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ABSTRACT
In a context of lattice-valued functions (also called lattice-valued fuzzy sets), where the codomain is a complete lattice L, an
equivalence relation defined on L by the equality of related cuts is investigated. It is known that this relation is a complete con-
gruence on the join-semilattice reduct of L. In terms of residuated maps, necessary and sufficient conditions under which this
equivalence is a complete congruence on L are given. In the same framework of residuated maps, some known representation
theorems for lattices and also for lattice-valued fuzzy sets are formulated in a newway. As a particular application of the obtained
results, a representation theorem of finite lattices by meet-irreducible elements is given.
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1. INTRODUCTION

1.1. Historical Remarks

The present investigation deals with ordered structures, mostly lat-
tices and related functions. Therefore we use classical isotone and
related maps, but also some techniques originating in the theory of
lattice-valued fuzzy sets.

Lattice-valued fuzzy sets (L-fuzzy sets) are firstly introduced by
Goguen [1]. In the framework of our paper these objects are
called lattice-valued functions (since we are concentrated to func-
tions themselves). The topic of lattice-valued functions (fuzzy sets)
has been widely investigated since their introduction. Histori-
cally one of the first books dealing with this notion was pub-
lished by Negoita and Ralescu [2]. After some years, it turned out
that residuated lattices and related ordered structures are a con-
venient tool for modeling fuzzy logic [3]. Still, the basic com-
plete lattices are the most appropriate for investigation of general
properties of lattice-valued structures. Our approach is described
in detail in the overview articles [4,5]. One of the basic tools
for investigation of structure properties are p-cuts (cuts) and this
approach is correctly implemented only with the complete lat-
tices and ordering relation connected with the lattice operations.
The related results connected to cuts (in particular with lattice-
valued Boolean functions) are published in several papers by
the present authors with a coauthor [6–8]. Cuts determine par-
ticular up-sets related to lattice-valued maps [9]. If residuated
lattices are applied in the analogue context, then an additional
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operation—multiplication is used and cuts lose some important
properties.

The second tool that we use in this investigation are residuated
maps, closely related to Galois connections (in its definition that
includes monotonicity). They are used in order theory, having a
similar role as homomorphisms in the field of algebraic structures.
For detailed presentations we refer to books by Blyth and Janowitz
[10], by Blyth [11], by Grätzer [12] and by Caspard et al. [13].

Galois functions were generalized to the fuzzy case by Bělohlávek
[14]. Cabrera et al. investigate Galois connections in the frame-
work of fuzzy-preordered structures using particular fuzzy equiva-
lence relations with a residuated lattice as the membership-values
structure [15–17].

1.2. Topic of Our Research

Our main goal here is to solve the problem: under which condi-
tions the equivalence relation on a complete lattice determined by
cuts of a lattice-valued function is a complete congruence. Within
these investigations we characterize congruences on complete lat-
tices by residuated mappings using the well- known connection
between congruences and homomorphisms. We also present some
applications.

Using a residuated mapping f from L to the power set of X ordered
dually to inclusion, we identify a wide class of complete lattices for
which the kernel of f is a complete congruence on L. In case the set
of values of 𝜇 is a meet-dense subset of a complete lattice L, then the
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kernel of f is the diagonal of L.We also prove that for every complete
congruence ∼ on a complete lattice L there is a nonempty subsetM
of L and a map 𝜇 : L → (M), so that∼ is the kernel of a residuated
map determined by the cuts of 𝜇.
We present some new versions of the representation theorems for
lattices and for lattice-valued fuzzy sets by the notion of residuated
maps. Finally, we show that for finite lattices, the mentioned resid-
uated maps can naturally be used for representing these lattices by
the posets of their meet-irreducible elements. Papers [18,19] con-
tain our previous research of the similar problems related to finite
lattices. The results from Sections 3.1, 3.2 and 3.4 and Example
appeared (without proofs) in the Proceedings of ESCIM 2019 [20].

2. PRELIMINARIES

Some relevant notions, starting with elementary ones from algebra
and order theory are listed in the sequel. Our aim is to introduce
notation and properties that are used in the paper.

2.1. Functions

Throughout the text we denote by f :A → B a function,mapping,
from a set A, the domain of f, to a nonempty set B, the codomain
of f. The set of values of f is denoted, as usual, by f(A):

f(A) = {b ∈ B ∣ b = f(a) for some a ∈ A}.

The kernel of f is the equivalence relation ≈f on A:

a1 ≈f a2 if and only if f(a1) = f(a2).

ByA/≈f we denote the corresponding quotient-set:A/≈f = {[a]≈f ∣
a ∈ A}, where [a]≈f denotes the ≈f-class of a ∈ A : [a]≈f = {x ∈
A ∣ a ≈f x}.
A composition of maps f :A → B and g :B → C is here denoted by
f ∘ g :A → C: f ∘ g(a) = g(f(a)).

We also use the commuting diagram for a function h from A to B:

𝜑(a) = [a]≈h ; Ψ([a]≈h ) = h(a); h = 𝜑 ∘ Ψ, 𝜑 is a surjection and Ψ
an injection.

We deal with functions and relations among algebraic structures.
If  = (A, F) is an algebra (A ≠ ∅, F consisting of fundamental
finitary operations on A), and  = (B, F) another algebra of the
same type (meaning that syntactically, F is the same list of func-
tional symbols) then the map h :A → B is a homomorphism from (in)to if it is compatible with every fundamental (n-ary) oper-
ation f on A: for any a1, … , an ∈ A

h(f(a1, … , an)) = f(h(a1), … , h(an)),

and clearly for a nullary operation (constant) c, h(c) = c. A bijective
homomorphism is an isomorphism. The kernel≈h ofh is a congru-
ence relation on , meaning that for any a1, … , an, b1, … , bn ∈ A

if a1 ≈h b1, … , an ≈h bn, then for an n-ary f ∈ F, f(a1, … , an) ≈h
f(b1, … , bn).
In a commuting diagram of a homomorphism h from  to ,
𝜑 :A → A/≈h is a homomorphism, and 𝜓 :A/≈h → B is an embed-
ding (isomorphism with the subalgebra h() of ).

2.2. Posets and Complete Lattices

We deal with ordered sets and lattices, and here are some neces-
sary notions and the corresponding notation. For more, see, e.g.,
the book by Davey and Priestley [21].

We denote by (P, ⩽) a poset, a nonempty set P equipped with an
ordering relation ⩽. As usual, by ⩾ we denote the dual order of ⩽:
p ⩾ q if and only if q ⩽ p. If Q is a subset of a poset (P, ⩽), then Q
is an order filter, up-set in P, if

for all x, y ∈ P, x ∈ Q and x ⩽ y imply y ∈ Q.

The empty set is also an up-set in every poset. In particular, for an
element p of a poset (P, ⩽), we denote by ↑p the principal filter
generated by p :

↑p = {q ∈ P ∣ p ⩽ q}.

A complete lattice L is known to be a poset (L, ⩽) inwhich for every
subsetM ⊆ L there is a greatest lower bound (glb, infimum, meet)
and a least upper bound (lub, supremum, join) denoted respectively
by⋀M and⋁M. The meet and the join are binary operations on
L denoted by x ∧ y and x ∨ y, respectively. In this sense, without
necessarily requiring completeness, a lattice is an algebra with two
binary operations, denoted by (L, ∧, ∨). A complete lattice possesses
the top (1) and the bottom element (0), as, respectively, glb and lub
of the empty set.

A complete join-semilattice (upper-semilattice) is a poset in
which for every nonempty subset there is a least upper bound, a
join. A semilattice as an algebra is a commutative, idempotent semi-
group (associative groupoid). If (L, ∧, ∨) is a lattice, then the struc-
ture (L, ∨) is an upper-semilattice, called a join-semilattice reduct
of the lattice L.

A congruence 𝜌 on a complete lattice L is complete (see, e.g., [22])
if it is compatible with arbitrary meets and joins for {pi, qi ∣ i ∈
I} ⊆ L and pi𝜌qi for every i ∈ I, then also

(
⋀i pi

)
𝜌
(
⋀i qi

)
and(

⋁i pi
)
𝜌
(
⋁i qi

)
.

A subset M of a complete lattice L is meet-dense in L if every ele-
ment of L is a meet of a subset ofM.

Given a lattice L, an element a in L is meet-irreducible if

a ≠ 1 and a = b ∧ c implies a = b or a = c.

An element a of a complete lattice L is said to be completely meet-
irreducible if a ≠ 1 and a = ∧P implies that a ∈ P, for every subset
P of L. Equivalently, a is completely meet-irreducible if the set of
elements greater than a has the smallest element (this equivalence
can be easily checked by contraposition).

An element a of a lattice L is distributive if for all x, y ∈ L,
a∨ (x∧y) = (a∨x)∧ (a∨y). An element a of a lattice L is infinitely
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distributive if for {pi ∣ i ∈ I} ⊆ L, we have a ∨⋀i pi = ⋀i(a ∨ pi).
A lattice in which every element is distributive is a distributive lat-
tice and in this case each of the two operations is distributive with
respect to the other.

A complete lattice L is dually spatial if every element of L is a meet
of completely meet-irreducible elements (this is the dual notion
of a spatial lattice [23,24]). Examples of dually spatial lattices are
all finite lattices, complete lattices, dually atomistic lattices, etc. In
the case of dually spatial lattices, the subsetM of completely meet-
irreducible elements is a meet-dense in L.

We use the following version ofBirkhoff ’s representation theorem
for finite distributive lattices:

Theorem 1. Let (L, ⩽) be a finite distributive lattice andM the poset
of meet-irreducible elements of L. Then (L, ⩽) is isomorphic to the
lattice of all up-sets of M, ordered dually to inclusion.

2.3. Residuated Maps

For posets P and Q, a map f : P → Q is residuated if there exists a
map g :Q → P such that for all x ∈ P and y ∈ Q

f(x) ⩽ y is equivalent to x ⩽ g(y) . (1)

The map g is uniquely determined by f and it is called the residual
of f [11,12]. In addition, both mappings are isotone.

The following characterizations of residuated maps are used in the
rest of the paper [11–13].

Proposition 2. A map f : P → Q is residuated with the residual
g : Q → P, if and only if any of the following statements hold:

(a) For every y ∈ Q there exists the supremum of the set {x ∈ P ∣
f(x) ⩽ y} which is equal to g(y).

(b) For every q ∈ Q, f−1(↓ q) is a principal ideal (principal down-
set) in P.

(c) f is isotone and there exists an isotone map g from Q to P such
that IP ⩽ f ∘ g and g ∘ f ⩽ IQ.

Proposition 3. A map f : H → L, where H and L are complete lat-
tices, is residuated with the residual g : L → H if and only if any of the
following statements hold:

i. f is completely join preserving.

ii. f is join preserving and f(0H) = 0L.

A consequence is also that the residual g is completely meet
preserving.

2.4. Closure Operators

An isotone map C : P → P is a closure operator on a poset (P, ⩽)
if C = C ∘ C ⩾ IP. C is a dual closure operator on (P, ⩽) if C =
C ∘ C ⩽ IP.

If p = C(p), then p is a closed element under C.

As usual, if a closure C is a unary operation on the power set (X)
of a set X, then C is said to be a closure operator on X.

Lemma 4. Let C be a closure (dual closure) operator on a lattice L.
Then,

1. The subset of all closed elements of L is closed under meets
(joins) in L.

2. The top (bottom) element of L is closed under C.

Lemma 5. The kernel∼ of a closure (dual closure) operator C on a
complete lattice L fulfils:

1. Each equivalence class of∼ possesses the top (bottom) element
which is closed under C.

2. The set L/ ∼ (denoted also by L/C) can be ordered: [x]∼ ⩽ [y]∼
iff C(x) ⩽ C(y) in L.

3. The poset (L/ ∼,⩽) is a lattice isomorphic to the lattice of
closed elements of L, under C.

Proposition 6. If P is an ordered set then C : P → P is a closure oper-
ator if and only if there is an ordered set Q and a residuated mapping
f : P → Q such that C = f ∘ g, where g is the residual of f.

A closure system over a nonempty set X is a collection of subsets
of X closed under all set intersections over X (including thus X).
There is a well-known connection among a closure system over X,
a closure operator on X and a complete lattice [21].

2.5. Lattice-Valued Functions

Lattice-valued or L-valued functions (lattice-valued fuzzy sets) are
mappings from a nonempty set X (domain) into a complete lattice
L (codomain).

Let L be a complete lattice and 𝜇 :X → L an L-valued function on a
set X. For p ∈ L, a p-cut, or a cut of 𝜇 is a subset 𝜇p of X defined by

𝜇p = {x ∈ X ∣ 𝜇(x) ⩾ p} = 𝜇−1(↑p).

By 𝜇L the collection of cuts of 𝜇 :X → L is denoted: 𝜇L : = {𝜇p ∣
p ∈ L}.
The basic properties of cuts of lattice-valued functions are listed in
the sequel.

Proposition 7. Let L be a complete lattice and 𝜇 : X → L an
L-valued function on a set X. Then

for p, q ∈ L, p ⩽ q implies 𝜇q ⊆ 𝜇p; (2)

⋂(𝜇p ∣ p ∈ M ⊆ L) = 𝜇∨p; (3)

for every x ∈ X, 𝜇(x) = ⋁(p ∈ L ∣ x ∈ 𝜇p). (4)

A straightforward consequence of formulas (3) and (4) is that the
collection 𝜇L of cuts of a lattice-valued function 𝜇 from X to L is a
closure system over X.

The following two propositions connect cuts of lattice-valued func-
tions and residuatedmaps. The first one is used throughout the text.
Therefore we provide also the proof.
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Proposition 8. [25] Let 𝜇 : X → L be an L-valued function on X and
let the power set (X) be ordered dually to inclusion. Consider the
functions

f : L → (X), f(p) = 𝜇p, and (5)

g :(X) → L, g(Y) = ⋁(p ∈ L ∣ 𝜇p ⊇ Y). (6)

Then f is a residuated function and g is the corresponding residual.

Proof. Straightforward by Proposition 3. Namely, by the definition
of f and by (3), for everyM ⊆ L,

f(⋁(p ∣ p ∈ M ⊆ L)) = 𝜇∨p =⋂(𝜇p ∣ p ∈ M ⊆ L).

Hence, f is join preserving, according to the order ⊇ in (X). In
addition, f(0) = 𝜇0 = {x ∈ X ∣ 𝜇(x) ⩾ 0} = X, and X is the bottom
element in (X) with respect to the order ⊇.
The function g given by (6) is the corresponding residual.

Proposition 9. [25] Let X be a nonempty set and L a complete lat-
tice. Further, let f : L → (X) be a residuated map, where (X) is
with the order dual to the set inclusion, and g :(X) → L the corre-
sponding residual. Then, the cuts of the function 𝜇 : X → L defined
with 𝜇(x) = g({x}) coincide with values of f, namely for every p ∈ L,
𝜇p = f(p).

We say that the residual map f in Proposition 8 is induced by the
L-valued function 𝜇.

3. RESULTS

3.1. Complete Congruences on L Induced
by L-Valued Functions

Starting from a complete lattice L, and using the framework of
residuated maps induced by L-valued functions 𝜇 :X → L (as in
Proposition 8) we analyze complete congruences on L.

Themap f from L to the power set(X) ordered dually to inclusion,
induced by 𝜇 (f(p) = 𝜇p) is residuated.
The relation ≈𝜇 on L is the kernel of f:

p ≈𝜇 q if and only if 𝜇p = 𝜇q. (7)

By the definition of a cut, it is straightforward that for p, q ∈ L,

p ≈𝜇 q if and only if ↑p ∩ 𝜇(X) = ↑q ∩ 𝜇(X). (8)

Proposition 10. Let 𝜇 : X → L be an L-valued function and ≈𝜇 be
a relation on L, defined by (7). Then

i. ≈𝜇 is a complete congruence relation on the join-semilattice
reduct of L.

ii. The map p ↦ ∨[p]≈𝜇 is a closure operator on L.

Proof. By Proposition 8, relation ≈𝜇 is the kernel of the residuated
map f : L → (X), f(p) = 𝜇p, where the power set (X) is ordered
dually to inclusion.

The proof of (i) now follows by Proposition 3, since a residuated
map is isotone. Next, (ii) is straightforward (observe that by (3) the
supremum of a ≈𝜇-class belongs to the class).

The poset ({⋁[p]≈𝜇 ∣ p ∈ L}, ⩽), is a complete lattice (as a subposet
of L) but it is not a sublattice of L.

By Proposition 10 (i), the relation ≈𝜇 is a join-semilattice congru-
ence on the complete lattice L. Hence, there is an order ⩽ on L/≈𝜇
induced by the order ⩽ on L:

[p]≈𝜇 ⩽ [q]≈𝜇 if and only if 𝜇q ⊆ 𝜇p, (9)

and we get the lattice (L/≈𝜇, ⩽).
In addition, we can replace the mapping f : L → (X), by the map
𝜑 from L (on)to the lattice (f(L), ⊇) = (𝜇L, ⊇), so that 𝜑 is defined
in the same way as f: 𝜑(p) = 𝜇p.
Proposition 11. For 𝜇 : X → L, let 𝜇L be ordered dually to inclusion.
Then the map 𝜑 : L → 𝜇L, such that 𝜑(p) = 𝜇p, is residuated and
(L/≈𝜇, ⩽) ≅ (f(L), ⊇) under [p]≈𝜇 ↦ f(p).

Proof. The proof follows by Proposition 10, since f is a join-
semilattice homomorphism.

Hence, an isomorphism of lattices is formulated in the next
theorem.

Theorem 12. For 𝜇 : X → L, the following isomorphisms of lattices
hold:

(L/≈𝜇, ⩽) ≅
(
{⋁[p]≈𝜇 ∣ p ∈ L} , ⩽

)
≅ (𝜇L, ⊇). (10)

In other words: For a given L-valued map 𝜇, the lattice of ≈𝜇-classes
is isomorphic to the lattice of top elements of these classes, and both
are isomorphic to the lattice of cuts of 𝜇 ordered dually to inclusion.

Proof. (
{⋁[p]≈𝜇 ∣ p ∈ L} , ⩽

)
≅ (𝜇L, ⊇)

holds by Lemma 5, and

(L/≈𝜇, ⩽) ≅ (𝜇L, ⊇)

by Proposition 11 since f(L) = 𝜇L (already proved in [4]).

Relation ≈𝜇 is not generally a congruence on L as a lattice. In the
sequel, we give conditions under which it is the case.

By Proposition 10, for 𝜇 :X → L, ≈𝜇 is a complete congruence on
L if and only if the map 𝜑 : L → 𝜇L, 𝜑(p) = 𝜇p, is compatible with
arbitrary meets. This is obvious since 𝜑 is an onto map, and since
(L/≈𝜇, ⩽) ≅ (𝜇L, ⊇). Our aim is to find conditions under which this
holds, in terms of the L-valued function 𝜇, analyzing the set 𝜇(X)
of values of 𝜇.
Theorem 13. Let L be a dually spatial lattice and 𝜇 : X → L an
L-valued function on a nonempty domain X, such that 𝜇(X) consists
of some infinitely distributive completely meet-irreducible elements in
L. Then ≈𝜇 is a complete congruence relation on L.
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Proof.We prove that ≈𝜇 is compatible with arbitrary meets in L.

Let {pi ∣ i ∈ I}, {qi ∣ i ∈ I} be two families of elements in L, and for
every i pi ≈𝜇 qi. This means that for everym ∈ 𝜇(X) and for every
i ∈ I,

pi ⩽ m if and only if qi ⩽ m. (11)

To prove the analogue equivalence for ∧pi and ∧qi, assume that for
an m ∈ 𝜇(X), we have that ∧pi ⩽ m, i.e., that m ∨ ∧pi = m. By
assumption everym ∈ 𝜇(X) is infinitely distributive, hence ∧i(m ∨
pi) = m and therefore, since m is completely meet-irreducible,
m∨pj = m for some j ∈ I, hence pj ⩽ m; by (11) also qj ⩽ m, there-
fore ∧iqi ⩽ qj ⩽ m. Analogously we can start with ∧qi. Therefore
∧pi ≈𝜇 ∧qi.
Lemma 14. For 𝜇 :X → L, if 𝜇(X) is meet-dense in a complete
lattice L, then the residuated map f : L → (X) induced by 𝜇 is an
injection.

Proof. Let p, q ∈ L and suppose f(p) = f(q), i.e., let ↑p ∩ 𝜇(X) =
↑q ∩ 𝜇(X). Since 𝜇(X) is meet-dense in L, we have that

p = ∧(↑p ∩ 𝜇(X)) = q,

and f is an injective map.

A straightforward consequence of Lemma 14 follows in the sequel.

Corollary 15. For 𝜇 :X → L, if 𝜇(X) is meet-dense in a complete
lattice L, then the relation≈𝜇 is the smallest (complete) congruence
relation, diagonal ΔL, on L.

We note that ≈𝜇 is a diagonal relation on L also in the case when a
meet-dense set is a subset of 𝜇(X).
A finite version of the result presented in Theorem 13 is formulated
in the sequel, together with an application to quotient lattices.

Theorem 16. Let L be a finite lattice, let M be a subset of L consist-
ing of some distributive meet-irreducible elements, and 𝜇 :M → L,
𝜇(m) = m. Then the following holds:

i. ≈𝜇 is a congruence relation on L.

ii. The set [M]: = {[m]≈𝜇 ∣ m ∈ M}, consists of allmeet-irreducible
elements of the quotient lattice (L/≈𝜇).

Proof. i. This is a formulation of Theorem 13 for finite lattices.

ii. Letm ∈ M and suppose [m]≈𝜇 is notmeet-irreducible in L/≈𝜇.
Then [m]≈𝜇 = [u]≈𝜇 ∧ [v]≈𝜇 for some u, v ∈ L so that the
classes [u]≈𝜇 and [v]≈𝜇 are not comparable. The relation ≈𝜇 is
a congruence on L, hence there are u1 ∈ [u]≈𝜇 and v1 ∈ [v]≈𝜇
such that m ⩽ u1 and m ⩽ v1. Then m ⩽ u1 ∧ v1 ∈ [m]≈𝜇 .
Since m is the top element in the class to which it belongs, we
get m = u1 ∧ v1. Contradiction, since m is meet-irreducible
in L.

On the other hand, let [x]≈𝜇 be a meet-irreducible class in L/≈𝜇.
Then for m = ∨[x]≈𝜇 , m is meet-irreducible. Indeed, if, contrary,
m = u ∧ v for some incomparable u, v ∈ L, then [m]≈𝜇 = [x]≈𝜇 =
[u]≈𝜇∧[v]≈𝜇 and [x]≈𝜇 is notmeet-irreducible inL/ ≈𝜇. This proves
that m is meet-irreducible in L. To prove that, in addition, m ∈ M,
observe that a meet-irreducible elementm which is not inM could

not be the top of the ≈𝜇-class to which it belongs. Indeed, such m
belongs to the same class as the element covering it.

Corollary 17. Let L be a finite distributive lattice andM ⊆ L, con-
sisting of (some) meet-irreducible elements in L. Then≈𝜇 is a con-
gruence relation on L.

3.2. From Congruences to Residuated Maps

In this paragraph we deal with the converse of the results in
Section 3.1. In the sequel, we show that every complete congruence
on a complete lattice L is the kernel of the residuated map induced
by a particular L-valued function whose codomain is L.

First we need the following technical lemma.

Lemma 18. Let L be a complete lattice, letM be a nonempty subset
of L and 𝜇 :M → L, such that for every m ∈ M, 𝜇(m) = m. Then
for every p ∈ L, 𝜇p = ↑p ∩M.

Now we deal with a congruence on the join-semilattice reduct of
L. We show that it is always the kernel of a residuated map, as in
Proposition 8.

Theorem 19. Let∼ be a complete congruence on the join-semilattice
reduct of a complete lattice L. Let M be a set of maximum elements in
∼-classes:

M = {m ∈ L ∣ m = ∨[p]∼ for some p ∈ L} .

Let also 𝜇 :M → L be the L-valued function given by 𝜇(m) = m.
Then the function f : L → (M) such that f(p) = 𝜇p where (M) is
ordered dually to inclusion is residuated and ∼ is the kernel of f.

Proof. By Proposition 8, f is a residuated map and ≈𝜇 is the kernel
of this function. Then for p, q ∈ M (which is the set of maximum
elements of ∼-classes), p ≈𝜇 q if and only if 𝜇p = 𝜇q if and only if
(Lemma 18) ↑p ∩M = ↑q ∩M if and only if ∨[p]∼ = ∨[q]∼ if
and only if [p]∼ = [q]∼ if and only if p ∼ q. Hence, ∼ coincides
with the kernel of f, i.e., with ≈𝜇.

Now, from Theorem 19, we get the answer for congruences.

Corollary 20. For every complete congruence∼ on a complete lat-
tice L, there is a setM, an L-valued function 𝜇 :M → L and a resid-
uated map f : L → (M) induced by 𝜇 by f(p) = 𝜇p, so that ∼ is the
kernel of f.

3.3. Representation Theorems for
Lattice-Valued Fuzzy Sets

In a paper by Gorjanac Ranitović and Tepavčević [26], necessary
and sufficient conditions are formulated, under which two lattice-
valued fuzzy sets on the same domain have the same families of
cuts. Moreover necessary and sufficient conditions are given under
which for a given family of subsets of a setX and a fixed complete
lattice L there is a lattice-valued fuzzy set 𝜇 :X → L, such that the
collection of cuts of 𝜇 coincides with  .

In the following proposition, which is reformulated using
Proposition 3, conditions are given under which two fuzzy sets
have the same families of cuts (when the codomain lattices are
connected with the residual mappings).
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Proposition 21. Let (L, ∧, ∨) and (L1, ∧, ∨) be complete lattices and
let 𝜑 : L → L1 be a residuate map from (L, ⩾) to (L1, ⩾) (duals of
lattices L and L1). Let 𝜇 : X → L be a fuzzy set on X. Let fuzzy set
𝜈 : X → L1 be defined by 𝜈(x) = 𝜑(𝜇(x)). Then fuzzy sets 𝜇 and 𝜈
have the same families of cuts and 𝜇p = 𝜈𝜑(p) for all p ∈ L.

Further, we give a representation theorem for lattice-valued fuzzy
sets, based also on cut properties. However the present representa-
tion uses residuated functions.

Theorem22. Let L be a fixed complete lattice, X ≠ Φ and ⊆ (X).
A necessary and sufficient condition under which  is a collection of
cuts of a fuzzy set 𝜇 : X → L is that there is an onto residuated map
f : L →  , where  is ordered dually to inclusion.

Proof. This is a straightforward consequence of Propositions 8
and 9.

In the mentioned paper [26], it is also proved that for every func-
tion 𝜇 :X → L, where L is a complete lattice, there is a function
𝜈 :X → {0, 1}c, where c is a suitable cardinal number, so that the
cuts of 𝜇 and 𝜈 coincide. 𝜈 is said to be given in the general form of
lattice-valued fuzzy sets; the reason is that every lattice L is isomor-
phic to the lattice of all principal ideals of L ordered by inclusion,
and the latter can be embedded into the Boolean lattice {0, 1}c for
some cardinal number c, so that infima are preserved. Considering
cuts, this condition is sufficient that they coincide. In addition, we
can assume that there is a single (sufficiently big) cardinal c for all
complete lattices under consideration.

Next we use this result and the above ideas of its proof. As men-
tioned, we assume to have a single cardinal c and we denote by
B = {0, 1}c the corresponding Boolean lattice.

Theorem 23. Let X be a nonempty set, let L be a complete lattice and
𝜇 : X → L. Then there is a residuated map f : B → (X) where (X)
is ordered dually to inclusion, so that f(B) is a collection of cuts of 𝜇.

3.4. Representation of Finite Lattices

In this part, results regarding kernels of residuated maps and
L-valued functions are applied to finite lattices with a given poset of
meet-irreducible elements.

Starting from a finite posetM, by LM the collection of all up-sets of
M is denoted. By Birkhoff ’s theorem, a finite distributive lattice in
whichM is the poset of meet-irreducibles is isomorphic to (LM, ⊇)
under p ↦ ↑p ∩M. In order to work with residuated functions, we
replace the power set ofM by LM.

Proposition 24. Let L be a finite lattice in which M is the poset of
meet-irreducibles and 𝜇 :M → L, 𝜇(m) = m. Then ≈𝜇 is ΔL.

Proof. Indeed, the map f : L → LM, given by f(p) = ↑p ∩M where
LM is ordered dually to inclusion, is residuated, induced by 𝜇, since
↑p∩M = 𝜇p. Therefore,≈𝜇 isΔL by Corollary 15, sinceM is clearly
meet-dense in L.

Under the conditions of Proposition 24, the map g : LM → L, such
that

g(N) : =⋁(p ∣ f(p) ⊇ N,N ∈ LM) (12)

is the residual of function f. We proceed by analyzing this residual.

Proposition 25. Let L be a finite lattice with the set M of meet-
irreducibles and 𝜇 :M → L, 𝜇(m) = m. Then the map C : LM →
LM such that C = g ∘ f, where f and g are induced by 𝜇, as in
Proposition 24, is a dual closure operator on (LM, ⊇), namely C(Y) =
𝜇g(Y), Y ∈ LM.

Proof. Straightforward by Proposition 8. Namely, C is isotone with
inclusion, and clearly, for Y ∈ LM, C(C(Y)) ⊇ Y.

Finally, we have a representation theorem for finite lattices in terms
of up-sets and residuated functions. In the following it is proved
that any finite lattice with the poset M of meet-irreducibles, is iso-
morphic to the lattice of closed elements of a dual closure in the
distributive lattice LM ordered by ⊇.
Theorem 26. Let L be a finite lattice and M the set of all meet-
irreducible elements in L. Let also the function g : LM → L be given
by (12). Then L ≅ ({𝜇g(N) ∣ N ∈ LM}, ⊇).

Proof. By Proposition 25, the lattice ({𝜇g(N) ∣ N ∈ LM}, ⊇) consists
of closed elements—cuts under the closure C = g ∘ f. In addition,
these cuts are up-sets in M, which is, by assumption, the poset of
meet-irreducible elements in L. By Proposition 24, ≈𝜇-classes are
one-element sets. Hence f is an injection and by Theorem 12, we
get the isomorphism from (L, ⩽) onto ({𝜇g(N) ∣ N ∈ LM}, ⊇): p ↦
↑p ∩M.

By Lemma 5 (the dual), we have also the following.

Corollary 27. Let L be a finite lattice and M the set of all meet-
irreducible elements in L. Then (L, ⩽) ≅ (LM/ ∼C, ⩽), where ∼C
is the kernel of the dual closure operator C on LM defined in
Proposition 25.

The converse is proved in the sequel.

Theorem 28. Let M be a finite poset and C a dual closure operator
on (LM, ⊇) fulfilling: for every m ∈ M the class [m]∼C is a singleton,
where∼C is the kernel of C. Then the poset of meet-irreducibles of the
lattice (LM/ ∼C, ⩽) is isomorphic to M.

Proof. The mapm ↦ [m]∼C is an order embedding from the poset
M into the lattice LM/ ∼C. Indeed, it is obviously one-to-one; the
order is preserved by Birkhoff ’s theorem and by Lemma 5.Weprove
that every class [m]∼C (m ∈ M) is meet irreducible in (LM/ ∼C, ⩽).
Suppose that this is not the case, i.e., that for somem ∈ M, [m]∼C =
[p]∼C ∧ [q]∼C for some elements p, q ∈ LM which we take to be the
bottom elements of the corresponding classes. Since the class [m]∼C
is the singleton, the last formula is equivalent withm = p∧q in LM,
where p and q are the bottom elements of the corresponding class.
Sincem is a meet-irreducible element in LM, we have thatm = p or
m = q, hence [m]∼C is meet-irreducible in LM/ ∼C

Conversely, suppose that a class [n]∼C is meet-irreducible in
(LM/ ∼C, ⩽), where n is the bottom element of the class. Now,
n = ∧xi, where xi (for i ∈ I) are some meet-irreducible elements
inM (and in LM) (every element is a meet of meet-irreducible ele-
ments). Since all the classes [xi]∼C , for i ∈ I are one-element, we
have that [n]∼C = ∧i∈I[xi]∼C . Since [n]∼C is meet-irreducible, we
have that [n]∼C = [xi]∼C for some i ∈ I and hence n = xi.

Therefore, the poset of meet-irreducible classes in LM/ ∼C is order-
isomorphic to the posetM.

Example The lattice L in Figure 1 (a) possesses five meet-
irreducible elements p, q, r, s, t denoted by filled circles, forming a
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Figure 1 Lattices illustrating Theorem 26 and Corollary 27.

posetM, represented in Figure 1 (b). According to Corollary 27, L is
isomorphic to the lattice (LM/ ∼C, ⩽). Observe that∼C is not a con-
gruence on LM; this quotient is isomorphic to the lattice of closed
elements of the dual closure C on (LM, ⊇), illustrating Theorem 26.

Figure 2 uses the same finite lattice L and illustrates Theorem 16.
Among the meet-irreducibles of the lattice L, only p and q are dis-
tributive, N = {p, q}. The L-valued function inducing the corre-
sponding residuated function is 𝜈 :N → L, 𝜈(x) = x, and the
corresponding congruence ≈𝜈 is indicated in Figure 1 (c). Recall
that for x, y ∈ L, x ≈𝜈 y if and only if 𝜈x = 𝜈y if and only if
↑ x ∩ {p, q} =↑ y ∩ {p, q}. Hence the lattice L/≈𝜈 is a three-element
chain.

Finally, N could be a nonempty subset of {p, q}, namely we can take
N = {p}, or N = {q}. In both cases we get a congruence splitting L
into two classes (in each case joining two neighboring classes of the
congruence in Figure 2).

4. CONCLUSION

As presented above, we have shown that there is a natural con-
nection among complete congruences on complete lattices and
particular residuated maps induced by lattice-valued functions.
As an extension of this research, we intend to deal with analog

Figure 2 Lattice illustrating
Theorem 16.

connections in particular classes of (complete) lattices, like distribu-
tive, Boolean or residuated ones. In addition, representation prob-
lems which were successfully analyzed for finite lattices, will be our
topic of investigation for arbitrary lattices fulfilling some finiteness
conditions.

CONFLICT OF INTEREST

The authors declare no conflict of interests.

AUTHORS’ CONTRIBUTIONS

B.Seselja and A.Tepavcevic both designed the manuscript, worked
on the mathematical theorems and proofs, drafted the manuscript
and checked the final version of the manuscript.

ACKNOWLEDGMENTS

Research supported by Ministry of Education, Science and Technologi-
cal Development, Republic of Serbia through Mathematical Institute of
SASA and through Faculty of Sciences, University of Novi Sad is gratefully
acknowledged.

REFERENCES

[1] J.A. Goguen, L-fuzzy sets, J.Math. Anal. Appl. 18 (1967), 145–174.
[2] C.V. Negoita, D.A. Ralescu, Applications of Fuzzy Sets to System

Analysis, Birkhäuser Verlag, Basel, Switzerland, 1975.
[3] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Pub-

lishers, Dordrecht, Netherlands, 2002.
[4] B. Šešelja, A. Tepavčević, Completion of ordered structures by cuts

of fuzzy sets, an pverview, Fuzzy Sets Syst. 136 (2003), 1–19.
[5] B. Šešelja, A. Tepavčević, Representing ordered structures by fuzzy

sets, an overview, Fuzzy Sets Syst. 136 (2003), 21–39.
[6] E.K. Horváth, B. Šešelja, A. Tepavčević, Isotone lattice-valued

Boolean functions and cuts, Acta Sci. Math. Szeged. 81 (2015),
375–380.

[7] E.K. Horváth, B. Šešelja, A. Tepavčević, A note on lattice variant
of thresholdness of Boolean functions, Miskolc Math. Notes. 17
(2016), 293–304.

https://doi.org/10.1016/0022-247X(67)90189-8
https://doi.org/10.1007/978-3-0348-5921-9
https://doi.org/10.1007/978-3-0348-5921-9
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1016/S0165-0114(02)00365-2
https://doi.org/10.1016/S0165-0114(02)00365-2
https://doi.org/10.1016/S0165-0114(02)00366-4
https://doi.org/10.1016/S0165-0114(02)00366-4
https://doi.org/10.14232/actasm-014-331-1
https://doi.org/10.14232/actasm-014-331-1
https://doi.org/10.14232/actasm-014-331-1
https://doi.org/10.18514/MMN.2016.1485
https://doi.org/10.18514/MMN.2016.1485
https://doi.org/10.18514/MMN.2016.1485


B. Šešelja and A. Tepavčević / International Journal of Computational Intelligence Systems 13(1) 966–973 973

[8] E.K. Horváth, B. Šešelja, A. Tepavčević, Cut approach to invari-
ance groups of lattice-valued functions, Soft Comput. 21 (2017),
853–859.

[9] J. Jiménez, S. Montes, B. Šešelja, A. Tepavčević, On lattice valued
up-sets and down-sets, Fuzzy Sets Syst. 151 (2010), 1699–1710.

[10] T.S. Blyth, M.F. Janowitz, Residuation Theory, Elsevier, Oxford,
New York, Toronto, Sidney, Braunschweig, 2014.

[11] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer,
London, England, 2005.

[12] G. Grätzer, General Lattice Theory, second ed., Birkhäuser Verlag,
Basel, Boston, Berlin, 2003.

[13] N. Caspard, B. Leclerc, B. Monjardet, Finite Ordered Sets: Con-
cepts, Results and Uses, Cambridge University Press, Cambridge,
UK, 2012.

[14] R. Bělohlávek, Fuzzy galois connections, Math. Logic Quart. 45
(1999), 497–504.

[15] I.P. Cabrera, P. Cordero, F. Garca-Pardo, M. Ojeda-Aciego,
B. De Baets, On the construction of adjunctions between a fuzzy
preposet and an unstructured set, Fuzzy Sets Syst. 320 (2017),
81–92.

[16] I.P. Cabrera, P. Cordero, F. Garca-Pardo, M. Ojeda-Aciego,
B.De Baets, Galois connections between a fuzzy preordered struc-
ture and a general fuzzy structure, IEEE Trans. Fuzzy Syst. 26
(2018), 1274–1287.

[17] F. Garca-Pardo, I.P. Cabrera, P. Cordero, M. Ojeda-Aciego, On
Galois connections and soft computing, in: I. Rojas, G. Joya,

J. Cabestany (Eds.), Advances in Computational Intelligence.
IWANN, Lecture Notes in Computer Science, vol 7903. Springer,
Berlin, Heidelberg, 2013, pp. 224–235.

[18] B. Šešelja, A. Tepavčević, Collection of finite lattices generated by
a poset, Order. 17 (2000), 129–139.

[19] M. Erné, B. Šešelja, A. Tepavčević, Posets generated by irreducible
elements, Order. 20 (2003), 79–89.

[20] B. Šešelja, A. Tepavčević, Congruences on lattices and lattice val-
ued functions, in Proceedings of ESCIM, Toledo, Spain, 2019.

[21] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, Cambridge, UK, 1992.

[22] B. Ganter, R. Wille, Formal Concept Analysis, Mathematical
Foundations, Springer, Berlin, Heidelberg, Germany, 1996.

[23] P. Johnstone, Stone Spaces, Cambridge University Press, Cam-
bridge, UK, 1982, p. 43.

[24] L. Santocanale, F. Wehrung, Varieties of lattices with geometric
descriptions, Order. 30 (2013), 13–38.

[25] E.K. Horváth, S. Radeleczki, B. Šešelja, A. Tepavčević, Cuts of
poset-valued functions in the framework of residuated maps,
Fuzzy Sets Syst. (2020).

[26] M. Gorjanac-Ranitovic, A. Tepavčević, General form of lattice-
valued fuzzy sets under the cutworthy approach, Fuzzy Sets Syst.
158 (2007), 1213–1216.

https://doi.org/10.1007/s00500-016-2084-3
https://doi.org/10.1007/s00500-016-2084-3
https://doi.org/10.1007/s00500-016-2084-3
https://doi.org/10.1016/j.fss.2009.11.012
https://doi.org/10.1016/j.fss.2009.11.012
https://doi.org/10.1007/b139095
https://doi.org/10.1007/b139095
https://doi.org/10.1002/malq.19990450408
https://doi.org/10.1002/malq.19990450408
https://doi.org/10.1016/j.fss.2016.09.013
https://doi.org/10.1016/j.fss.2016.09.013
https://doi.org/10.1016/j.fss.2016.09.013
https://doi.org/10.1016/j.fss.2016.09.013
https://doi.org/10.1109/TFUZZ.2017.2718495
https://doi.org/10.1109/TFUZZ.2017.2718495
https://doi.org/10.1109/TFUZZ.2017.2718495
https://doi.org/10.1109/TFUZZ.2017.2718495
https://doi.org/10.1007/978-3-642-38682-4_26
https://doi.org/10.1007/978-3-642-38682-4_26
https://doi.org/10.1007/978-3-642-38682-4_26
https://doi.org/10.1007/978-3-642-38682-4_26
https://doi.org/10.1007/978-3-642-38682-4_26
https://doi.org/10.1023/A:1006473619786
https://doi.org/10.1023/A:1006473619786
https://doi.org/10.1023/A:1024438130716
https://doi.org/10.1023/A:1024438130716
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/s11083-011-9225-1
https://doi.org/10.1007/s11083-011-9225-1
https://doi.org/10.1016/j.fss.2020.01.003
https://doi.org/10.1016/j.fss.2020.01.003
https://doi.org/10.1016/j.fss.2020.01.003
https://doi.org/10.1016/j.fss.2006.12.016
https://doi.org/10.1016/j.fss.2006.12.016
https://doi.org/10.1016/j.fss.2006.12.016

	Kernels of Residuated Maps as Complete Congruencesin Lattices
	1 INTRODUCTION
	1.1 Historical Remarks
	1.2 Topic of Our Research

	2 PRELIMINARIES
	2.1 Functions
	2.2 Posets and Complete Lattices
	2.3 Residuated Maps
	2.4 Closure Operators
	2.5 Lattice-Valued Functions

	3 RESULTS
	3.1 Complete Congruences on L Induced by L-Valued Functions
	3.2 From Congruences to Residuated Maps
	3.3 Representation Theorems for Lattice-Valued Fuzzy Sets
	3.4 Representation of Finite Lattices

	4 CONCLUSION


