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ABSTRACT

Maritime transport is one of the oldest methods of moving various types of goods, and it continues to have an important role in
our modern society. More than 20 million containers are transported across the oceans daily. However, this form of transportation
is constantly threatened by illegal operations, such as the smuggling of goods or people and merchandise theft. Port security
departments must be prepared to face the different threats and challenges that accompany the use of innovative techniques and
devices to achieve efficient inspection strategies. Two inspection strategies are presented in this study. The first strategy is based
on fuzzy logic (FL), and the second strategy is based on the growing hierarchical self-organizing map (GHSOM) approach.
The weight variation and security index (SI) of a container and the readings from certain technologies, such as radio-frequency
identification (RFID) and X-ray scanning, are considered as the input data. To minimize the inspection time and considering the
costs associated with the security inspections of containers, the results of both inspection strategies are compared and analyzed.
The findings indicate there is potential for improving the effectiveness of security inspections by employing both techniques,

1. INTRODUCTION

Container transport has an important role in global supply chains
and has become increasingly important around the world by con-
tributing to economic development. However, considerable secu-
rity vulnerabilities have emerged [1].

A container terminal is a complicated system with several inter-
related components and different interconnected operations, such
as security inspections, which should be harmoniously executed to
avoid delays in the corresponding inspection times.

Security inspections can add costs, delays and uncertainties during
the transport process. The disruptions in the supply chain caused
by delays in the inspection area of a container terminal can be disas-
trous and have cascading consequences [1]. In addition, container
transport can be used for illegal operations, such as the smuggling
of goods and people, and can be employed by terrorist organizations
to transport weapons of mass destruction or biohazards [2].

Port authorities are increasingly making demands regarding the
data required for containers as they provide information about their
content, country of originand shipping company. The daily analy-
sis of container data can be a difficult process; thus, the following
scientific question should be answered: Is it possible to reduce the
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and the specific relevance in the case of GHSOMs is discussed.
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number of containers assigned to manual inspection in ports and
simultaneously improve the systems for the detection of containers
that transport illegal material via new technologies without increas-
ing the cost or time spent on inspection?

As a hypothesis based on this question, we propose that the use of
artificial intelligence techniques, which have not yet been incorpo-
rated into the security inspection systems of container port termi-
nals, can improve the process efficiency and possibly reduce or at
least maintain the corresponding time and cost. Thus, the goal of
this investigation is to demonstrate the possibility of increasing the
detection of illegal containers (containers with illegal material or
containers whose merchandise has been stolen) without increasing
the cost or time of the inspection processes. The fusion of informa-
tion and computational algorithms will enable the automatic iden-
tification of threats and the presentation of the relevant data to an
operator to provide decision support regarding the classification of
containers.

Methodologies that are based on artificial intelligence (fuzzy logic
(FL) and the growing hierarchical self-organizing map (GHSOM))
and the extensive information associated with containers and their
processes, including information from the technological devices
that are currently used in their surveillance, are employed to
develop tools for decision-making that automate the process and
minimize manual inspections without reducing their reliability.
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In addition, the use of the container weight as an additional deci-
sion variable in the early stages of the container inspection process
is a novel proposal that arises from the new regulations that have
been promoted by the International Maritime Organization (IMO)
since 2016 as part of the new implemented measures for the veri-
fication of the gross mass of full containers in the Safety of Life at
Sea (SOLAS) convention. These measures have been put in place
due to the numerous container ship accidents caused by the exces-
sive weight of containers. Consequently, this information could be
appropriately integrated into the inspection strategy in the near
future.

In this way, two new inspection strategies are developed based
on FL and GHSOM methods. In our case, these strategies employ
the container information along with the innovative use of the
weight readings (which are currently not incorporated into security
procedures) and container security indices (SIs) as well as radio-
frequency identification (RFID) and nonintrusive technologies.

There is some scientific literature that deals with RFID technology
[3], the SI of containers and nonintrusive inspection techniques for
containers (e.g. see the English and Zuver [4]). However, the inte-
gration of these elements in one approach has not been addressed.
In addition, the consideration of the FL and GHSOM approaches is
novel in the scientific literature regarding their application to con-
tainer inspection at ports.

The structure of the paper is as follows: A literature review of the
related studies is presented in Section 2. Section 3 presents a gen-
eral inspection strategy, and Section 4 details the FL and GHSOM
methods. The procedures for generating the experimental data are
explained in Section 5, and the results of both models are presented
in Section 6. In Section 7, the discussion and final conclusions are
provided.

2. LITERATURE REVIEW

The process by which security inspections are performed in con-
tainer terminals is important because this process affects both the
maritime supply chain and the associated costs. In this section,
a scientific literature review of the inspection processes in con-
tainer port terminals and the FL and GHSOM approaches is
presented.

2.1. Container Inspection in Port Terminals

Among the different operations performed in a container termi-
nal, the security inspection is one of the most important operations.
The delays in the inspection area of a container terminal are pri-
marily attributed to the manual inspection of containers. As these
manual inspections require several hours per container, the manual
inspection of all the containers is not viable in terms of the general
efficiency of container terminal operations. Classifying the contain-
ers using a certain inspection strategy helps to reduce the number
of containers that will be manually inspected, thereby reducing the
time of the operations in the container terminal. By investigating
different algorithms, methods and approaches, as well as the imple-
mentation of FL, we were able to improve the classification of con-
tainers and minimize the inspection times and costs.

Bakshi et al. [5] analyzed the impact of two important inspection
initiatives: the Container Security Initiative (CSI) and the Security
Freight Initiative (SFI). Boros et al. [6] developed a linear decision
tree model to obtain the optimum sequences of inspection strate-
gies. Boros et al. [7] considered a combination of decision trees
and inspection systems by enumerating efficient inspection poli-
cies. Longo [8] designed operationally effective practices and poli-
cies to improve the flow of containers both toward the inspection
zone and within the normal operations of a container terminal. Lee
et al. [9] presented a genetic algorithm for optimizing the percent-
age of containers that are examined and the sequence of the con-
tainer movements, which minimizes time-delay costs. Harris et al.
[10] performed simulations to determine the necessary inspection
resources for minimizing the interruption caused by an increase in
security inspections in a container terminal.

Elsayed et al. [11] presented several optimization approaches to
simultaneously determine the optimal levels of the sensor thresh-
old and the sequence of the inspection. Young et al. [12] presented
a study that corresponds to an extension of the study by Elsayed
et al. [11], in which, unlike the latter, they present a multiobjec-
tive optimization approach for determining the optimal manage-
ment of sensors and their threshold levels, considering the total
costs. van Weele and Ramirez-Marquez [13] presented an optimiza-
tion technique for developing an inspection strategy that establishes
an inspection rate of suspect containers that minimizes the inspec-
tion costs. Riahi ef al. [14] employed a dataset to establish the val-
ues of the reliability percentages, both for the country of origin
and the shippers and container terminals; they obtain the SIs of the
containers.

Ramirez-Marquez [15] presented an inspection strategy that intro-
duces different types of reliability and cost measures. An evolution-
ary optimization approach that is known as a probabilistic solution
discovery algorithm is applied to generate an optimal inspection
strategy.

Concho and Ramirez-Marquez [16] developed a holistic evolution-
ary algorithm for identifying the optimal threshold values for every
sensor and the optimal configuration for the inspection strategy.
Ma et al. [17] employed the maximum likelihood (ML) estima-
tion method to identify the efficiency factors for inspection, which
improves the quarantine and clearance processes of the contain-
ers in a port. Wang et al. [18] developed a stylized queueing model
with novel features related to the security checkpoints to analyze
policy initiatives. Wang et al. [19] discussed an inspection invest-
ment planning problem for the international container terminal at
the Dalian Port using a simulation method. They proposed a frame-
work that combines an arena-based simulation model that consid-
ers various types of container ships and flexible container truck
scheduling and routing.

Table 1 presents a summary of the investigations regarding the
optimization methods for improving the security of a container
terminal.

2.2. Fuzzy Logic

FL allows us to deal with nonaccurate information by consider-
ing the data as fuzzy sets. The fuzzy sets combine different rules to
define the actions. Thus, control systems based on FL are able to
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Table1 Approaches for improving the security of a container terminal.

Reference Modeling (Algorithms) Experimental Data Size Main Contribution
[5] Simulation models Two container terminals Effect of inspections on the flow of
containers
[6] Algorithms Container inspections in container Minimize the inspection costs and
Mathematical models terminals inspection error rate
(5] Decision trees Port inspections represented by Establish some effective properties for
Dynamic programming decision trees inspection systems, which minimize
algorithms the cost
[16] Holistic evolutionary algorithm Container inspection strategy Minimize the total cost of inspection
General decision tree model while maintaining a user-specified
detection rate for “suspicious”
containers
[11] Port-of-entry problem Small number of inspection stations Optimal sensor threshold levels
10] Process model Alabama Container Terminal Minimize the interruptions from the
Triangular distribution increased security inspections of
Simulations containers in a terminal
Sensitivity analysis
[9] Genetic algorithm Operations of a container terminal Optimize the inspection process and
the sequence of the movements of
containers in the yard; minimize the
total costs
(8] Simulation models Container terminal Integration of the security procedures
Design of experimental in the normal operations of the
techniques container terminal
Variance analysis
[17] Factor conception model Inspection and quarantine clearance Provide a theoretical basis for the
Structural equation model efficiency in Shanghai, China analysis of the internal economic
effectiveness
[15] (n + 1)-echelon decision tree Container inspections in container Minimizes the total cost of inspection
General decision tree model terminals while maintaining a user-specified
detection rate for “suspicious”
containers
[14] Bayesian network (BN) Case study Evaluate the security score of a
Analytic hierarchy process container
(AHP)
[20] Genetic algorithms Modeling of security inspections with Inspection rates for suspicious
Decision tree four types of sensors containers
[18] Queueing model with novel Security-check waiting lines for Provide a modeling framework to
features screening cargo containers understand the economic trade-offs
embedded in the container-
inspection decisions
[19] Arena-based simulation model International container terminal at Address an inspection investment
Visual Basic for Applications Dalian Port planning problem for the
Simulation experiments international container terminal at
Dalian Port using a simulation
method
[12] Port-of-entry problem They considered two suspect Determine the optimal levels of sensor

Multiobjective optimization
Analysis of variance (ANOVA)

containers per 10,000 containers

layouts and thresholds

combine the input variables by applying groups of rules that lead to
one or more output values [21].

Systems based on FL can be applied to nonlinear or partially defined
problems as neural networks. However, in contrast to neural net-
works, FL allows for the easy implementation of expert knowledge
by formalizing the sometimes ambiguous knowledge of experts. In
addition, FL allows for the design of inexpensive and quick control
and decision systems.

The application of an FL algorithm can be described by the follow-

ing three steps:

* Fuzzification, where the input values are converted to fuzzy
values

* Inference, which is a process based on the logic rules

* Defuzzification, where the fuzzy variables are reconverted, and
a decision is made

FL has been used as a tool for processing large amounts of infor-
mation, in which the data can have an associated degree of partial
set membership. FL methods are the main actors in some inves-
tigations of system control; in other studies, FL methods aid in
decision-making.

In Starczewski [27], an efficient fuzzy logic system (FLS) that is
based on triangular type-2 fuzzy sets is designed. This FLS provides
a new method for reducing computational complexity in t-norm
operations that is extended to triangular type-2 fuzzy sets. Motepe
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et al. [26] presented an FL method and experimental investiga-
tion. This study was associated with real measurements of the South
African power system network. Magudeeswaran and Ravichandran
[25] presented an FL-based histogram equalization (FHE) method
to enhance image contrast to highlight the details of a hidden image
or increase the image contrast with a new dynamic range.

Liang et al. [24] used fuzzy set theory to construct an optimum
output quantity decision model to obtain the maximum profit of a
duopoly market. Huerta et al. [22] presented an FL-based prepro-
cessing approach that consists of two main steps. First, the approach
employs fuzzy inference rules to transform the gene expression lev-
els of a given dataset into fuzzy values. Second, the approach applies
a similarity relation to the fuzzy values to define the fuzzy equiva-
lence groups. Each group contains similar genes, which assists with
the selection of an essential subset of genes for the classification and
analysis of microarray data. Hsueh [23] used the Delphi method
and FL theory to develop a quantification assessment model that
is based on the qualitative analysis used to evaluate the results
and influences of participation in environmental protection educa-
tion and green community development by residents of the Taiwan
community.

Table 2 presents a summary of the investigations regarding the FL
method.

2.3. The SOM and GHSOM

Self-organizing maps (SOMs) were developed by Teuvo Kohonen
in the 1990s (see Kohonen [28] for a good introduction to SOMs)
as a continuation of the competitive networks proposed by Von Der
Malsburg. SOM networks have been successfully applied to a large
variety of problems, such as pattern classification, size reduction,
process monitoring and data mining, among others [21].

A SOM obtains the statistical characteristics of the input data which
is then applied to a wide data classification field [29]. However, the
effectiveness of traditional SOM models is limited by the following
issues:

Table 2 Approaches for fuzzy logic method.

* Problems related to their statistical topology and their inability
to represent the hierarchical relationships in the input data
[30-35].

* The size and dimensionality of the SOM model, which is
corrected prior to the training process and determined by trial
and error [30-33,35,1].

The GHSOM approach seeks to overcome these problems [30-
32,36,34,33,37].

The GHSOM has an adaptive architecture without supervision
that focuses on clustering data. When the distribution of the data
increases in a hierarchical manner, the approach allows for its hier-
archical decomposition and exploration of the data clusters in a
horizontal manner [38]. This self-organizing model (GHSOM) has
a hierarchical architecture that is divided into layers; each layer is
composed of different SOMs, and the size of each SOM is automat-
ically determined during the unsupervised learning process [34].
The main advantage of a GHSOM compared with a traditional
SOM is that the trial and error are removed from the training pro-
cess. An ideal topology is formed in an unsupervised manner based
on the training data [33].

Palomo et al. [34] presented a new approach for analyzing and
visualizing network forensics data (network forensics is an area
of research that collects information regarding crimes that involve
digital evidence) based on GHSOMs. Ippoliti and Zhou [33] pro-
posed an adaptive GHSOM approach (AGHSOM) for network
anomaly detection. Chattopadhyay ef al. [31] proposed a GHSOM
that improves the cell formation problem (CFP) of a cellular man-
ufacturing system. Chan and Pampalk [30] developed a GHSOM
Toolbox for MATLAB, which has an advantage in visualization
due to its capability of presenting classes and subclasses of similar
data. By combining the GHSOM with mutual information, Zhang
et al. [37] proposed a new intrusion detection method for detecting
unknown network attacks.

Table 3 provides a summary of investigations on the SOM and
GHSOM approaches.

Reference Modeling (Algorithms) Experimental Data Size Main Contribution
[22] Fuzzy logic Analysis of microarray data Gene selection
[23] Fuzzy logic Community residents’ Assess the results and influences of
participation in environmental community residents’ participation in
protection education environmental protection education
on green community development
[24] Fuzzy decision Duopoly market Construct an optimum output
environment quantity decision model that aims to
maximize the profit of a duopoly
market
[25] FL-based histogram Images Unveil the hidden image details or
equalization increase the image contrast with a
new dynamic range
[26] FL South African power systems Determine a distribution power
network systems’ loading measurement
accuracy
[27] FLS based on triangular t-norm operations Provide a new method for

type-2 fuzzy sets

computational complexity reduction
in t-norm operations extended to
triangular type-2 fuzzy sets

FL, fuzzy logic; FLS, fuzzy logic system.
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In Section 2.1, the different investigations within the optimization
field for improving the security inspections in port terminals were
analyzed. Although different models, simulations and optimiza-
tion designs have been employed to achieve an optimal inspec-
tion strategy, the inspection strategies based on FL or SOM and
GHSOM approaches have not been designed considering the con-
tainer weights as input data, which is our research contribution.
Both strategies are compared and analyzed to obtain the most effi-
cient inspection strategy when classifying the containers as follows:
suspicious containers will be manually inspected; probably suspi-
cious containers will be inspected by X-ray scanning; and not sus-
picious containers will be released to continue their path through
the container terminal.

3. THE INSPECTION STRATEGY

The following values were employed for this investigation: the
weight variation (AW) among the containers; the values provided

Table 3 Approaches for SOM and GHSOM.

by the RFID technology that indicate if the container could have
been opened; the SI values from Riahi et al. [14], which are shown
in Table 4; and the values obtained from the simulation of X-ray
scanning at the control points. These variables are combined to
design an efficient algorithm that is able to overcome the limitations
of considering each variable in an independent and individualized
way and provide a very satisfactory classification of containers (sus-
picious and nonsuspicious).

Safety management regulation is an important complement to mar-
ket forces to establish a sufficient safety level in high-risk indus-
tries [39], which explains why the IMO implemented measures for
the verification of the gross mass of full containers in the SOLAS
convention [40] due to the numerous container ship accidents
caused by the excessive weight of containers. The new regulation,
which has been in effect since July 1, 2016, seeks to avoid accidents
caused by an improper weight distribution by requiring the verifi-
cation of the container weights. This information is reflected in the
documentation. These regulations enable the use of the container

Reference Modeling (Algorithms) Experimental Data Size Main Contribution
[30] GHSOM Toolbox for Determine the size of the SOM Development of the GHSOM Toolbox
MATLAB Presenting classes and for MATLAB
subclasses of similar data
[31] SOM approach GHSOM CFP of cellular manufacturing Development of optimum machine-
system part cell formation algorithms
[32] GHSOM Set of data Grow in terms of map size and a
three-dimensional tree-structure to
represent the hierarchical structure
in a data collection during an
unsupervised training process
[36] Growing hierarchical tree Set of Internet meaning data Allow the network to adapt the
SOM (GHTSOM) topology of each layer of the
hierarchy to the characteristics of the
training set
[33] AGHSOM Set of online data Network anomaly detection
[34] GHSOM Network forensics Improve the visualization of network
traffic data
[37] GHSOM method Set of data Clustering of input data

SOM, self-organizing maps; GHSOM, growing hierarchical self-organizing map; CFP, cell formation problem.

Table 4 Security percentages of the countries of origin and carriers/ports.

Reliability value of
the country of

Reliability value an ocean carrier and a landing port

origin

100% 97% 94% 91% 85% 84% 83% 82% 81% 80%
100% 0.8466 |0.8326 |0.8186 |0.8047 [0.7907 |0.7767 [0.7721 |0.7674 |0.7628 |0.7581 |0.7535
98% 0.8387 |0.8248 |0.811 0.7971 |0.7833 [0.7694 |0.7648 |0.7602 |0.7556 [0.7510 |0.7463
96% 0.8307 |0.8170 [0.8032 |0.7895 |0.7758 |0.7620 [0.7574 |[0.7529 |0.7486 |0.7437 |0.7391
94% 0.8227 |0.8091 [0.7955 |0.7818 |0.7682 |0.7546 [0.7501 |0.7455 ]0.741 0.7365 ]0.7319
92% 0.8147 |0.8012 [0.7877 |0.7742 |0.7607 |0.7472 [0.7427 |[0.7382 |0.7337 |0.7292 |0.7247
90% 0.8067 |0.7933 |0.780 0.7666 |0.7532 [0.7398 |0.7353 |0.7309 |0.7264 [0.722 0.7175
88% 0.7987 |0.7855 [0.7722 |0.7589 |0.7457 ]0.7324 [0.7280 [0.7236 |0.7191 |0.7147 |0.7103
86% 0.7907 |0.7776 [0.7644 |0.7513 |0.7381 |0.725 0.7206 [0.7162 |[0.7118 |0.7075 ]0.7031
84% 0.7827 |0.7697 [0.7567 |0.7436 |0.7306 |0.7178 [0.7132 [0.7089 |0.7046 |0.7002 |0.6959
82% 0.7748 |0.7618 |0.7489 [0.736 0.7231 |0.7102 [0.7059 |0.7016 |0.6973 |0.6930 [0.6887
80% 0.7667 |0.7539 [0.7411 |0.7284 |0.7156 |0.7028 [0.6985 |0.6942 ]0.69 0.6857 ]0.6815
78% 0.7587 |0.7461 [0.7334 |[0.7207 |0.708 0.6954 [0.6911 [0.6869 |0.6827 |0.6785 |0.6742
76% 0.7507 |0.7382 [0.7256 |0.7131 |0.7005 |0.6880 [0.6838 [0.6796 |0.6754 |0.6712 |0.667
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weight as input data for our investigation; this variable has not been
included in inspection strategies for decision-making.

The RFID technologies are very reliable but cannot guarantee 100%
security, which indicates that an inspection strategy based on RFID
technologies would not provide optimal results when classifying
containers as suspicious or not suspicious. In addition to these tech-
nologies, the container weights and other technologies and indica-
tors will be considered in this study.

» The RFID technologies have the following limitations [41]:

* The collisions that occur when trying to simultaneously read
several tags cause data loss.

* The RFID tags can be damaged during container transport.

* The weather conditions can affect the RFID tag and cause the
transmission of inaccurate readings regarding the opened or
closed condition of the container.

The containers that are considered to be suspicious can be subjected
to X-ray scanning as in the image discrimination system proposed
by [42], where the theory of using two X-ray energies (E; and E,)
was developed to analyze objects and extract their atomic informa-
tion. This system enables the load of a container to be classified
according to the image attenuation range and will therefore pro-
vide a final classification of the containers; suspicious containers
will require a manual inspection, while the not suspicious contain-
ers will be cleared from the container terminal.

Dual-energy imaging comprises a technique that scans objects with
dual X-ray energy layers, E; and E,. In our case, the attenuation
coefficients of E; = 10 MeV and E, = 6 MeV are employed (MeV -
Megaelectron-volt), which are the values provided by the National
Institute of Standards and Technology (NIST, U.S.)

3.1. The General Inspection Strategy

Inside a container terminal, all the containers undergo an initial
inspection, the results of which are used to classify them as “suspi-
cious” or “not suspicious.” Based on this classification, a container
will be subjected to additional controls that will enable its entrance
or clearance or determine whether it has to be manually inspected.

The use decision trees for inspection strategies was first suggested
by Boros et al. [6], later in a more general way the process was repre-
sented as a decision tree by Van Weele and Ramirez-Marquez [20],
where the results of each inspection determine the path of the con-
tainer through the tree.

The decision tree models presented in this document consider dif-
ferent factors in the inspection process to improve the strategy, such
as the weight and security score of a container and the RFID read-
ings. The decision trees for each optimization method are shown in
Figures 1 and 2.

Both trees are similar for the inspection and classification of a con-
tainer. As shown in Figure 1, the largest difference between the two
strategies is that the RFID reading from the container is analyzed in
node 1 to indicate if the container has been opened during transit.
If the container was opened, it is classified as a suspicious container

Check
node

Manual
inspection
leaf node

& O

Passed the
verification
leaf node l_

Figure 1 Decision tree for the FL-based inspection strategy.
GHSOM

RFID S| AW

Container Data

Se ,
e o0 o M
Scanner data e © o SoOM1 o]
(Rayos-X) e o o s
|
M: Manual Inspection b
P: Passed the verification
S: X-rays

M
SOM2 p

Figure 2 Decision tree of the GHSOM-based inspection strategy.

and will directly undergo manual inspection; otherwise, it will be
classified as probably suspicious and will pass to node 2, where the
classification of the container can be obtained by analyzing the con-
tainer input data, such as the weight variation (AW) and the SI) val-
ues, by applying FL. In this manner, the containers will be classified
as suspicious, not suspicious and probably suspicious and will pass
to node 3 where the weight variation, SI data and X-ray results (Se)
will be reanalyzed by FL.

This separation of the variables in the decision tree is attributed
to the fuzzy nature of the three measures (weight variation, SI and
X-ray results), which contrasts the use of the binary RFID variable.

To generate the first GHSOM or SOM 1 level, the input data, which
consists of the weight variation, SI values and the RFID readings,
as shown in Figure 2, are simultaneously analyzed in the first step.
Thus, first, the containers are classified into three sets: M, for the
containers that are suspicious that will directly proceed to man-
ual inspection; P, for containers that are not suspicious, which
will leave the inspection area; and S, for the containers that will be
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subjected to X-ray scanning, since there is not sufficient informa-
tion to determine if they are suspicious. The SOM is employed for
data clustering and visualization, which enables the classification of
the variables regardless of whether they are fuzzy or not.

4. DECISION SUPPORT METHODOLOGIES
FOR SECURITY INSPECTION BASED ON
ARTIFICIAL INTELLIGENCE

In this section, we detail the proposed methodology for security
inspection strategies based on the FL and GSHOM approaches.

4.1. The FL Model

The proposed inspection strategy FL-based process is explained
next.

As indicated, FL is an artificial intelligence technique that facilitates
or enables working with information that is inaccurate and poorly
defined. FL is used as a calculation tool for truth criteria; it is based
on a scale of values from the falsest value to the truest value and
provides a quantitative result that ensures the selection of an alter-
native that is closest to the truth and considers the attributes that it
satisfies as a basis to attain a certain goal [43]. In this manner, FL
is a robust method that does not require a substantial amount of
information.

We will use FL to sharpen the inspection strategy results. The input
data, weight variation (AW) and security score (SI) are considered
in nodes 2 and 3, where a new data input will be added for the X-
ray (Se) information to obtain a final classification that minimizes
the inspection times and the manual inspections.

4.1.1. The data and variables of the FL model

In the model of Figure 1, node 1 is a classic logic decision. If a con-
tainer has been opened, it will be manually inspected. If a container
has not been opened, it will proceed to node 2, where it will be clas-
sified again due to the fuzzy algorithm. The variables to be analyzed
by the algorithm in nodes 2 and 3 of the decision tree are defined
in the following section.

The structure followed during the decision processes starts with the
statement of the input and output variables. Then, the membership
functions for each input are explained, and the fuzzy linguistic vari-
ables are detailed by means of the structure rules (IF x AND y THEN
z) creating the rule matrix. Finally, to solve the problem we make
use of the Root-Sum-Square (RSS) method.

The calculations for all the fuzzy variables were performed using
the MATLAB Fuzzy Toolbox. This toolbox allows the creation and
editing of fuzzy inferences with graphical tools or command line
functions; they can also be generated with the adaptive cluster tech-
niques in the toolbox.

4.1.2. Decision process in node 2

Two fuzzy variables are defined: the weight and security score of the
container:

AW: the weight variation

SI: the container security index

where the output will be

P: If the container is not suspicious

Sc: If the container is probably suspicious

M: If the container is suspicious
* System states

Input 1: the weight variation

The weight variation input variable, AW, is constructed for each
container, C;, by using two weight values: Wo; and Wy;, where Wy,
is the weight value of a container at the origin (first measurement
of the container weight), and Wy is the weight value at the desti-
nation port (last measurement of the container weight). This vari-
able evaluates if the weight of container C; has changed during the
trip from the origin to the destination. This fact can alert against
the theft of goods in case of a reduction of the original container
weight, that is Wy; < Wy; — 7; or alert against suspicious (and pos-
sibly illegal) introduction of goods in the container during the trip
when Wy; > Wy; — 7, being 7 a tolerance threshold. Consequently,
we define the following three cases:

—R if container C; weighs less (le < Wy — 7) (1)
Z ifthe weight of container C; did not vary (|Wo; — Wy;| < 1) (2)

+R if container C; weighs more (le > Wy, + r) (3)

where 7 is the boundary of the weight sensor threshold. For the case
study, 7 is set to 250 kilograms, as suggested in the OIMLR 60 reg-
ulation of the International Organization of Legal Metrology as an
appropriate threshold given the size of the containers.

A variation between the values above the threshold suggests that
the container should be considered as suspicious. This could be due
to an increase in the weight (that could be associated with adding
some illegal goods for smuggling) or a decrease in the weight (that
could be associated with the theft of goods from the container).

Input 2: container SI

The container SI will be

§ If the security score of container C; is high, thenitissafe ~ (4)
Z Ifthe security score of container C; is intermediate (5)

R Ifthe security score of container C; is low, then itisrisky ~ (6)

Figure 3 shows the membership function according to the weight
variation and SI values and the defuzzification function for deter-
mining the output of node 2.

Table 5 presents the matrix of rules that determines the
membership.

Structure rules and the rule matrix
R1 : IfW = —RandSI = Sthenoutput = M
R2 : IfW = Zand SI = S then output = P
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R3 : IfW = +RandSI = Sthen output = M
R4 : IfW = —RandSI = Zthen output = M
R5 : If W = Zand SI = Zthen output = Sc

R6 : IfW = +Rand SI = Zthen output = M
R7 : IfW = —RandSI = Rthen output = M
R8 : IfW = Zand SI = Rthen output = Sc

R9 : IfW = 4+Rand SI = Rthen output = M

The RSS method is applied to solve the system. This approach com-
bines the effects of all the rules, scales the functions according to
their dimensions and calculates the fuzzy centroid of the composed
area.

Using the RSS approach, the values of the probably suspicious con-
tainers (Sc) can be obtained using Equation (7); the values of the not
suspicious containers (P) can be obtained using Equation (8); and
the values of the suspicious containers (M) can be obtained using
Equation (10). These equations are incorporated into the defuzzifi-
cation function for the final decision (Figure 3c).

RSSs. =4/, _ nR}  ifR;=SC @

RSSp = \ DIR? ifR; = P (8)
i=1
N

RSS,, = \ DR ifR;i =M )
i=1

a) . . b) ,

[
Do

<)

Figure 3 a) Membership function for the weight variation, W;
b) Membership function for the SI of a container; ¢) Output of node 2.

Table 5 Rule matrix for Node 2.

w
-R z +R
S| S R1=M R2=p R3=M
Z R4=M R5=Sc R6=M
R R7=M R8=Sc R9=M

4.1.3. Decision process in node 3

After passing through node 2, all the containers that are classified as
probably suspicious will be inspected by a nonintrusive X-ray scan
in node 3, where they will be classified again using the FL model,
considering their weight, security score and X-ray result. The con-
tainers will be classified into suspicious or nonsuspicious.

For node 3, input 1 and input 2 (the weight variation and SI of a
container, respectively) will be the same as in node 2. The container
will be scanned by X-ray and a new input is defined for the X-ray
analysis data and the output of node 3.

where

Se: X-ray scanning result

The output will be as follows:

P: For the containers that pass the inspections

M: For the containers that will undergo a manual inspection
* System states

Input 3: X-ray scanning result

The X-ray scanning result will be

S If container C, is considered safe (10)
Z If container Cis considered intermediate (11)
R If container C; is considered risky (12)

Figure 4 represents the membership functions according to the
values of the weight variation, SI and the X-ray scanning result.
Figure 5 shows the defuzzification function for determining the
output of node 3.

Table 6 presents the matrix of rules that determine the membership.

4.1.4. Structure rules and the rule matrix

R11 : IfSe = Rand W = —Rand SI = S then output = M
R12 : IfSe = Rand W = Zand SI = S then output = M

a) < b) . al - z

Degresctremzerss
Degrescf mem:

Degres ol membershp
o o o o R
o N s &8 & s el

100 200 300 400 500 600 700 800 900 1000

Figure 4 a) Membership function for the weight variation AW;
b) Membership function for the SI of a container; ¢) Membership function
for Se.
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Figure 5 Output of node 3.
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Structure of rules for node 3.
w
Se=R -R z +R
s R11=M R12=M R13=M
R14=M R15=M R16=M
R R17=M R18=M R19=M
w
Se=Z -R V4 +R
s R21=M R22=P R23=M
Z R24=M R25=P R26=M
R R27=M R28=P R29=M
w
Se=S -R V4 +R
s R31=M R32=P R33=M
R34=M R35=P R36=M
R R37=M R38=P R39=M

R13 :
R14 :
R15 :
R16 :
R17 :
R18 :
R19 :
R21 :
R22 :
R23:

R24

R25 :
R26 :
R27 :

IfSe = Rand W = +Rand SI = S then output = M
IfSe = Rand W = —Rand SI = Z then output = M
IfSe = Rand W = Zand SI = Z then output = M
IfSe = Rand W = +Rand SI = Z then output = M
IfSe = Rand W = —Rand SI = R then output = M
IfSe = Rand W = Z and SI = Rthen output = M
IfSe = Rand W = +Rand SI = Rthen output = M
IfSe = Zand W = —Rand SI = S then output = M
IfSe = Zand W = Zand SI = S then output = P
IfSe = Zand W = +Rand SI = S then output = M
: IfSe=Zand W = —Rand SI = Z then output = M
IfSe = Zand W = Zand SI = Zthen output = P
IfSe = Zand W = +Rand SI = Z then output = M
IfSe = Zand W = —Rand SI = R then output = M

R28 : IfSe = Zand W = Z and SI = R then output = P
R29 : IfSe = Zand W = +Rand SI = R then output = M
R31 : IfSe = Sand W = —Rand SI = S then output = M
R32 : IfSe = Sand W = Zand SI = S then output = P
R33 : IfSe = Sand W = +Rand SI = S then output = M
R34 : IfSe = Sand W = —Rand SI = Z then output = M
R35 : IfSe = Sand W = Zand SI = Z then output = P
R36 : IfSe = Sand W = +Rand SI = Z then output = M
R37 : IfSe = Sand W = —Rand SI = Rthen output = M
R38 : IfSe = Sand W = Zand SI = R then output = P
R39 : IfSe = Sand W = +Rand SI = Rthen output = M

The RSS method is applied to solve the system and obtain the values
of the suspicions containers (M) in Equation (13) and not suspi-
cious containers (P) in Equation (14), which are incorporated into
the defuzzification function for the final decision (Figure 5):

Z =1.i=

i=1,j= Jt

Z =1.i=
i=1,j= Jt

4.2. The GHSOM Model

As previously explained, the GHSOM rules are networks formed
by several SOM networks whose size is automatically determined
during the unsupervised learning process [34]. In this section, their
operation and implementation are described, beginning with the
SOM network training process.

4.2.1. SOM network training

A SOM is an unsupervised neural network model that can be used
for data clustering and visualization applications [44]. An SOM can
project high-dimension patterns onto a low-dimension topology
map. The SOM maps consist of a one-dimensional (1D) or two-
dimensional (2D) node grid. These nodes are also referred to as
neurons. The weight vector of each neuron has the same dimension
as the input vector.

These neural networks classify the unsupervised input data, and
their architecture consists of two layers: the first layer, which is
also called the competition layer, consists of the learning nodes,
which contain information about the resulting representation, and
the input nodes, which represent the original vectors during the
training process. All the elements of the first layer are connected to
all the elements of the second layer.

Figure 6 shows the basic structure of an SOM network, where Wi
represents the weights assigned to each node of the competition
layer, and x,, represents the input nodes.

The classic SOM network learning algorithm can be formulated as
follows (for an in-depth analysis of the algorithm, refer to [45]):
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The synaptic weights, Wi, are initialised as small absolute val-
ues or, in our case, default values. An input neuron vector,
X, (X1, X3, .
mined by calculating the Euclidean distance between the previously
chosen input neuron vector, X, and the synaptic weight vector

& (W, X) =2, (Wi =) (15)

Equation (15) determines the Euclidean distance between the
synaptic weight vector and the input, where Wj; represents the
synaptic weights, and x;, is the input. Then, the winner neuron, g, is
chosen as the neuron with the shortest distance to the input neuron

vector, X.

.x,), is randomly chosen. The winner neuron is deter-

The synaptic weights of the winner neuron and its neighboring neu-
rons are actualized according to the weight actualization rules.

Wit +1) = Wi )+ < (Oh ((i—g), t) (i (1) — Wi(t) (16)

where « (f) represents the learning rate and h ((i — g) , t) repre-
sents the neighborhood function.

The learning rate determines the neuron weight variation; it is a
time-decreasing function that is actualized with a linear function
and its values fall between 0 and 1.

t

x
where o is the initial learning rate, o is the final learning rate, and
t. is the maximum number of iterations.

The neighborhood function is used to determine which neurons, i,
are neighbors of the winner neuron, g, for each iteration t.

li— gl =\/(i—g1)2+(i—g2)2 (18)

The neighborhood function, h, decreases with time and depends on
a parameter called the neighborhood radius (f), which represents
the size of the current neighborhood.

The simplest representation for the neighborhood function is
step-like:

0, sili—gl>R(®

1, sili—gl <R (19)

b=l =
A neuron is in the neighborhood of the winner neuron if the

Euclidean distance is smaller than R(t).

The algorithm is repeated from step 2) to the required number of
iterations, t, or until t > t.

Competition layer

Neurons<—_ S
N

wij Weights
to adjust
X1 X2 s Xn

Input layer

Figure 6 Basic structure of an SOM network.

4.2.2. GHSOM network training

In this section, we explain the procedures for training the SOM 1
and 2 networks, in which neuron identification was performed to
obtain the classification results of the container. Figure 7 shows the
algorithm designed to determine the size of the networks.

After the network has been trained and its neurons have been iden-
tified, the network is tested and evaluated, and the container data
are introduced.

We used the MATLAB GHSOM Toolbox to train our network; this
toolbox increases the functionality of the SOM Toolbox [30]. The
use of the basic functions of the SOM Toolbox to create the GSHOM
networks provides a more robust and standardized network than
the SOM Toolbox. Once the network is trained, the decision algo-
rithm identifies the hexagons to then use to evaluate the network
results. If the classification error rate of the containers is less than
0.5% (which indicates that at least 50 containers have been misclas-
sified), then the network is considered to be satisfactory; otherwise,
the size of the network will be increased and retrained.

For the SOM 1 network, the algorithm determined an optimal size
of 10 x 10. The algorithm determined an optimal size of 20x20 for
the SOM 2 network.

SOM 1

This phase is the first step of the inspection strategy where the net-
work classifies the input data, which consist of the weight varia-
tion, AW, RFID and SI. The result of the decision algorithm that
determines the network size is shown in Figure 7, and the trained

Container
data entry

l

Increase network
size

Network training

I

Identify Hexagons

]

Evaluation of
network results

Does the network comply
with the minimum
requirements?.

Figure 7 Decision algorithm for the SOM network size.
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SOM 1 network is depicted in Figure 8. This figure shows the final
configuration of the trained network that satisfies the error param-
eter conditions.

In Figure 8, the blue hexagons represent the neurons, the red lines
connect the neighboring neurons, and the other colors represent the
distances between the neurons; the darker colors represent longer
distances, and the lighter colors represent shorter distances.

After properly training the neurons to achieve a container classi-
fication error rate of less than 0.5% (fewer than 50 misclassified
containers), the containers that are assigned to each neuron of the
SOM 1 network are identified, that is, the neurons that will classify
the containers as suspicious, probably suspicions or not suspicious,
depending on their information, are identified.

Figure 3a and 3b show the membership functions for the AW and
the SI variables, respectively. For the hexagon classification, we
use the same previously defined membership functions since they
provide the boundaries for each of these variables due to their
fuzzy nature and because we ensure that both inspection strategies
employ the same information. These boundaries define the risky,
safe and no-information or zero zones of each variable. For the
RFID variable, a membership function is not needed, since it is a
binary variable has a value of 0 if the container was opened and 1
otherwise. Using this information, the type of containers that are
assigned to each neuron can be identified.

The neuron classification in the SOM 1 network, the training of
which was depicted in Figure 8, is visualized in Figure 9. The con-
tainers associated with neurons classified as M will be manually
inspected; the containers associated with neurons classified as P will
leave the inspection zone since they are considered not suspicious;
and the containers associated with neurons classified as S will pro-
ceed to the following verification level of the GHSOM (SOM 2),
where they will undergo an X-ray scan.

In the following level of the GHSOM consisting of SOM 2, the
AW, SI and RFID input variables for the containers that had been

SOM Neighbor Weight Distances

1

Figure 8 Trained SOM 1 network with the weights and distances of
the neighboring neurons.

classified as probably suspicious (S) and the variable Se, which pro-
vides information about the X-ray inspection of the container, will
be analyzed again.

SOM 2

With the variables AW, SI and RFID, the state of all containers,
suspicious or not suspicious, cannot be defined. As a result, a new
network (SOM 2) is trained. The input data are the output data of
the SOM 1 network, namely, the containers classified as probably
suspicious. The AW, SI, RFID variables are employed by the SOM
2 network as well as the X-ray scanning result obtained from the
containers (Se).

Figure 10 shows the results of the decision algorithm that defines
the size of the network (see the flow chart in Figure 7) for SOM 2,
which defines a 20 x 20 network size. Again, this configuration is

‘ Manual (suspicious containers)

X-rays (container probably suspicious)
Passed the verification
(not suspicious containers)

Figure 9 Distribution of the SOM 1 final
classification.

SOM Neighbor Weight Distances

16
14
12

10

Figure 10 Trained SOM 2 network with the weights and
distances of the neighboring neurons.
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the final configuration that meets the error requirements stated in
the algorithm to define the network size.

In Figure 10, the blue hexagons represent the neurons; the red lines
connect the neighboring neurons, the different colors represent the
distances between the neurons the darker colors represent longer
distances; and the lighter colors represent shorter distances. Unlike
in SOM 1, the distances between the neurons are very small due to
the size of the network and the variable values.

The type of neuron that will classify the containers as suspicions or
not suspicious, depending on the variables AW, SI, RFID and Se, is
identified.

As previously explained, to identify which type of containers are
assigned to each neuron, the membership functions were employed
for the AW and SI variables. For the new SOM 2 network, the
membership functions for Se are shown in Figure 3a and 3b and
Figure 4c, respectively.

Figure 11 shows the neuron positions for the container classification
obtained by the algorithm, given the network size that was shown in
Figure 10. The containers located in neurons classified as M will be
manually inspected, and the containers located in neurons classified
as P will leave the inspection zone.

5. ANALYSIS OF THE RESULTS

The results of each inspection strategy are analyzed in this section.
Each strategy uses the same data for the 10,000 containers as input
(see Annex 1 for the details related to the data generation for the
experimentation). The efficiency of each strategy based on artifi-
cial intelligence is observed for the classification of containers. The
ability to minimize the cost and times of the inspection zone in a

Figure 11 Distribution of the SOM 2 final classification.

container terminal and the ability to minimize the number of illegal
containers that are not detected in the inspection zone are observed,
as we presented in the initial scientific equation. The novel intro-
duction of the weight variation variable, AW, is very useful and dis-
criminative for the classification of the container input data since
both methods can be employed to make decisions for the classifica-
tion of each container.

5.1. The Base Case

The same data for 10,000 containers were used for each inspection
strategy. The results of the inspection strategies, the strategy based
on FL and the strategy based on GHSOM networks, are presented
in the following section.

5.1.1. The FL approach

In node 1, the RFID tags of the 10,000 containers are ana-
lyzed, of which 732 containers were found to have been illegally
opened and were classified as suspicious and manually inspected.
Of the 732 suspicious containers, 263 containers contained some
smuggled merchandise, and 469 containers had part of their
merchandise stolen.

A total of 9,268 containers were classified as likely suspicious and
were used as the input data of node 2. Using the FL algorithm, an
analysis of the W and SI variables of each of the 9,268 containers
was performed.

The FL approach classified 478 containers as suspicious; these con-
tainers contained some type of illegal merchandise. Simultane-
ously, 5,792 containers were classified as not suspicious and con-
tinued their path through the terminal. However, two of these

‘ Manual (suspicious containers)

Passed the verification
(not suspicious containers)
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10,000
containers

9,268
S canteiners
r— - N Ciioen _I
Q Check node I 478 , 2illegal
I containers | containers
I Total error
Manual inspection I | 0,11% error
leaf node I I
I 2,994 9illegal
I ntalnersl containers
Passed the verification -
leaf node I
-
Figure 12 Decision tree summary of the container classification.
containers carried smuggled merchandise. The remaining 2,998 0.85 _Node 2 Ouput i
containers continued to be analyzed in node 3. O Suspicious
o 5 o % O Not suspicious
In node 3, 2,998 containers were analyzed and passed through an 8 © .0 Probably suspicious

X-ray inspection. With the AW and SI data of each container, 4
containers were classified as suspicious and had to be manually
inspected; they contained illegal merchandise. A total of 2,994 con-
tainers were classified as not suspicious and continued their path
through the container terminal. From these containers, 9 containers
carried some type of illegal merchandise that could not be detected
by the inspection strategy. To calculate the error rate, we employ the
following equation:

ICo x 100
Err% = ———— 20
% TC (20)
where ICo is the number of illegal containers that left the inspection
zone as not suspicious, in both nodes 2 and 3; and TC is the total
number of containers that entered the system. In our case,

(9 + 2)x100

Err% =
rr% 10, 000

=0.11%

Thus, the error rate is 0.11%. A summary of the inspection strategy
results is shown in Figure 12. This output error rate, for both nodes
2 and 3, is attributed to the notion that the values used to classify
the containers were very small and were almost undetectable by the
X-ray scan, weight variation or the SIs. This finding is observed in
Figures 13 and 14, where the weight variation is given in tons [T].

Specifically, the classification error rate of the inspection strategy
was attributed to the very small values of different variables. As
shown in Figure 13, two containers had high SI values and were ille-
gal but were classified as not suspicious when a small weight vari-
ation existed between the two containers. As shown in Figure 14,
these 9 containers were classified as not suspicious when they were
illegal because their weight variation was very small and their SI val-
ues were very high or the values of the X-ray simulation were low;

O\ '/ O\ &0 898) % r) O(?;O’FJ O o
B sog O\O,%;%m@l %Q %é;(&& (Oé %ﬁﬁﬁéj

@ R O 0 Pe® 08 ¢ o
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Figure 13  Classification analysis of the node 2 output.

Node 3 Ouput
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O Not Suspicious
0.85 |
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Figure 14 Classification analysis of the node 3 output.



L. Morales et al. / International Journal of Computational Intelligence Systems 13(1) 604-623

that is, if two of the container variables had values similar to those
that are considered as safe, the system considered these containers
not suspicious.

The inspection strategy based on FL consists of three steps: (i) the
first node detects containers that were forced open as determined
by the RFID data, (ii) the second node makes use of the AW and SI
variables to further analyze those containers with a positive RFID
result to determine whether the smuggling or theft of goods was
possibly carried out at the origin or the electronic seal was replaced
and falsified (at node 2, only those containers with all the variables
at the maximum level of security are classified as safe), and finally,
(iii) at the third node, a nonintrusive technology (X-ray) is used to
classify the last risky containers.

5.1.2. The GHSOM approach

In SOM 1, the AW, SI and RFID variables of the same 10,000 con-
tainers of the previous case were analyzed, of which 1,216 contain-
ers were classified as suspicious, 3,837 containers were classified as
not suspicious, and 4,947 containers continued to be analyzed in
SOM 2. Of the 1,216 suspicious containers, 747 containers carried
illegal merchandise and 469 containers had removed or stolen mer-
chandise. Of the 3,837 containers that were classified as not suspi-
cious, none contained any illegal merchandise.

In SOM 2, 4,947 containers were analyzed and subjected to an X-ray
scan. With the AW, SI and RFID data of each container, one con-
tainer was classified as suspicious and had to be manually inspected;
it contained illegal merchandise. A total of 4,946 containers were
classified as not suspicious and continued their path through the
container terminal. Of these containers, 8 containers contained
some type of illegal merchandise that could not be detected by the
inspection strategy. These 8 containers represent the error rate of
the inspection strategy, which is 0.08%.

GHSOM

RFID S|

617

A summary of the inspection strategy results is shown in Figure 15.
This error rate in the SOM 2 output is attributed to the fact that the
illegal merchandise in the container was not easily detected by the
X-ray scanning model, which hindered the analysis of the weight
variation and SI value.

Figure 15 shows the complete inspection strategy and the results.
Note that there are no errors in the classification obtained by SOM
1 for the suspicions containers and not suspicions containers. The
classification obtained by SOM 2 has an error rate of 0.08%, as the
amount of illegal merchandise was not detectable by the X-ray scans
in this case.

Figure 16 shows the SOM 1 output; the data are grouped into two
data clouds defined by the RFID variable. The network is capable of
detecting and correctly classifying all the containers with RFID = 0,
which are containers that were illegally opened. All the containers
with a significant AW are classified as suspicious, and the containers
with a small AW value and a SI value near zero (refer to Figure 3b)
are classified as probably suspicious. The containers whose param-
eters are in the safe zone are classified as not suspicious.

The SOM 2 output is given in Figure 17. A second analysis of the
parameters was necessary to detect another suspicious container
from the 8 remaining containers in this inspection strategy point.
The combination of the AW and Se variables was necessary to detect
this container, since all the variables were within the zero thresh-
old; that is, they do not provide sufficient information to identify
the type of the container.

6. SUMMARY OF THE RESULTS

In this final summary, we follow a specific table design that allows
us to easily visualize the performance of each approach. Each row
represents the instances of the predetermined class, and each col-
umn represents the instances of the predicted class (or vice versa)

AW

Data for 10,000 containers

Se

(X-Ray scan)

M: Manual Inspection
P: Passed the verification
S: X-ray scan

Figure 15 Summary of the classification of the containers.

M 1,216 cont.
3,837 cont.

S 4,947 cont.

M 1 cont.
P 4,946 cont. —

8ilegal
containers
(0.08% error)
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[46]. Given a classifier and an instance, there are four possible
results as Table 7 shows.

If the instance is positive and it is classified as positive, then it is a
true positive (a). However, if it is classified as negative, it is a false
negative (b). If the instance is negative and it is classified as negative,
then it is a true negative (d). However, if it is classified as positive,
it is a false positive (c). Given a classifier and a set of instances, a
confusion matrix can be easily constructed (see [47]).

The rate of true positives and negatives, as well as false positives and
negatives, can be calculated using the following metrics (21-24).

The true positive rate of the classification is given by

a
TPrate = —— 21
rate o (21)

Node 1 Output

o] Suspicious
o] Not Suspicious
Probably Suspicious

RFID

deltaw [T

Figure 16 Classification analysis of the SOM 1 output.
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Figure 17 Classification analysis of the SOM 2 output.

Table 7 Confusion matrix.

Predicted Values
Positive Negative
Positive a b
Real values Negative c d

The false positive rate of the classification is given by

b
FPrate = —— 22
rate Py (22)

The true negative rate of the classification is given by

d
TNrate = —— 23
rate 1 d (23)

The false negative rate of the classification is given by

c
FNrate = —— 24
rate = —— (24)
Next, the confusion matrix of the proposed algorithms allows us to
analyze the performance of the FL and GHSOM approaches (see
Tables 8 and 9).

* Fuzzy Logic
The algorithm shows a good capability to appropriately classify
the different containers of our case study. All the legal
containers were correctly classified in 100% of the cases and
did not require any manual inspection with its corresponding
cost and time. In the case of the illegal containers, the
algorithm showed a very low rate of confusion. Only 11
containers representing 0.89% of the instances were classified
as false positives and passed the verification without a manual
inspection. Of the illegal containers, 99.1% were appropriately
identified for manual inspection. Therefore, the algorithm
presents a low failure rate.

* GHSOM
Regarding the GHSOM approach, the algorithm shows a very
high degree of appropriate classification. First, all the legal
containers were correctly classified in 100% of the cases and did
not require manual inspection with its corresponding cost and
time. Regarding the false negative containers, only 8 containers
(0.65%) were inadequately classified and were not subjected to
manual inspection. On the other hand, 1,217 illegal containers
were appropriately subjected to manual inspection.

The comparison of the approaches shows that both of the
algorithms are very good classifiers that perfectly classify the
legal containers. Both approaches show a very good level of
classification for illegal containers with a very low error rate. In
this line, the GSHOM approach showed a slightly better
performance.

Table 8 Confusion matrix for the fuzzy logic approach.

P (Passed the

Verification) M (Manual)
L (legal) 8,775 (100%) 0 (0%)
I (illegal) 11 (0.89%) 1,214 (99.1%)

Table 9 Confusion matrix for the GHSOM approach.

P (Passed the

Verification) M (Manual)
L (legal) 8,775 (100%) 0 (0%)
1 (illegal) 8 (0.65%) 1,217 (99.34%)

GHSOM, growing hierarchical self-organizing map.
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7. CONCLUSIONS

This study has demonstrated how efficient security inspections can
be achieved by increasing the security of container transport and
minimizing the time and cost spent by applying two artificial intelli-
gence methodologies, which are based on FL and the GHSOM. The
container input data, such as the RFID readings, X-ray scanning
results and container security data, were analyzed. A novel contri-
bution of the new IMO regulations was the inclusion of the con-
tainer weight variation to achieve a better adjusted classification of
the containers and reduce the number of suspicious containers that
are not detected in the inspection area.

Additionally, the weight sensors in the container terminal work
with threshold values between 40 and 20 tons. The sensors recom-
mended in the OIMLR 60 regulation (from the International Orga-
nization of Legal Metrology) suggest an accuracy of approximately
+ 250 kg for the sensor working range. It is clear that the weight
variation offers significant help in the inspection strategy, but it can-
not be used by itself to identify low levels of smuggling. Thus, a
combined inspection strategy is proposed, which includes the RFID
data, SI and results from a nonintrusive inspection together with
the weight variation in an integrated way.

Unlike the data provided by the RFID readings (a binary output
variable), the remaining variables were fuzzy (AW, SI and X-ray
variables). Based on the proposed methodologies, inspection strate-
gies can be employed to rapidly classify the containers with a high
reliability percentage.

In both algorithms, the use of the weight variation among con-
tainers prevents the inspection of all containers and maintains a
low error rate or while reducing the inspection time in the system.
For the FL algorithm, 7,002 containers do not pass through the
X-ray inspection, which prevents 350 hours of inspection. Using the
GHSOM algorithm, 5,053 containers do not pass through the X-ray
inspection, which prevents 252 hours of inspection. The hours of
inspection are calculated considering the inspection time of approx-
imately 20 containers/hour given by [48].

To compare the capabilities of each algorithm, the same data are
employed as inputs and adjustment information in both algorithms.
Thus, the information received a priori does not affect the results.

First, the FL algorithm achieves very competent global results, with
an error rate of only 0.89%. This error rate is low, and only a
small amount of smuggling cannot be detected in this strategy (size
smaller than 0.00375 m?®), which was the margin established in the
X-ray simulation as detectable.

Second, the GHSOM neural network algorithm offers even more
promising results, with an error rate of only 0.65% for illegal con-
tainers. This capability is attributed to the large classification capac-
ity of these types of algorithms, which indicates that this approach
is the better option for minimizing the time and costs in the inspec-
tion area of a container terminal and decreasing the error rate.

We conclude that the GHSOM and fuzzy algorithms are very sim-
ilar to each other in terms of their ability to detect and group the
study objects into many different categories. Both of the strategies
demonstrated very strong capability for the correct classification of
containers, and they achieved similar results in terms of the clas-
sification accuracy. The false negative rate was slightly better in
the case of the GSHOM, but the difference between the two

approaches was very low. However, we recommend the adoption of
the GHSOM approach specially when dealing with complex prob-
lems due to its better ability to classify the data in very different
groups

The improvement in the classification capacity of the GHSOM-
based algorithm over that of the FL-based algorithm is due to its
intrinsic nature. The fuzzy algorithm uses four variables: AW, Se
and SI, where each variable is divided into three zones, and the RFID
variable that is divided into two zones. In node 3, the algorithm
is capable of classifying a container into 27 different groups (three
variables divided into three zones). Using the same variables, the
GHSOM-based algorithm classified them into the same zones but
does not have this limit. In this particular case, the algorithm clas-
sifies the containers into 400 different groups (SOM 2 has a size of
20 x 20).

To appropriately analyze a comparison between both approaches,
wider alternative experimentation sets should be constructed. This
is now one of our future lines of research: the definition of a wide set
of experimentation data that closely represents a real situation and
considers possible combinations of actions (and also combinations
of illegal actions). In this line, a deeper analysis of the intrinsic vul-
nerabilities of the AW and SI variables should be considered, with
particular attention to the SI variable.

Finally, a detailed study of the cost and time savings at the con-
tainer terminal attributable to the proposed strategy versus a gen-
eral (or random) manual inspection strategy would help to identify
the advantages of the proposed approaches. Such a study should be
conducted using a discrete event simulation approach and should
include the saved inspection time, its associated cost savings esti-
mate and an estimate of the consequences of incorrect classifica-
tions. This is also a challenging future research direction.

Annex 1. Data generation for
experimentation

This annex describes the procedure followed to generate the data
for the 10,000 containers that are used for the experimentation.

The data was generated by using the MATLAB “random” function.
This function generates random numbers using a probability den-
sity function (PDF). We used a normal distribution to calculate the
probability density function (PDF) as stated in Equation (25):

2
—(x=1)
e 202

(25)

W =

y=f(xlu,0) = p=00=

oV
The reliability percentages for the country of origin of the contain-
ers (RCO) and the reliability percentages of the carriers and port
(RT) were randomly generated using the “random” function and
Equation (25). The generated numbers were then transformed to
obtain positive values in an increasing histogram with the following
limits:

0.76 <RCOL1;, 0.8 <RTL1

The limits are defined according to Table 4 [14] so that that every
RCO value under 76% and every RT value under 80% is considered
a risky container. Figure 18 depicts the obtained histograms for RT
and RCO.
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Figure 18 Histogram for RT and RCO.
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Figure 19 Histogram of the container security scores, SI.

The container SI) was obtained from Table 4. The exact SI value was
obtained by interpolating the RCO and RT values of each container.
The results are depicted in Figure 19, and the SI values are between
0.65 and 0.85. This set of values defines the a priori risky and non-
risky containers.

In our case study, the RFID variable represents the reading
obtained from the electronic seals on the containers. The ancil-
lary variable, r, is generated using the “random” function and a
PDF distribution (Equation 25). The generated numbers are then
transformed to obtain an increasing histogram of positive values
whose limits are:

0<r<1

Then, the ancillary variable, r, is compared to RT. If r < RT then
RFID = 1 (not forced open container). If r > RT then RFID = 0
(forced open container). Higher values of RT imply a lower proba-
bility that it is a container that has been forced open.

I is a binary variable that indicates whether a container contains
illegal goods. To construct the set, we define another ancillary vari-
able, r;, that is generated using the “random” function and a PDF
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Figure 20 Distribution of the types of legal goods and illegal goods
transported.

distribution (Equation 25). The generated numbers are then trans-
formed to obtain an increasing histogram of positive values whose
limits are:

0<r,<1

=TI =

Then, the ancillary variable, r;, is compared to RCO. If r; < RCO
then I = 1 (container contains illegal goods). If r; > RCO then
I = 0 (container does not contain illegal goods). High values of RCO
imply a high probability that the container contains illegal goods.

The following variables are defined: W, gives the container weight
at the origin, Iy, gives the weight of the illegal goods, and Wy gives
the weight of stolen freight. These variables were generated using
the MATLAB “rand” function for uniformly distributed random
numbers. In our case study, we assume a maximum container load
of W, = 30 tons [49], then:

Wax = wo + I, = 30 Tons. (26)
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where the Wy, is uniformly distributed between 0 < Wy, < 22.5tons
and I,, is uniformly distributed between 0 < I,, < 7.5 tons. There-
fore, the maximum weight of a container is 22.5 Tons (at the origin)
plus 7.5 tons (if it contains illegal goods).

Then, W, is uniformly distributed between —2 Tons < W, < 0 to
define weight of stolen goods in the containers of our case study.

The relationship between the RFID and I values helps simulate
the behavior of the weight readings of the weight sensors, W7y, as
follows:

Wy = Wo + 1y VRFID =0,1=0 27)
Wy = Wo + W, VRFID=0,1=1 (28)
Wy = Wo + Iy VRFID=1,1=0 (29)

Wy = W, VRFID=1,I=1 (30)

It can be appreciated that in our research, the smuggling and stolen
freight events do not occur at the same time. That is, a container
could not have been stolen from and contain illegal goods at the
same time.

The illegal and legal goods were obtained by generating two ancil-
lary variables using the MATLAB “rand” function with limits
between 0 and 1 to obtain uniformly distributed numbers.

G is the set of legal goods, which are liquors, fuels, tobacco, medi-
cations, weapons, raw materials, textiles, food, manufactured goods
and vehicles. To define set G, the ancillary variable range is divided
into 10 equal parts.

IT is the set of illegal goods. The range of the ancillary variable
is divided into 6 equal parts. The value indices vary from 1 to 5
for liquors, fuels, tobacco, medications, weapons and 11 for illegal
drugs.

Figure 20 shows all the different types of (legal and illegal) goods.
Each index in the graphic represents the type of goods. The legal
goods are represented by blue: 1 (liquors), 2 (fuels), 3 (tobacco), 4
(medications), 5 (weapons), 6 (raw material), 7 (textiles), 8 (foods)
and 9 (manufactured products). The illegal goods are represented
by yellow: 1 (liquors), 2 (fuels), 3 (tobacco), 4 (medications), 5
(weapons) and 11 (illegal drugs). Additionally, Table 10 defines the
types of goods considered for our case study.

The data generation algorithm assumes that each container only
transports one type of goods, and in the case that the container con-
tains illegal goods, it is only one type of illegal goods.

In our case study, we selected X-ray technology as the nonintrusive
inspection method among the current existing technological alter-
natives. X-ray imaging is one of the main nonintrusive technologies
for container inspection, and it provides convincing details of the
content of large objects such as containers [50], to determine the
behaviors of both the X-ray scanner results and the operator. The
proposed simulation emulates the behavior of an operator at the
moment that an X-ray scan is performed, that is, the operator will
see and analyze the data on the container contents, for example, the
volume, shape, weight and type of material that it transports. This

Table 10 The types of goods used in the case study.

Goods Classification of Classification of Goods
Transported Goods According to Type

1 liquors Legal or illegal Vodka, whiskey, beer,
rum, etc.

2 fuels Legal or illegal Oil, gasoline, diesel,
kerosene, etc.

3 tobacco Legal or illegal Cigarettes, cigars, etc.

4 medications Legal or illegal Prescription medicines, legal
drugs, natural medicines, etc.

5 weapons Legal or illegal Firearms, ammunition, bladed
weapons, etc.

6 raw material Legal Vegetable, animal, mineral,
liquid or fossil.

7 textiles Legal Different types of cloth,
clothes, etc.

8 foods Legal Vegetables and animals.

9 manufactured Legal Consumer goods, capital

products goods and materials and
supplies.

11 illegal drugs Illegal Cocaine, ecstasy,

amphetamines, etc.

simulation uses the S, (X-ray) variable, which depends on several
factors:

S. = F,FF,F, (31)

where F, is the volume factor, Fy is the shape factor, F,, is the weight
factor, and F,, is the materials factor.

The volume factor is given by the following equation:

Vi
F,=— 2
where Vy, is the reference volume, and V7 is defined as
M
V,=— (33)
p1

where M is the mass of illegal merchandise and p; is the density; the
density values were obtained from [51].

The shape factor is determined by comparing the shape of the trans-
ported goods G and the shape of illegal merchandise I, where it
will equal 1 if the shape of G is similar or equal to that of I and 0
otherwise.

The following is the weight factor given by

Tw
F, = — 34
=W (34)
where Wy; is the weight of the transported goods, and as previously
mentioned, Iy, is the weight of illegal merchandise.

The material factor is expressed by the following equation:

_ FaGepmeny/FaGaoney)

(35)

10MeV)

where FaG and Faly are the attenuation coefficients for each type
of goods and illegal merchandise, respectively, obtained from [51]
in relation to the level of the X-ray energy, considering that

if G= Iy, thenF,, =1 (36)
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Two X-ray energy levels were applied (6 MeV and 10 MeV).
Using this property, we can classify the contents of a container
based on the image provided by the ratio of the different levels of
attenuation [42].
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