

References

1. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E.,
Van de Walle, R.: Git2PROV: Exposing version control system content as W3C
PROV. In: Poster and Demo Proceedings of the 12th International Semantic Web
Conference (Oct 2013), http://www.iswc2013.semanticweb.org/sites/default/
files/iswc_demo_32_0.pdf

2. Hoekstra, R., Groth, P.: PROV-O-Viz - Understanding the Role of Activities in
Provenance. In: 5th International Provenance and Annotation Workshop (IPAW
2014). LNCS, Springer-Verlag, Berlin, Heidelberg (2014)

3. Hoekstra, R., Meroño-Peñuela, A., Dentler, K., Rijpma, A., Zijdeman, R., Zand-
huis, I.: An Ecosystem for Linked Humanities Data. In: Proceedings of the 1st
Workshop on Humanities in the Semantic Web (WHiSe 2016), ESWC 2016 (2016),
under review

4. Meroño-Peñuela, A., Guéret, C., Ashkpour, A., Schlobach, S.: CEDAR: The Dutch
Historical Censuses as Linked Open Data. Semantic Web – Interoperability, Us-
ability, Applicability 8(2), 297––310 (2015)

5. Meroño-Peñuela, A., Hoekstra, R.: grlc Makes GitHub Taste Like Linked Data
APIs. In: The Semantic Web: ESWC 2016 Satellite Events, Heraklion, Crete,
Greece, May 29 – June 2, 2016, Revised Selected Papers. pp. 342–353. Springer
(2016)

6. Meroño-Peñuela, A., Hoekstra, R.: The Song Remains The Same: Lossless Con-
version and Streaming of MIDI to RDF and Back. In: The Semantic Web: ESWC
Satellite Events (ESWC 2016). Springer (2016)

7. Rietveld, L., Hoekstra, R.: The YASGUI family of SPARQL clients. Semantic Web
8(3), 373–383 (2017), http://dx.doi.org/10.3233/SW-150197

8. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: The Semantic Web - ISWC 2015 - 14th In-
ternational Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part II. pp. 261–269 (2015), http://dx.doi.org/10.1007/
978-3-319-25010-6_15

9. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: Spar-
qles: Monitoring public sparql endpoints. Semantic Web Journal (2016)

10. W3C: SPARQL 1.1 Overview. https://www.w3.org/TR/sparql11-overview/

5

http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://dx.doi.org/10.3233/SW-150197
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-25010-6_15
https://www.w3.org/TR/sparql11-overview/

	SPARQL2Git: Transparent SPARQL and Linked Data API Curation via Git

