
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 1161–1175

DOI: https://doi.org/10.2991/ijcis.d.200805.003; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

A Search-Based Test Data Generation Method for
Concurrent Programs

Seyed Mohsen Mirhosseini , Hassan Haghighi*,

Faculty of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran, Iran

ART I C L E I N FO
Article History

Received 02 Jan 2020
Accepted 27 Jul 2020

Keywords

Software testing
Test data generation
Concurrent program
Hybrid meta-heuristic algorithm

ABSTRACT
Concurrent programs are being widely adopted in development of multi-core and many-core processors. However, these types of
programs present some features such as concurrency, communication and synchronization which make their testing more chal-
lenging than sequential programs. Search-based techniques, which use meta-heuristic search algorithms, have frequently been
used for testing sequential programs, especially in the test data generation activity. However, application of search-based tech-
niques in test data generation for concurrent programs has seldom been covered in the literature. The first contribution of this
paper is to present a search-based test data generation framework for concurrent programs. Additionally, a hybrid meta-heuristic
algorithm, called SFLA-VND, is proposed, which could be used in the mentioned framework as well as other meta-heuristic
algorithms. SFLA-VND is a combination of the shuffled frog leaping algorithm (SFLA) and the variable neighborhood descent
(VND). The proposed framework has been experimented on five concurrent benchmark programs by applying genetic algo-
rithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), SFLA and SFLA-VND. Experimental results
demonstrate the effectiveness and efficiency of this framework. Also, the results confirm the superiority of SFLA-VND in com-
parison with some popular meta-heuristic algorithms, when they are used for test data generation.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The concurrent programming style is widely used in modern pro-
grams to improve the performance and decrease the computation
time of the programs [1]. Such adoption of concurrent systems calls
for new challenges, as it is important that these systems work cor-
rectly. Software testing is one of the significant stages in software
development life cycle which aims to evaluate the quality and to
improve the reliability of the software by detecting as many failures
as possible.

Test data generation is an important activity in software testing
because effectiveness and efficiency of the test is highly dependent
to the number and quality of the test data. Various methods, such as
search-based techniques, have been used for test data generation in
sequential programs. Search-based methods apply meta-heuristic
algorithms to automate the search for test data with the aim of max-
imizing the achievement of test goals [2]. However, the application
of these methods for test data generation in concurrent programs
has rarely been covered in the literature.

Concurrent programs include some features such as concurrency,
communication and synchronization that make testing a challeng-
ing activity. These features have not been considered in the fitness
function of the search-based methods, which have been introduced

*Corresponding author. Email: h_haghighi@sbu.ac.ir

for sequential programs so far. Therefore, direct application of these
methods to concurrent programs would be ineffective [3].

A concurrent program consists of multiple processes that interact
using either message passing or shared memory paradigms. The
vast majority of testing approaches have focused on shared mem-
ory programs, and there is a few researches working on message-
passing programs. Also, most testing techniques for concurrent
programs target the selection of relevant interleavings, and a few
techniques work on test data generation [4].

This paper mainly concentrates on test data generation for
message-passing-based concurrent programs and has two main
contributions:

1. Proposing a search-based test data generation framework for
concurrent programs. This framework uses a testing criterion
alongside a fitness function which are both well suited for
concurrent programs. It consists of four main steps. First, the
program under test is instrumented by which some codes are
added to the program in order to obtain the required informa-
tion from the program execution for a particular input data.
Next, a graph called the parallel control flow graph (PCFG) is
built from the program. In the third step, a list of test require-
ments which are to be covered is extracted according to the
all-def-s-use test criterion; all-def-s-use is one of the test cri-
teria introduced for concurrent programs in [5,6]. The fourth
step tries to cover each test requirement using a meta-heuristic

https://doi.org/10.2991/ijcis.d.200805.003
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0002-2990-9598
https://orcid.org/0000-0002-6145-4095
http://creativecommons.org/licenses/by-nc/4.0/

1162 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

algorithm. This step is the most important step of the proposed
framework in which each of the meta-heuristic algorithms can
be used.

2. Suggesting a new hybrid meta-heuristic algorithm named
SFLA-VND. It is based on a modified version of the shuffled
frog leaping algorithm (SFLA), which uses the variable neigh-
borhood descent algorithm (VND) for local search. We use
SFLA-VND in the framework proposed as the first contribu-
tion, even though each of the meta-algorithms introduced so
far can be used in this framework as well.

SFLA is a meta-heuristic optimization algorithm that mimics the
memetic evolution of a group of frogs when seeking for the location
that has the maximum amount of available food. This algorithm has
shown its good performance in many optimization problems [7–9].
However, this algorithm may converge to a solution that is not the
global optimum. To solve this problem, we combine SFLA with the
VND algorithm in order to intensify the search and achieve a better
solution. The VND algorithm will only be run if SFLA gets stuck in
local optima. In this situation, VND receives the best solution pro-
duced by SFLA and tries to improve it. To do this, VND performs
the search in the neighborhood of the best solution while the neigh-
borhood domain increases during the search process. In addition,
we utilize another technique, called replacement, to escape the algo-
rithm from local optima. In the replacement stage, a percentage of
elements with the lowest fitness are replaced by random elements.

The proposed framework for test data generation has been evalu-
ated by applying genetic algorithm (GA), ant colony optimization
(ACO), particle swarm optimization (PSO), SFLA and SFLA-VND.
In addition, the framework has been investigated in terms of its abil-
ity to detect program faults. The results show the effectiveness and
efficiency of this framework in test data generation for concurrent
programs.

The paper is organized as follows: In Section 2, the basic concepts
are given, and a literature review is presented. Section 3 intro-
duces the proposed framework. Then, it is followed with a detailed
description of SFLA-VND in Section 4. In Section 5, the experi-
mental results are presented. Finally, Section 6 covers the conclu-
sion and the suggested future works.

2. BACKGROUND

2.1. Basic Concepts

A concurrent program consists of two or multiple processes/threads
which are in progress at the same time. Parallel programs can
be considered as a particular type of concurrent programs which
their processes/threads are executed simultaneously [10]. A par-
allel program can be modeled with a graph called the PCFG [5].
Other types of the concurrent programs can also be modeled as a
graph. For example, in Prado et al. [11], the method of converting
a multithreaded concurrent program to the PCFG graph has been
described.

A PCFG for a parallel program consists of control flow graphs of
the program processes. These graphs are linked by so-called inter-
processes or communication edges which represent communica-
tion between processes. The control flow graph of the concurrent

program process p is represented with CFGp. The method of gen-
erating control flow graphs for processes and sequential programs
is similar [12]. In the control flow graph of the process p, each
node n (indicated with np) corresponds to a set of commands that
are sequentially executed or can be associated with a communica-
tion primitive (send or receive). A communication edge

(
nai , nbj

)
in

PCFG links the send command ni in process a to the receive com-
mand nj in process b. A communication edge provides the possi-
bility of communication and synchronization between two edges.
Figure 1 shows the concurrent program Gcd1 which calculates the
greatest common divisor (gcd) of three input numbers. Gcd1 con-
sists of a master process and three slave processes. Code of the slave
processes 1 and 2 are the same and are different from the code of the
slave process 3. As shown, in the master process of Gcd1, the first
and the second numbers are sent to the slave process 1 and then,
the second and the third numbers are sent to the slave process 2.
The gcd of two received numbers is calculated by each slave process
and is returned to the master process. If the two received numbers
by the master process are greater than one, they will be sent to the
slave process 3 where their gcd is calculated and is considered as the
final output. Otherwise, the gcd of the three received numbers will
be equal to one.

Figure 2 represents the PCFG of Gcd1. A control flow graph is
drawn for every process of Gcd1 in PCFG. Each line of the source
code is labeled with a number on the left side which represents
the related node number in PCFG. Communications between pro-
cesses are also represented with communication edges. For exam-
ple, a communication edge (10, 11) is drawn between node 1 from
the master process and node 1 from slave process 1.

We have implemented a library of methods in java, which allows
communication between different processes in the concurrent pro-
gram Gcd1 and other benchmark programs used in our experi-
ments. Details on how to implement this library and use the send
and receive methods are described in Section 5.2.

Souza et al. [5] have presented two groups of testing crite-
ria for message-passing-based parallel programs. These criteria
have been defined with respect to the notion of PCFG. The
first category includes testing criteria which are based on con-
trol and communication flows. The most important criteria of this
group are all-nodes-coverage, all-send-nodes-coverage, all-receive-
nodes-coverage, all-edges-coverage and all-communication-edges-
coverage. The testing criteria of the second group are based on data
and message-passing flows. In this paper, we use a testing criterion
from the second group, called “all-def-s-use.” Since the proposed
framework considers the message-passing paradigm, the commu-
nication related errors are the most possible concurrency errors in
the involved processes. The all-def-s-use criterion forces the pro-
gram to cover the communication edges, and therefore, could be
appropriate for detecting this kind of errors.

A definition is a location where a value for a variable is stored into
memory (assignment, input commands, etc). So, the receive com-
mand in the programs with message-passing capabilities can be
considered as a definition of a variable. A use is a location where
a variable’s value is accessed. The uses can be classified to compu-
tational use, predicate use and communication use. The compu-
tational use occurs in a computation statement. The predicate use
occurs in a predicate statement and the communication use occurs

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1163

Figure 1 Gcd1 program: (a) master process, (b) slave1 and slave2 processes and (c) slave3 process.

in communication commands. In the all-def-s-use criterion, the
objective is to cover all def-use pairs which are also passed from a
communication edge in a path from the definition location to the
use location. The use in this criterion includes both computational
and predicate uses.

Considering the all-def-s-use criterion for Gcd1, 55 test require-
ments can be defined. As an example of the test requirements, con-
sider variable x1 defined in node 0 of the master process. The value
of this variable, after sending to the slave1 process (passing from the
communication edge (10, 11)), is considered for the computational

1164 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

Figure 2 Parallel control flow graph (PCFG) graph for Gcd1.

use in node 5 of the slave1 process. To cover each of the defined
requirements, it is enough to traverse a path of the program from
the definition location to the use location.

2.2. Related Work

Through the years, several methods for generating test data
have been proposed. Since the present research is concerned
with search-based test data generation, studies based on search-
based methods are reviewed here. Most of these methods have
been done in respect of sequential programs, and a small num-
ber of them have paid attention to concurrent programs. In
this section, an overview of related works is presented. In addi-
tion, the differences between our work and previous works are
described.

Search-basedmethods for test data generation in sequential pro-
grams: Jones et al. [13] and Pargas et al. [14] investigated the use of
the GA for automated test data generation, aiming at branch cov-
erage. Pachauri et al. [15] suggested three techniques to enhance
the efficiency of test data generation using the GA. The suggested
improvements involved presenting a new technique to order the
program code branches, for being selected as the coverage goals,
transferring a maximum of 10 percent of the desired elements
of each generation to the next generation, and storing several

generated population’s elements for a branch into a generated
initial population of the sibling branch. Yang et al. [16] proposed a
new search-based method for test data generation, called the regen-
erate genetic algorithm (RGA). RGA adds a new regeneration strat-
egy to the traditional GA, which enables it to avoid the possible local
stagnation.

Tracey et al. [17] proposed a framework to generate test data for
branch coverage based on the simulated annealing (SA) algorithm.
Windisch et al. [18] selected the branch coverage criterion as the
testing objective and used the PSO algorithm for generating test
data. Zhu et al. [19] proposed an improved PSO algorithm using
adaptive inertia weight, and the results showed that the proposed
PSO algorithm had higher efficiency in comparison to GA and the
basic PSO. The proposed approach in Jiang et al. [20] reduced the
particle swarm evolution equations and got an evolution equation
without velocity. This paper also proposed an adaptive adjustment
scheme based on inertia weight, which balances search capabilities
between global search and local search.

Becerra et al. [21] formulated the test data generation problem as
a constraint optimization problem and used the differential evo-
lution (DE) algorithm to solve the problem. This study used the
branch coverage criterion. A combination of the symbolic execu-
tion method and the artificial bee colony (ABC) algorithm was used
for path coverage by Dahiya et al. [22].

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1165

Mao et al. [23] used the modified ACO algorithm for automated
test data generation. This work was an improvement of their earlier
work [24], in which they used the harmony search (HS) algorithm
to generate test data satisfying branch coverage. Sharifipour et al.
[25] presented a memetic ACO algorithm for structural test data
generation. The proposed approach incorporates (1 + 1)-evolution
strategies (ES) to improve the search functionality of ants in local
moves. Moreover, a novel definition of the pheromone functionality
has been introduced to reinforce search exploration.

In Ghaemi and Arasteh [26], SFLA was proposed to generate test
data. In this work, branch coverage was used as the basis of the fit-
ness function to generate effective test data. For comparing the per-
formance of the SFLA-based test data generation method with some
other metaheuristic algorithms, seven benchmark programs were
used. The results have indicated that the proposed method has cer-
tain advantages over other methods based on GA, PSO, ACO and
ABC.

Search-based methods for test data generation in concurrent
programs: Tian and Gong in [3] presented a modified co-
evolutionary GA for test data generation in parallel programs with-
out uncertainty. The proposed algorithm was compared with the
standard GA, the co-evolutionary GA and the random method.
The results have shown that the proposed algorithm has better
performance in terms of success rate (SR), speed and the num-
ber of evaluated individuals. A developed version of their work,
presented in [27], focuses on the path coverage problem for
message-passing interface (MPI) parallel programs with blocking
communication. The problem has been formulated as an optimiza-
tion problem whose decision variables are the program inputs and
the execution order of the sending nodes. The proposed method,
called NICS_GA, has been evaluated through a series of controlled
experiments on five typical programs. The experimental results
have shown that the proposed method can generate test data for
path coverage, effectively and efficiently.

Tian et al. in [28] have studied the problem of generating test data
for message-passing parallel programs with respect to the multi-
ple paths coverage criterion. They have proposed an enhanced set-
based evolutionary algorithm to improve the efficiency of test data
generation. The algorithm uses information related to the quality
of a scheduling sequence during the evolution of a population. The
proposed algorithm was applied to nine message-passing parallel
programs and was compared with the traditional set-based evolu-
tionary algorithm. The experimental results have shown that the
suggested algorithm reduces the number of generations and the
required time for test data generation.

In Sun et al. [29], sun et al. focused on the problem of test data
generation in MPI programs using the path coverage criterion. To
increase the efficiency of the approach, a method for scheduling
sequence reduction was suggested. In the proposed method, the
program inputs are first sampled by the Latin hypercube sampling
method. Then, the program is executed for each sample under each
scheduling sequence and all the scheduling sequences are sorted
considering the similarities between the paths traversed by these
samples and the target one. Finally, a scheduling sequence with the
best quality is selected and its feasibility is investigated based on
the symbolic execution. This method was applied to seven typical
MPI programs and was compared with the random method. The

experimental results have indicated that test data can be generated
under the selected scheduling sequence with low time consumption
and high SR.

To sum up, most of the search-based methods for test data gen-
eration have mainly focused on sequential programs and have
not taken into account the unique characteristics of concurrent
programs. Therefore, they are not suitable for testing concurrent
programs.

Application of search-based methods for test data generation
in concurrent programs is a new trend. Our search-based
approach is specifically proposed for concurrent programs and
considers the features such as concurrency, communication
and synchronization. In comparison with the previous meth-
ods, our approach uses a different test criterion, i.e., all-
def-s-use, and considers the failure detection capability as an
additional evaluation metric. Furthermore, a new hybrid meta-
heuristic algorithm, namely SFLA-VND, is proposed which
could be used in our approach as well as other meta-heuristic
algorithms.

3. THE PROPOSED FRAMEWORK FOR
TEST DATA GENERATION

The overall framework is depicted in Figure 3. This framework
consists of four main components: program instrumentation,
static analysis, test requirements extraction and meta-heuristic
test data generation. These components are described in
Section 3.1.

3.1. The Framework Components

Program Instrumentation: In this component, some codes are
added to the program under test in order to obtain the required
information from the program execution for a particular input
data. This information includes the traversed paths in each pro-
cess and the used communication edges. The information obtained
from the instrumented code will be used in the stage of the
meta-heuristic test data generation to compute the input data
fitness.

Static Analysis: This component is in charge of generating the
PCFG graph of the program under test. In addition, the loca-
tion of the definitions and uses of the program variables is deter-
mined. This information will be used in the next step to extract test
requirements.

Test Requirements Extraction: This component is responsible for
extracting a list of test requirements to be covered according to
the all-def-s-use test criterion. Then, for each of the extracted
test requirements, a path is specified in the graph. Each path
begins with a node in which a variable is defined, and after
passing a communication edge, it ends with a use of that vari-
able in another process. The considered paths are the short-
est simple paths (in a simple path, no node appears more than
once) between the definition and the use locations of a variable.
In programs with loops, simple paths of the Sidetrips type are
used [30].

1166 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

Figure 3 The overall framework of the proposed approach.

Figure 4 The flowchart of the test data generation step.

Meta-heuristic TestDataGeneration:This is the main component
of the framework. It executes repeatedly and, in each repetition, the
test data is generated for one of the simple paths generated at the
previous step. Figure 4 shows the details of this step schematically.
At this stage, a meta-heuristic algorithm will be used to generate test
data. In our experiments, four existing meta-heuristic algorithms
along with a novel hybrid meta-heuristic algorithm have been used
for this purpose.

Each meta-heuristic algorithm starts with the generation of a ran-
dom initial population (or random input data). This population is
improved using the meta-heuristic algorithm. During the process
of generating test data, whenever it is necessary to calculate the fit-
ness of population elements, this will be done by calling a function
called the fitness computation. The fitness function uses the input
data of program under test, the target path, and the instrumented
program under test as inputs. After executing the instrumented
program for the input data, the function measures the fitness of
the input data by comparing the executed path with the target
path.

3.2. Fitness Function

Fitness function is the most important part of a meta-heuristic
algorithm because its quality has a great effect on the algorithm’s
performance. In this research, Eq. (1) is used to measure the fitness
of the input data xk.

Fitness (xk) = PathSimilarity_Score + NBD (1)

This fitness function consists of two parts which are described in
the following. To calculate the first part, i.e., PathSimilarity_Score,
we consider each target path as a collection of three disjoint sub-
paths. As mentioned before, each target path starts from a definition
location in a process to a use location in another process. The first
subpath which is located in the former process starts from the defi-
nition of a variable u and continues to reach the beginning of a com-
munication edge. The second subpath only contains the reached
communication edge, connecting the former and the latter process.
The third subpath is in the latter process and starts from the end
of the communication edge to the location where the variable u is

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1167

Table 1 The branch distance calculation for different types of predicates.

No. Predicate Branch Distance

1 Boolean If true then0 else𝛿
2 ¬a Negation is propagated over a
3 a = b If abs (a− b) = 0 then0 else abs (a− b)+ 𝛿
4 a ≠ b If abs (a− b) ≠ 0 then0 else𝛿
5 a < b If (a− b) < 0 then0 else abs (a− b)+ 𝛿
6 a ≤ b If (a− b) ≤ 0 then0 else abs (a− b)+ 𝛿
7 a > b If (b− a) < 0 then0 else abs (b− a)+ 𝛿
8 a ≥ b If (b− a) ≤ 0 then0 else abs (b− a)+ 𝛿
9 a and b f (a)+ f (b)
10 a or b Min

(
f (a) , f (b)

)

used. Neither the first subpath nor the third subpath involve the
communication edge.

After executing the program under test with an input data xk, six
states may occur by comparing the traversed path in the program
with the target path we seek to cover. In the following, each possible
state is explained.

• State 0: No part of the first subpath of the target path is covered.

• State 1: A part of the first subpath of the target path is covered.

• State 2: The entire first subpath is covered, but no part of the
third subpath is covered.

• State 3: The entire first subpath and part of the third subpath
are covered.

• State 4: The first and third subpaths of the target path are fully
covered, but the communication edge (the second subpath) is
different from the target path.

• State 5: The first, second and third subpaths of the target path
are fully covered.

PathSimilarity_Score is assigned a number between 0 and 5, equal
to the occurred state number. For example, if State 1 above is
occurred after program execution, value 1 will be assigned to
PathSimilarity_Score.

The second parameter in the fitness function is the normalized
branch distance (NBD). The value of the branch distance is calcu-
lated and normalized using Eq. (2). The method presented in [15]
is used to calculate the branch distance and the NBD.

Normalized branch distance =
(1
1.001 branch distance

)
(2)

The value of the branch distance is calculated by assigning the input
values to the variables of the predicate of the critical branch. The
critical branch is the first different node in the comparison of the
traversed path for a test data with the target path. Table 1 shows
how to calculate the branch distance for different types of predi-
cates, where δ (δ > 0) is a constant value.

The first part of the proposed fitness function has a greater effect
on the value of this function. This means that, for input data xk and
x′k, f (xk) is greater than f

(
x′k
)

if and only if data xk results in greater
value for PathSimilarity_Score.

4. THE HYBRID META-HEURISTIC
ALGORITHM

In this section, we introduce a hybrid meta-heuristic algorithm,
called SFLA-VND. The SFLA-VND algorithm is a modified ver-
sion of the SFLA algorithm, in which the VND algorithm is applied
as a stage of SFLA. In the following, firstly, the SFLA algorithm
is reviewed for better understanding of the proposed hybrid algo-
rithm. Then, we provide a detailed description of the VND and the
SFLA-VND algorithms.

SFLA [31,32] is a metaheuristic algorithm in which a set of frogs
(or initial solutions) cooperate to find the most significant sources
of food which can be considered as global optimum points in opti-
mization problems. In the first stage of this algorithm, the frogs are
randomly distributed over the search space. Then, the population
is partitioned into smaller communities called memeplexes. A ran-
dom subset, called a submemeplex, is selected from each meme-
plex. In each submemeplex, the worst frog tries to get to the location
that has the maximum amount of available food by leaping toward
the best frog. To ensure the global exploration, the frogs are peri-
odically shuffled and reorganized into new memeplexes. Genera-
tion by generation, the algorithm continues until a stop criterion is
satisfied.

In the basic SFLA, the memeplex evolution process involves con-
structing a submemeplex in each memeplex and trying to improve
the worst frog inside it. The frogs in a memeplex are selected for
creating a submemeplex based on the triangular probability dis-
tribution. This type of distribution causes the worse frogs to have
a small chance of being present in the submemeplex and being
evolved. Therefore, submemeplex creation in the basic SFLA is an
ineffective process. In addition, because of trying to improve only
the worst frog in each submemeplex, the memeplexes will evolve
slowly. Regarding the mentioned reasons, submemeplex construc-
tion stage of the basic SFLA is eliminated in the proposed hybrid
algorithm. In addition, instead of the evolution of the worst frog
in each memeplex, all frogs except the best frog will participate in
the evolution process. Meanwhile, similar to the PSO algorithm, the
velocity parameter is defined for each frog in addition to the posi-
tion parameter. Also, the frog jumping is performed considering the
position of the best memeplex frog and the best frog of the whole
population.

The SFLA-VND algorithm has two new steps that will only be
implemented if the algorithm is stuck in local optima. These two
steps include performing the local VND search algorithm on the
best frog of the population, and the replacement operation. In the
replacement step, Rr percentage of the frogs with the least fitness
are removed from the population and replaced with random frogs.
We call Rr the replacement rate, which is one of the parameters of
the proposed algorithm.

The variable neighborhood search (VNS) [33] algorithm is a meta-
heuristic algorithm based on the systematic changes of local struc-
tures. Due to the advantages of this algorithm, such as a small
number of control parameters and high efficiency, it has been suc-
cessfully used in various combinational optimization problems. In
recent years, several types of VNS strategies, such as VNS Basic,
Reduced VNS, VND, Skewed VNS and General VNS (GVNS), have
been proposed. A comprehensive review of various VNS versions
has been presented in [34].

1168 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

VND has proved its effectiveness in solving many combinatorial
problems [35–37]. The main idea of the VND algorithm is to design
several neighborhood structures and systematically change neigh-
borhoods when local searches are caught up in local optimums.
More precisely, the algorithm starts with an initial solution, and
then, follows a cycle of local search and neighborhood change until
the termination condition is met. The search process is repeated in
each neighborhood until better answers are found. The pseudocode
of the VND algorithm is presented in Algorithm 1.

Algorithm 1: Pseudo-code of VND
1 Procedure VND (s, Kmax)
2 k = 1;
3 while k <= kmax do
4 s′ = Local search of Nk (s)
5 if f (s′) < f (s) then
6 s = s′;
7 k = 1;
8 else
9 k = k+ 1;
10 end while
11 return s;

In this algorithm, s is an initial solution and kmax is the number of
neighborhood structures. Nk (s) is the kth neighborhood structure
defined around s. s′ is the best solution in Nk (s) which is obtained
by local search (line 4). In lines 5 to 9 of the algorithm, if s′ does
not improve upon s, the method resorts to the next bigger neigh-
borhood by incrementing the value of k. Otherwise, the method
updates s and restarts the search from the first neighborhood (line
8). The algorithm finishes if k > kmax which means none of the
neighborhoods contain a solution better than the current one.

Figure 5 shows the flowchart of the proposed SFLA-VND algo-
rithm. The algorithm includes 9 steps which are described in the
following:

Step 1: The algorithm parameters are initialized. These parame-
ters include the number of population elements (P), the number of
memeplexes (m), the number of frogs in each memeplex (n), the
maximum number of algorithm generations (maxGen), the num-
ber of evolutions of each memeplex (maxMemGen) and the replace-
ment rate (Rr).

Step 2: This step is to generate a random population of elements.
Each of the population elements is called a frog. P frogs with posi-
tion and velocity components are generated randomly.

Step 3: The fitness of each frog is calculated using the fitness func-
tion.

Step 4: The frogs are arranged in the descending order according to
their fitness values.

Step 5: The sorted frogs are distributed over memeplexes. This will
be done with a mechanism similar to that used in the standard
SFLA. So that, The ith frog goes to the (i mod m)th memeplex, such
that all the frogs are distributed in all the memeplexes.

Step 6: The goal is the evolution of the frogs in each of the meme-
plexes. At this iterative step, the frogs in each memeplex jump to
the new positions considering the position of the best frog in the

memeplex (mbest) and best position found by any frog in the pop-
ulation (gbest). If vki and xki are defined respectively as the velocity
and the position of the ith frog in the Kth iteration, vk+1i and xk+1i
are obtained using Equations (3) and (4).

vk+1i = wvki + c1rand1 ×
(
mbesti − ski

)
+c2rand2 ×

(
gbest − ski

) (3)

xk+1i = xki + vk+1i (4)

where mbesti is the position of the best frog in the memeplex con-
taining the ith frog. Index i represents the frog number which varies
between 1 to P. w is the inertia weight that specifies how much of
the previous velocity will be preserved in the current velocity. rand1
and rand2 are two random values in the range [0, 1], and the param-
eters c1 and c2 are the acceleration constants reflecting the weighting
of stochastic acceleration terms that pull each frog toward mbesti
and gbest positions, respectively. The process of evolution of each
memeplex is repeated maxMemGen times.

Step 7: The frogs in the various memeplexes are shuffled. Then, the
termination condition is checked. The termination condition is to
reach the maximum number of generations (maxGen), to reach the
maximum possible value of the fitness function, or to converge to a
certain fitness value. If the fitness value of the best frog be constant
for a number (k) of consecutive repetitions, the convergence condi-
tion is met. If the termination condition does not meet and the best
frog in the last generation is equal to the best value in the previous
generation, firstly, the eight and nine steps are done and then the
algorithm returns to the third step to rebuild the memeplexes. Oth-
erwise, the algorithm will go straight to the third step. Therefore,
the steps eight and nine will only be applied when the algorithm is
stuck in the local optima. These steps will be done at maximum k-1
times to mitigate getting stuck in local optima.

Step 8: The VND algorithm is used to search around the best frog.
If a better frog is found, it will be considered as the best frog. In the
used VND algorithm, three different neighborhood structures are
defined. Each of the neighborhoods includes a region in the radius
of rmax around the best frog, where the rmax value increases from
the first to the third neighborhoods. Suppose that the variable Xi is
the best frog represented by a vector of input variables of the pro-
gram under test. Also, X′i is the frog obtained from local search in
a neighborhood of Xi which is produced by applying the following
mutation operator for each variable:

X′
i = Xi + R (5)

where R = (r1, r2, … , rn) is a vector; element ri is a Gaussian ran-
dom variable with mean 0 and variance rmax and n is the number
of the program inputs. As already stated, rmax represents the maxi-
mum neighborhood radius and is monotonically increased during
the algorithm’s execution in next neighborhoods to carry out search
exploitation with greater neighborhoods.

Step 9: In this step, Rr percent of the frog population with the least
amount of fitness is removed from the population and replaced with
new random frogs. In simple optimization problems, which their
optimal solution is usually found in the first few generations of the
algorithm, there will be no need to conduct steps eight and nine.
These steps will only be applied when the algorithm is caught up in
the local optima.

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1169

Figure 5 The shuffled frog leaping algorithm_variable neighborhood descent (SFLA_VND) algorithm flowchart.

5. EVALUATION

In order to evaluate the proposed framework for generating test
data, it has been implemented by applying five meta-heuristic algo-
rithms, GA, ACO, PSO, SFLA and SFLA-VND, on five concur-
rent benchmark programs. The results of these meta-heuristic algo-
rithms are presented and compared in this section. In Section 5.1,
the evaluation criteria are introduced. In Section 5.2, details of the
used benchmark programs and the configurations of the meta-
heuristic algorithms are presented. Also, in this section, we show
the results of the sensitivity analysis performed in order to find the
optimal values for the parameters of SFLA-VND. The results of the
experiments and the statistical analysis are presented in Section 5.3.
Finally, Section 5.4 evaluates the failure detection capability of the
proposed framework.

5.1. Evaluation Metrics

To evaluate the proposed method, two criteria are used: one for the
effectiveness of the generated test data and another one for the effi-
ciency of the test data generation method. The effectiveness crite-
rion is measured by the average coverage (AC) and the SR metrics.
The efficiency criterion is measured by the average time (AT) and
the average number of the fitness evaluations (FEs) metrics. The
mentioned metrics are introduced as follows:

• Average Coverage: The average number of the test
requirements covered by the algorithm in 100 runs.

• Success Rate: The probability of covering all test requirements
by test data. The value of this metric is the ratio of the number
of executions capable for covering all test requirements to the
number of all executions.

• Average Time: Average runtime of the algorithm.

• Average number of FEs: The average number of fitness
function calls in all executions of the algorithm.

5.2. Experiment Setup

We use five concurrent benchmark programs for evaluating the pro-
posed method. Table 2 shows the characteristics of the benchmark
programs used in the experiments. In the first column of this table,
the name of the benchmark program is given. The columns 2 to
5 represent the number of inputs, program processes, send com-
mands and receive commands in each of the programs, respectively.
In the sixth column, a brief description of the functionality of each
program is presented.

To communicate the processes in the benchmark programs, we
have added a library of methods to Java in order to exchange mes-
sages. The facilities of this library are similar to MPI and PVM. To

1170 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

Table 2 The benchmark programs used for experimental analysis.

Programs #Arg Processes Sends Receives Description

Gcd1 [38] 3 4 13 13 Calculates the greatest common divisor of 3 integers
Gcd2 [38] 4 7 18 18 Calculates the greatest common divisor of 4 integers
Index [1] 16 4 9 9 Searches an input character in a given string
Matrix [1] 3 9 6 6 Multiplies two input matrices
SkaMPI1 [39] 30 2 20 20 A tool for the design of performance-portable message-passing interface (MPI) programs

implement the library, the data exchange capabilities of the existing
datagram socket in Java have been used. The library includes the
send and receive methods. The send method consists of three input
parameters. Theses parameters are the variable name, the destina-
tion process number and a data tag. The receive method has two
input parameters. The first parameter is the receiver ID and the sec-
ond parameter is the data tag. In fact, the receive method receives
a data from a specific sender with a specific tag. If the receiver
ID in the receive method is equal to −1, the send data from each
sender will be allowed and it will be received. Also, if the data tag
in the receive method is equal to −1, the send data will be admit-
ted with any tag. In fact, the program supports uncertainties with
placing one or both parameters of the receive method equal to −1.
For example, as shown in Figure 2, the non-deterministic receive
method is used in nodes 5 and 6 of the master process. Also, the
send method used in the benchmark programs of this paper are
from non-blocking type. It means that after sending data by the
send command, the next command is immediately executed with-
out waiting to receive data by the receiver.

Since the parameters of each meta-heuristic algorithm should be
adjusted precisely for desired performance of the algorithm, we
used the best values reported in the past works for the parame-
ters of GA, ACO, PSO and SFLA. However, the optimal values
for the parameters of the SFLA-VND algorithm have been derived
from the sensitivity analysis. Sensitivity analysis is one of the meth-
ods which is used to determine the optimal values of the param-
eters. In this method, the effect of each parameter on the system
performance is investigated. The SFLA-VND algorithm has sev-
eral parameters. In this section, we report the results of performing
sensitivity analysis on four important parameters of this algorithm.
These parameters are the number of memeplexes (m), the number
of frogs in each memeplex (n), the number of evolutions per sample
(N) and the replacement rate (Rr).

To perform the sensitivity analysis, only the AC and the AT were
considered. In other words, the SR and the average number of FEs
were ignored because of their behavioral similarities to the AC and
AT metrics.

By examining the values of the AC and AT, it was found that when
the number of elements of the population exceeds 20, there is not
much change in the AC value; however, the AT value increases. For
this reason, the values of m and n were chosen so that their mul-
tiplication was close to 20. Among the different values considered
for parameters m and n, the highest AC and the lowest AT were
obtained in the case where m = 3 and n = 8.

To evaluate the effect of variations in parameter N, the values of
three other parameters were considered constant and the results for
different values of N were obtained. The parameters were consid-
ered as m = 3, n = 8, Rr = 15, and N = 10, 12, 15, 17, and 20.

The best results were obtained for N = 10. Also, to evaluate the
effect of variations in the parameter Rr, the values of the three other
parameters were selected equal to the obtained optimal values, i.e.,
m = 3, n = 8 and N = 10. Then, the results of the experiments
were investigated for different Rr values. For this purpose, different
values of 10, 15 and 20 were considered for Rr. The best results were
obtained for Rr = 15.

As stated in Section 4, if the fitness value of the best frog remains
constant for k consecutive iterations, the convergence condition is
met. We have considered two different values 5 and 10 for k and
investigated the impact of these values on experiment results. In
experiments with k = 10, there has been no change in the best fit-
ness value after 5 iterations. Also, if we chose a value less than 5 for k,
sufficient opportunity wouldn’t be given to the VND algorithm and
the replacement operator to improve the value of the best fitness.
Therefore, in our experiments, the k value has been considered 5.

The parameters of the meta-heuristic algorithms used in the exper-
iment are given in Table 3. The population size in the SFLA-VND
algorithm, equal to 24 was obtained from multiplication of the
memeplexes number and the memeplex size. For fairly compari-
son of the meta-heuristic algorithms, the obtained population size
is considered for all algorithms, too. Also, the number of iterations
was considered to be 100 in all algorithms.

5.3. Experimental Results and Discussion

In Tables 4 and 5, the algorithms are compared based on the aver-
age value obtained for the four evaluation metrics. In order to draw
conclusions in much higher confidence, the ANOVA test was con-
ducted on two metrics of the AC and AT. For each of these two
metrics, the results of the SFLA-VND algorithm are compared with
the other four meta-heuristic algorithms in terms of the mean dif-
ference and obtained p-value. The p-value is used to determine the
significance of the mean difference between the results of the two
compared algorithms at the 0.05 level. If the p-value is less than
0.05, it shows the significant difference and superiority of one of the
algorithms. However, if this value is greater than 0.05, it can be con-
cluded that the mean of the results of the two algorithms don’t have
a significant difference at the level of 0.05 and the algorithms have
comparable performance.

According to Table 4, it can be seen that the SFLA-VND algo-
rithm has the highest AC and SR. However, the results of the com-
pared algorithms are close to each other. For Gcd2, the results of
all the algorithms with respect to the two mentioned metrics are
the same. This is because the complexity of the Gcd2 program is
low so that all meta-heuristic algorithms are able to cover all its test
requirements. For SKaMPI1 which is the largest and most complex
program among benchmarks, the SFLA-VND algorithm performs

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1171

Table 3 The parameter settings of five meta-heuristic algorithms

Algorithm Parameter Value

PSO w: Inertia weight 0.6
c1: Cognitive

parameter
2.05

c2: Scaling parameter 2.05
GA Tournament size 2

Crossover probability 0.9
Mutation probability 0.05

ACO [40] K (archive size) 60
Q (Locality of search

process)
0.5

Zita (Speed of
convergance)

0.85

SFLA Number of
memeplexes

3

Memeplex size 8
Number of memeplex

evolutions in each
iteration

10

Submemeplex size 60
percentage
of
memeplex
size

Maxstep 0.2
SFLA-VND Number of

semeplexes
3

Memeplex size 8
Number of memeplex

evolutions in each
iteration

10

w: Inertia weight 0.6
c1: Cognitive

parameter
2.05

c2: Scaling parameter 2.05

better than the other algorithms. This indicates that the use of VND
in our hybrid algorithm is effective in avoiding it to get stock in local
optima.

Table 6 shows the results of the ANOVA test on the AC metric. It
is determined that the AC of the SFLA-VND algorithm is always
greater than or equal to this metric for other algorithms. As shown
in Table 6, there is no noticeable difference between the mean of
different algorithms except for the two cases Index and SKaMPI1
which the SFLA-VND algorithm performs better than the GA.

The comparative analysis of the AT and the average number of
FEs is presented in Table 5. The results show that with respect to
both metrics, SFLA-VND outperformed the other algorithms for all
benchmarks except the Index benchmark. It can be concluded that
eliminating the process of composing submemplexes has resulted
in a faster algorithm. In addition, the proposed mechanism for the
evolution of memeplexes with the participation of all its frogs has
been effective and has increased the convergence speed.

For the Index benchmark, ACO showed the best metrics values.
However, for this benchmark, ACO has not been able to cover all
the test requirements, while SFLA-VND has done so. Thus, the
lower value of AT in ACO is probably because of the algorithm con-
vergence to a nonoptimal value. SFLA-VND has been able to escape
local optima by applying the VND algorithm and the replacement
operator in the eight and nine steps.

The results of the ANOVA test on the AT values are presented in
Table 7. These results show that for all benchmarks, the AT of the
SFLA-VND algorithm is less in comparison to the SFLA algorithm.
However, the difference isn’t remarkable. Also, SFLA-VND has bet-
ter results than the PSO algorithm. But, their difference is only sig-
nificant for Gcd2. Comparison of the results for SFLA-VND and
ACO shows that the hybrid algorithm has better AT values in four
benchmarks, whereas the difference is only significant for Gcd2. In
one benchmark, i.e., Index, which the ACO algorithm has better
value, the superiority is not significant. The AT of SFLA-VND is
always lower than that of GA for all benchmarks, and the difference
is significant. In other words, SFLA-VND has considerable superi-
ority than GA.

The Boxplot chart shown in Figure 6 is used to study and compare
the distribution of the AT of different algorithms. It can be seen
from the graph that for the two benchmarksGcd1 andGcd2, the val-
ues of the first, middle and third quartiles of SFLA-VND are less in
comparison to the other compared algorithms. Regarding the Index
benchmark, except for the GA, the distribution of four other algo-
rithms is approximately the same. For SFLA-VND, the values of the
first, middle and third quartiles are almost equal with respect to
the Matrix benchmark. The values of these three quartiles in SFLA-
VND are less than the corresponding values in the other algorithms.
Also, the distribution of the ACO and PSO algorithms is similar to
that of the SFLA-VND algorithm.

According to the experimental results, SFLA-VND has shown
higher efficiency for larger and more complex programs, i.e., Index
and SKaMPI1. To further analyze the differences between the com-
pared algorithms even for the current rather small benchmark pro-
grams, we conducted another experiment.

In this experiment, we found the value of the AC obtained by
each competitive algorithm exactly when the SFLA-VND algorithm
reached the highest level of coverage. For example, if SFLA-VND
reached the AC of 100 and ended after 10 iterations for a program,
the AC for the rest of the algorithms was calculated after 10 itera-
tions for the same program. The results of this experiment is shown
in Table 8.

5.4. Evaluation of the Failure Detection
Capability

To evaluate the capability of the proposed method for identify-
ing program failures, some faults have been introduced in three
benchmark programs,Gcd1, Index andMatrix, and the ability of the
proposed method to detect resulting failures has been measured.
In this regard, our method is compared with SFLA_Seq [26] and
NICS_GA [27] as two search-based methods which have already
been used for test data generation in sequential and concurrent
programs, respectively. These methods were briefly described in
Section 2.2.

For each benchmark program, several faulty versions with an
injected fault have been created. Table 9 lists the number of faulty
versions for each program as well as the type of the injected faults.
The type of the faults injected to the benchmark programs, and
also, the number of faults per type have been extracted from
[41]. Since the experiment results in the previous section showed
higher performance of SFLA-VND compared with the other

1172 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

Table 4 Comparative analysis on the metrics average coverage and success rate.

Average Coverage(%) Success Rate(%)
Program GA ACO PSO SFLA SFLA-VND GA ACO PSO SFLA SFLA-VND

Gcd1 100 100 99.97 99.97 100 100 100 98 98 100
Gcd2 100 100 100 100 100 100 100 100 100 100
Index 95.85 99.85 99.7 100 100 46 92 86 100 100
Matrix 99.53 100 100 100 100 96 100 100 100 100
SKaMPI1 98.04 99.81 99.77 99.91 99.95 58 84 80 92 96

Table 5 Comparative analysis on the metrics average time and the number of average fitness evaluations.

Average Time Average Fitness Function Evaluation
Program GA ACO PSO SFLA SFLA-VND GA ACO PSO SFLA SFLA-VND

Gcd1 82.01 68.86 59.97 59.31 53.29 129.36 98.22 89.76 90.24 81.92
Gcd2 53.40 27.83 33.17 25.80 23.75 74.04 40.56 48.00 36.90 34.64
Index 6748 878.1 954.7 941.2 936.3 1342.4 141.3 174.7 196.7 190.3
Matrix 363.7 121.47 137.35 117.05 102.35 151.04 46.98 56.16 48.00 43.14
SKaMPI1 2481.3 976.70 986.91 968.37 954.37 532 199 203 198 192

Table 6 The ANOVA test on the average coverage results at the 0.05 significant level.

SFLA-VND(x) vs SFLA(y) SFLA-VND(x) vs PSO(z) SFLA-VND(x) vs ACO(w) SFLA-VND(x) vs GA(q)
Benchmark (x-y)% p-value (x-z)% p-value (x-w)% p-value (x-q)% p-value

Gcd1 0.345 0.265 0.345 0.265 0 1 0 1
Gcd2 0 1 0 1 0 1 0 1
Index 0 1 0.26 0.479 0.148 0.686 4.148 2.99E-24
Matrix 0 1 0 1 0 1 0.47 0.25
SKaMPI1 0.046 1 0.186 0.913 0.139 0.968 1.907 4.34E-13

Table 7 The ANOVA test on the average time results at the 0.05 significant level.

SFLA-VND(x) vs SFLA(y) SFLA-VND(x) vs PSO(z) SFLA-VND(x) vs ACO(w) SFLA-VND(x) vs GA(q)
Benchmark (x-y)% p-value (x-z)% p-value (x-w)% p-value (x-q)% p-value

Gcd1 −6.02 0.356 −6.675 0.306 −15.569 0.017 −28.718 1.53E-05
Gcd2 −2.048 0.238 −9.416 1.28E-07 −4.083 0.019 −29.6653 8.54E-44
Index −4.916 0.985 −18.432 0.944 57.615 0.828 −5812.069 6.22E-60
Matrix −14.702 0.628 −35.003 0.249 −19.126 0.528 −261.386 7.95E-16
SKaMPI1 −14 1 −32.541 0.999 −22.333 1 −1526.9 4.31E-13

Table 8 Algorithms comparison in fixed iteration.

Average Coverage (%)
Program GA ACO PSO SFLA SFLA-VND
Gcd1 65.17 73.41 82.73 84.34 100
Gcd2 45.43 83.17 70.62 89.15 100
Index 33.24 99.85 95.72 96.41 100
Matrix 44.37 80.20 73.63 85.45 100
SKaMPI1 42.79 95.71 94.92 96.38 99.95

meta-heuristic algorithms, we used this algorithm to identify the
faults.

The test suite generated for the faultless version of each program has
been used to detect failures in their faulty versions. Due to the non-
determinism in the execution behavior of a concurrent program,
execution of the program with available test suite does not guaran-
tee covering all the previously covered test goals. In other words,
some test goals that had been previously covered at the test data gen-
eration stage was not covered at the failure detection stage. So, we
needed a mechanism that could replay a previously executed run of
the program using a controlled execution. The controlled execution

Table 9 The number of faults inserted in each program.

Type of Fault Gcd1 Index Matrix

Incorrect loop or selection structure 2 1 1
Incorrect process in messages 2 2 1
Incorrect size of array 0 2 3
Non initialized variable 2 1 4
Incorrect destination process address 2 2 2
Incorrect type of parameter 1 2 3
Incorrect message data type 1 1 1
Changing of communication primitives type 5 2 1
Incorrect data sent or received 1 3 4
Change the logical operator in predicative

statements
2 1 3

Missing statements 5 3 6
Increment/decrement of variables in

communication primitives
1 1 2

Total 24 21 31

mechanism follows the same idea proposed by Carver and Tai [42].
The required information to replay a specific execution was saved
during the process of test data generation.

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1173

Figure 6 Boxplots for the average time (AT) metric.

For detecting failure in a faulty program, initially, the faulty
program was executed with the test suite. If some of the previ-
ously covered requirements were not covered, a controlled execu-
tion was employed to cover the remaining uncovered requirements.
The capability of the proposed method for detecting failures was
evaluated when the amount of coverage reached to amount of this
metric in test data generation stage.

The percentage of the faults transformed into the failures dur-
ing feeding the generated test suite to the program has been
considered as the failure detection capability. Table 10 shows the

calculated value of the failure detection capability for each bench-
mark program. Note that the proposed approach has been able
to detect all failures in Gcd1, and only one failure in the Index
and Matrix benchmarks has not been recognized. In addition,
the results show that the proposed method performed better than
the two compared methods. Moreover, the considerable difference
between SFLA_Seq and the proposed method in terms of the effec-
tiveness of test data generation for concurrent programs is con-
firmed.

1174 S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175

Table 10 Failure detection capability.

Programs Proposed Method (%) NICS-GA (%) SFLA_Seq (%)

Gcd1 100 100 83.3
Index 95.2 90.4 76.1
Matrix 96.7 93.5 77.4

6. THREATS TO VALIDITY

This section investigates possible threats to the validity of the
empirical studies performed in this study. The internal threat to the
validity includes parameter settings, such as the memeplex size, the
number of memeplexes and the number of memeplex evolutions in
each iteration. To minimize this threat, as described in Section 5.2,
we tried various experiments to seek for suitable values of special
parameters of the proposed algorithm. However, the same param-
eters in the compared algorithms are considered to be equal and
are not tuned for each algorithm separately. For example, the same
value of the population size is considered for all algorithms, while
one algorithm may perform better with a different value. There-
fore, the parameter settings remain a threat to validity. In order to
determine the optimal values of these parameters, a large number
of experimental studies will be required in the future.

The threat to the construct validity deals mainly with whether the
experiment is measured in an appropriate way. To address this, we
adopted coverage, SR, time consumption and the number of eval-
uated individuals as the evaluation metrics. Furthermore, multiple
experiments have been run and average values of the metrics have
been reported.

An external threat to the validity is to limit the extent to which
the results can be generalized. We tried to minimize this threat by
selecting programs with various numbers of processes, sending and
receiving statements and input variables, as well as input domains
in the experiments, suggesting their good representativeness. These
programs are either widely used in other studies or from nontriv-
ial MPI benchmarks. Another external threat could be the fact that
the AT results depend on specific hardware and software platforms
which were used in experiments. Hence conducting experiments
on different platforms may yield different results from those in
Table 6.

7. CONCLUSION AND FUTURE WORK

Search-based techniques are widely used for generating test data in
sequential programs. However, these methods have seldom been
used to generate test data in concurrent programs. In this paper,
firstly, a framework for generating test data in concurrent programs
was presented. Then, a hybrid meta-heuristic algorithm named,
SFLA-VND, was proposed. SFLA-VND is a combination of the
SFLA and VND algorithms. Finally, the meta-heuristic algorithms
GA, ACO, PSO, SFLA and SFLA-VND were implemented in the
proposed framework and their performance was compared. The
results of experiments on five concurrent benchmark programs
indicated high efficiency of the proposed framework for generat-
ing test data as well as successful application of the SFLA-VND
algorithm.

The applied benchmark programs in the current research do not
use shared variables, which prevents occurring some types of con-
current errors. Atomicity violations are a major source of failures
in concurrent programs with shared memory. In future, we plan to
extend the proposed framework in order to generate test data for
concurrent programs with the objective of the atomicity violation
detection.

Game theory is a mathematical model which deals with interactions
between various entities by analyzing the strategies and choices.
Recently, this theory has been extensively used in the fields like
economics, sociology, computer science, etc. Given the competitive
nature of processes in concurrent programs, the use of game the-
ory in testing concurrent programs seems to be useful which is sug-
gested for future work.

The evaluation of the proposed method on benchmark programs
with higher complexity and presenting meta-heuristic algorithms
that are compatible with the specific features of concurrent pro-
grams are also suggested for future works.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interests.

AUTHORS’ CONTRIBUTIONS

The authors have contributed to all processes and stages of this
research.

REFERENCES

[1] G. Chen, H. An, L. Chen, Q. Zheng, J. Shan, Parallel Algo-
rithm Practice, Higher Education Press, Beijing, China, 2004,
pp. 353–355.

[2] P. McMinn, Search-based software testing: past, present and
future, in 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), IEEE,
Berlin, Germany, 2011, pp. 153–163.

[3] T. Tian, D. Gong, Test data generation for path coverage of
message-passing parallel programs based on co-evolutionary
genetic algorithms, Automat. Softw. Eng. 23 (2016), 469–500.

[4] F.A. Bianchi, A. Margara, M. Pezzè, A survey of recent trends in
testing concurrent software systems, IEEE Trans. Softw. Eng. 44
(2017), 747–783.

[5] S. Souza, S.R. Vergilio, P. Souza, A. Simao, A.C. Hausen, Structural
testing criteria for message-passing parallel programs, Concurr.
Comput. Pract. Exp. 20 (2008), 1893–1916.

[6] P.S. Souza, S.R. Souza, E. Zaluska, Structural testing for message-
passing concurrent programs: an extended test model, Concurr.
Comput. Pract. Exp. 26 (2014), 21–50.

[7] S.M. Mirhosseini, H. Haghighi, Application of the Shuffled Frog
Leaping Algorithm (SFLA) in constructing fuzzy classification
systems, Int. J. Comput. Intell. Appl. 18 (2019), 1950019.

[8] X. Liu, L. Zhang, H. Wang, Research on BP neural network motor
control algorithm based on frog leaping algorithm, in 2018 8th
International Conference on Mechatronics, Computer and Edu-
cation Informationization (MCEI 2018), Atlantis Press, Shenyang,
China, 2018.

https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1007/s10515-014-0173-z
https://doi.org/10.1007/s10515-014-0173-z
https://doi.org/10.1007/s10515-014-0173-z
https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1002/cpe.1297
https://doi.org/10.1002/cpe.1297
https://doi.org/10.1002/cpe.1297
https://doi.org/10.1002/cpe.2937
https://doi.org/10.1002/cpe.2937
https://doi.org/10.1002/cpe.2937
https://doi.org/10.1142/S1469026819500196
https://doi.org/10.1142/S1469026819500196
https://doi.org/10.1142/S1469026819500196
https://doi.org/10.2991/mcei-18.2018.57
https://doi.org/10.2991/mcei-18.2018.57
https://doi.org/10.2991/mcei-18.2018.57
https://doi.org/10.2991/mcei-18.2018.57
https://doi.org/10.2991/mcei-18.2018.57

S. M. Mirhosseini and H. Haghighi / International Journal of Computational Intelligence Systems 13(1) 1161–1175 1175

[9] J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, X. Liu, A discrete
shuffled frog-leaping algorithm to identify influential nodes for
influence maximization in social networks, Knowl. Based Syst.
187 (2020), 104833.

[10] C. Breshears, The Art of Concurrency: a Thread Monkey’s Guide
to Writing Parallel Applications, O’Reilly Media, Inc., California,
United States, 2009.

[11] R.R. Prado, et al., Extracting static and dynamic structural infor-
mation from java concurrent programs for coverage testing, in
2015 Latin American Computing Conference (CLEI), IEEE, Are-
quipa, Peru, 2015, pp. 1–8.

[12] S. Rapps, E.J. Weyuker, Selecting software test data using data flow
information, IEEE Trans. Softw. Eng. SE-11 (1985), 367–375.

[13] B.F. Jones, H.-H. Sthamer, D.E. Eyres, Automatic structural testing
using genetic algorithms, Softw. Eng. J. 11 (1996), 299–306.

[14] R. Pargas, M. Harrold, R. Peck, Automated structural testing using
genetic algorithms, Softw. Test. Verif. Reliab. 9 (1999), 263–282.

[15] A. Pachauri, G. Srivastava, Automated test data generation for
branch testing using genetic algorithm: an improved approach
using branch ordering, memory and elitism, J. Syst. Softw. 86
(2013), 1191–1208.

[16] S. Yang, T. Man, J. Xu, F. Zeng, K. Li, RGA: a lightweight and
effective regeneration genetic algorithm for coverage-oriented
software test data generation, Inf. Softw. Technol. 76 (2016),
19–30.

[17] N. Tracey, J. Clark, K. Mander, J. McDermid, An automated
framework for structural test-data generation, in 13th IEEE Inter-
national Conference on Automated Software Engineering, IEEE,
Honolulu, HI, USA, 1998, pp. 285–288.

[18] A. Windisch, S. Wappler, J. Wegener, Applying particle swarm
optimization to software testing, in Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, ACM,
London England, 2007, pp. 1121–1128.

[19] X.-m. Zhu, X.-f. Yang, Software test data generation auto-
matically based on improved adaptive particle swarm opti-
mizer, in 2010 International Conference on Computational and
Information Sciences (ICCIS), IEEE, Chengdu, China, 2010,
pp. 1300–1303.

[20] S. Jiang, J. Shi, Y. Zhang, H. Han, Automatic test data genera-
tion based on reduced adaptive particle swarm optimization algo-
rithm, Neurocomputing. 158 (2015), 109–116.

[21] R.L. Becerra, R. Sagarna, X. Yao, An evaluation of differential
evolution in software test data generation, in IEEE Congress on
Evolutionary Computation (CEC’09), IEEE, Trondheim, Norway,
2009, pp. 2850–2857.

[22] S.S. Dahiya, J.K. Chhabra, S. Kumar, Application of artificial
bee colony algorithm to software testing, in 21st AustralianSoft-
ware Engineering Conference (ASWEC), IEEE, Auckland, New
Zealand, 2010, pp. 149–154.

[23] C. Mao, L. Xiao, X. Yu, J. Chen, Adapting ant colony optimization
to generate test data for software structural testing, Swarm Evol.
Comput. 20 (2015), 23–36.

[24] C. Mao, Harmony search-based test data generation for branch
coverage in software structural testing, Neural Comput. Appl. 25
(2014), 199–216.

[25] H. Sharifipour, M. Shakeri, H. Haghighi, Structural test data gen-
eration using a memetic ant colony optimization based on evolu-
tion strategies, Swarm Evol. Comput. 40 (2018), 76–91.

[26] A. Ghaemi, B. Arasteh, SFLA-based heuristic method to gener-
ate software structural test data, J. Softw. Evol. Process. 32 (2019),
e2228.

[27] T. Tian, D. Gong, F.-C. Kuo, H. Liu, Genetic algorithm based test
data generation for MPI parallel programs with blocking commu-
nication, J. Syst. Softw. 155 (2019), 130–144.

[28] T. Tian, S. Yang, D. Gong, An enhanced set-based evolutionary
algorithm for generating test data that cover multiple paths of a
parallel program, in 2018 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), IEEE, 2018, pp. 688–695.

[29] B. Sun, J. Wang, D. Gong, T. Tian, Scheduling sequence selection
for generating test data to cover paths of MPI programs, Inf. Softw.
Technol. 114 (2019), 190–203.

[30] P. Ammann, J. Offutt, Introduction to Software Testing, Cam-
bridge University Press, Cambridge, England, 2016.

[31] M. Eusuff, K. Lansey, F. Pasha, Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization, Eng. Optim. 38
(2006), 129–154.

[32] Z. Zhen, D. Wang, Y. Liu, Improved shuffled frog leaping algo-
rithm for continuous optimization problem, in IEEE Congress on
Evolutionary Computation (CEC’09), IEEE, Trondheim, Norway,
2009, pp. 2992–2995.

[33] N. Mladenović, P. Hansen, Variable neighborhood search, Com-
put. Oper. Res. 24 (1997), 1097–1100.

[34] P. Hansen, N. Mladenović, R. Todosijević, S. Hanafi, Variable
neighborhood search: basics and variants, EURO J. Comput.
Optim. 5 (2017), 423–454.

[35] R.O.M. Diana, S.R. de Souza, Analysis of variable neighborhood
descent as a local search operator for total weighted tardiness
problem on unrelated parallel machines, Comput. Oper. Res. 117
(2020), 104886.

[36] K. Eng, A. Muhammed, M.A. Mohamed, S. Hasan, A hybrid
heuristic of variable neighbourhood descent and great deluge
algorithm for efficient task scheduling in grid computing, Eur. J.
Oper. Res. 284 (2020), 75–86.

[37] G. Zhang, L. Zhang, X. Song, Y. Wang, C. Zhou, A variable neigh-
borhood search based genetic algorithm for flexible job shop
scheduling problem, Cluster Comput. 22 (2019), 11561–11572.

[38] H. Krawczyk, B. Wiszniewski, H. Mork, Classification of Software
Defects in Parallel Programs, Technical Report 2, Faculty of Elec-
tronics, Technical University of Gdansk, Poland, 1994.

[39] R. Reussner, P. Sanders, J.L. Träff, SKaMPI: a comprehensive
benchmark for public benchmarking of MPI, Sci. Programming.
10 (2002), 55–65.

[40] K. Socha, M. Dorigo, Ant colony optimization for continuous
domains, Eur. J. Oper. Res. 185 (2008), 1155–1173.

[41] S.R. Souza, P.S. Souza, M.A. Brito, A.d.S. Simao, E. Zaluska,
Empirical evaluation of a new composite approach to the coverage
criteria and reachability testing of concurrent programs, Softw.
Test. Verif. Reliab. 25 (2015), 310–332.

[42] R.H. Carver, K.-C. Tai, Replay and testing for concurrent pro-
grams, IEEE Softw. 8 (1991), 66–74.

https://doi.org/10.1016/j.knosys.2019.07.004
https://doi.org/10.1016/j.knosys.2019.07.004
https://doi.org/10.1016/j.knosys.2019.07.004
https://doi.org/10.1016/j.knosys.2019.07.004
https://doi.org/10.1109/CLEI.2015.7359975
https://doi.org/10.1109/CLEI.2015.7359975
https://doi.org/10.1109/CLEI.2015.7359975
https://doi.org/10.1109/CLEI.2015.7359975
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1109/TSE.1985.232226
https://doi.org/10.1049/sej.1996.0040
https://doi.org/10.1049/sej.1996.0040
http://dx.doi.org/10.1002/(sici)1099-1689(199912)9:4<263::aid-stvr190>3.0.co;2-y
http://dx.doi.org/10.1002/(sici)1099-1689(199912)9:4<263::aid-stvr190>3.0.co;2-y
https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1016/j.infsof.2016.04.013
https://doi.org/10.1109/ASE.1998.732680
https://doi.org/10.1109/ASE.1998.732680
https://doi.org/10.1109/ASE.1998.732680
https://doi.org/10.1109/ASE.1998.732680
https://doi.org/10.1145/1276958.1277178
https://doi.org/10.1145/1276958.1277178
https://doi.org/10.1145/1276958.1277178
https://doi.org/10.1145/1276958.1277178
https://doi.org/10.1109/ICCIS.2010.321
https://doi.org/10.1109/ICCIS.2010.321
https://doi.org/10.1109/ICCIS.2010.321
https://doi.org/10.1109/ICCIS.2010.321
https://doi.org/10.1109/ICCIS.2010.321
https://doi.org/10.1016/j.neucom.2015.01.062
https://doi.org/10.1016/j.neucom.2015.01.062
https://doi.org/10.1016/j.neucom.2015.01.062
https://doi.org/10.1109/CEC.2009.4983300
https://doi.org/10.1109/CEC.2009.4983300
https://doi.org/10.1109/CEC.2009.4983300
https://doi.org/10.1109/CEC.2009.4983300
https://doi.org/10.1109/ASWEC.2010.30
https://doi.org/10.1109/ASWEC.2010.30
https://doi.org/10.1109/ASWEC.2010.30
https://doi.org/10.1109/ASWEC.2010.30
https://doi.org/10.1016/j.swevo.2014.10.003
https://doi.org/10.1016/j.swevo.2014.10.003
https://doi.org/10.1016/j.swevo.2014.10.003
https://doi.org/10.1007/s00521-013-1474-z
https://doi.org/10.1007/s00521-013-1474-z
https://doi.org/10.1007/s00521-013-1474-z
https://doi.org/10.1016/j.swevo.2017.12.009
https://doi.org/10.1016/j.swevo.2017.12.009
https://doi.org/10.1016/j.swevo.2017.12.009
https://doi.org/10.1002/smr.2228
https://doi.org/10.1002/smr.2228
https://doi.org/10.1002/smr.2228
https://doi.org/10.1016/j.jss.2019.04.049
https://doi.org/10.1016/j.jss.2019.04.049
https://doi.org/10.1016/j.jss.2019.04.049
https://doi.org/10.1109/SSCI.2018.8628861
https://doi.org/10.1109/SSCI.2018.8628861
https://doi.org/10.1109/SSCI.2018.8628861
https://doi.org/10.1109/SSCI.2018.8628861
https://doi.org/10.1016/j.infsof.2019.07.002
https://doi.org/10.1016/j.infsof.2019.07.002
https://doi.org/10.1016/j.infsof.2019.07.002
https://doi.org/10.1017/9781316771273
https://doi.org/10.1017/9781316771273
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1109/CEC.2009.4983320
https://doi.org/10.1109/CEC.2009.4983320
https://doi.org/10.1109/CEC.2009.4983320
https://doi.org/10.1109/CEC.2009.4983320
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1007/s13675-016-0075-x
https://doi.org/10.1016/j.cor.2020.104886
https://doi.org/10.1016/j.cor.2020.104886
https://doi.org/10.1016/j.cor.2020.104886
https://doi.org/10.1016/j.cor.2020.104886
https://doi.org/10.1016/j.ejor.2019.12.006
https://doi.org/10.1016/j.ejor.2019.12.006
https://doi.org/10.1016/j.ejor.2019.12.006
https://doi.org/10.1016/j.ejor.2019.12.006
https://doi.org/10.1007/s10586-017-1420-4
https://doi.org/10.1007/s10586-017-1420-4
https://doi.org/10.1007/s10586-017-1420-4
https://doi.org/10.1155/2002/202839
https://doi.org/10.1155/2002/202839
https://doi.org/10.1155/2002/202839
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1002/stvr.1568
https://doi.org/10.1002/stvr.1568
https://doi.org/10.1002/stvr.1568
https://doi.org/10.1002/stvr.1568
https://doi.org/10.1109/52.73751
https://doi.org/10.1109/52.73751

	A Search-Based Test Data Generation Method for Concurrent Programs
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Basic Concepts
	2.2 Related Work

	3 THE PROPOSED FRAMEWORK FOR TEST DATA GENERATION
	3.1 The Framework Components
	3.2 Fitness Function

	4 THE HYBRID META-HEURISTIC ALGORITHM
	5 EVALUATION
	5.1 Evaluation Metrics
	5.2 Experiment Setup
	5.3 Experimental Results and Discussion
	5.4 Evaluation of the Failure Detection Capability

	6 THREATS TO VALIDITY
	7 CONCLUSION AND FUTURE WORK

