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ABSTRACT
Multi-attribute decision-making (MADM) has been receiving great attention in recent years due to two major issues which are
basically to describe attribute values and secondly to aggregate the described information to generate a ranking of alternatives.
For the first case it entails the hesitant fuzzy elements (HFEs) as amore flexible and general tool in comparison to fuzzy set theory
and for the second one, we allow the aggregation operator (AO) as an effective tool. Having said that there is not yet reported an
AOwhich can provide desirable generality and flexibility in aggregating attribute values under hesitant fuzzy (HF) environment,
although many AOs have been developed earlier to attempt to meet above such eventualities. So, the primary objective of this
paper is to develop some general as well as flexibleAOs that can be exploited to solveMADM problems with theHF information.
From this perspective, at the very beginning, we develop some operations between HFEs by uniting the features of Dombi and
Archimedean operations. Next, we bring up someHFweightedAOs based onDombi andArchimedean operations.We discuss in
detail some intriguing properties of the proposed AOs. Secondly, we emphasize establishing a procedure ofMADM endowed by
the proposed operators under theHF environment. Finally, we present a practical example concerning human resource selection
to gloss the decision steps of the proposed method and at the same time, we explore the feasibility of the new method.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

In most of the real-life decision circumstances, the prevalence of multi-attribute decision-making (MADM) problems is vividly known. The
primary objective of theMADM approach is to determine the best-suited alternative(s) from a set of available alternatives with respect to
multiple attributes, both qualitative and quantitative. It has been observed the significant success rate of many MADM approaches in the
case of web 2.0 [1], social network [2], and recommendation system [3,4]. Various regulating factors viz. a shortfall of information and
consciousness, hardness in information expulsion, incertitude of the decision-making ambiance, etc. will come in limelight especially in
many real-world situations on account of the rising perplexity of the socio-economic conditions. As a result, for decision-makers, it comes
true a formidable task to unveil numerically to the values of attributes. In lieu, representation of the preferences using fuzzy numbers or
extended fuzzy numbers [5–8] is more appropriate indeed.

For the last few years, it has been noticed about the extensive theoretical study of numerousMADM problems. The various approaches about
MADM have been put forward in the framework of the fuzzy set (FS) theory [9–13]. The notion of the hesitant fuzzy set (HFS) that was first
reported by Torra [14] is reckoned as an extension of the FSwhich allows the membership grades presuming a set of possible values instead
of a single one. In case of dealing the fuzzy uncertain information, such HFS can contribute as a strong tool. The connection between the
HFS and other extended FSs were investigated by Torra and Narukawa [15] in which an intuitionistic fuzzy set (IFS) is appeared to be an
envelope ofHFS and all possibleHFSs are lying in the category of the type-2 fuzzy set (T2FS). Xu and Xia [16] suggested a class of distance
and similarity measures for HFS and subsequently, they proposed further the hesitant ordered weighted distance measures and the hesitant
ordered weighted similarity measures. The concept of generalized hesitant fuzzy synergetic weighted distance (GHFSWD) measure and
also, some obligate properties along with their feasible applications was studied by Peng et al. [17]. The strong connection among similarity
measure and distance measure for HFS, the interval-valued hesitant fuzzy set (IVHFS), and entropy was reported by Farhadinia [18]. Qian
et al. [19] were able to explore HFS through IFS and utilized it in the decision support system. Chen et al. [20] exercised interval-valued
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hesitant preference relations and successfully applied it to group decision-making problems. The idea of the dual hesitant fuzzy set (DHFS)
was put forth by Zhu et al. [21]. Rodríguez et al. [22] brought the notion of hesitant fuzzy (HF) linguistic term set which explaining the
supremacy of linguistic excerption with the help of a fuzzy linguistic approach. The forcible VIKORmethod can be utilized to solve a series
of MADM problems having HF information which was propounded by Zhang and Wei [23]. We note that Zhang and Xu [24] expanded
the tools of TODIM to adapt the HF environment and they were able to provide two HF decision-making approaches. Dong et al. [25]
formulated the efficient consensus model adopting hesitant linguistic assessments in group decision-making. For HF linguistic preference
relations, Zhu andXu [26] yield some compatibilitymeasures. In succession,Wang andXu [27] presented in their study, the idea of extensive
HF linguistic preference relations. It has been observed the widespread of theHFS and some varieties in its extension especially in the fields
of group decision-making [28–34] preference relations [35], clustering analysis [36], and other applications [37–40]. Aiming at transparent
aspects of the varied ideas, tools, and affinities in connection with the extent of FS, lately, Rodríguez et al. [41] summarized the HFSs. Over
and above, Xu [42] devoted toward review in detail about the progress of aggregation techniques and infliction for HFS and side by side
indicated several active trends in this domain.

We note that although in general, Aggregation operators (AOs) are considered just as functions mathematically but confronting as very
common techniques, these suffice to integrate all the input individual data into a single one. Over the last three decades, both researchers
and practitioners have been giving attention toward inquisition on AOs on account of their large impact in the vicinity of wide ranges
of information processing, such as decision-making, pattern recognition, information retrieval, medical diagnosis, data mining, machine
learning, etc. We may recall here that the study of HF AOs has been drawing significant attention to the researchers due to its importance
for information fusion. Xia and Xu [43] provided a series ofAOs and developed their enviable features. In this context, we alsomention here
that Xia et al. [44] employed quasi-arithmetic means to constitute several series AOs in the regime of HF environment. Wei [45] proposed
some preference operators and used them to deal withMADM problems where the attributes perform various levels of priority under aHF
environment. Furthermore, many hesitant interval-valued AOs were put forth by Wei et al. [46], and even they developed a procedure to
solve interval-valued hesitant fuzzyMADM problems. Having paid heed to all the ideas of fuzzy integral theory, Wei et al. [47] attempted to
utilize the Choquet integral to have twoAOs adhering to theHF information: hesitant fuzzy Choquet ordered averaging (HFCOA) operator
and hesitant fuzzy Choquet ordered geometric (HFCOG) operator. In this context, it may be pointed out that these two aforementioned
operators are not only taken it granted based on the importance of attributes but also another aspect of its consideration is solely due to an
active role in determining the correlations among the independent attributes. It was possible to solveMADM problems by applying both the
HF Bonferroni mean, introduced by Zhu et al. [48] and geometric Bonferroni mean. To aggregate HF information, Zhang [49] interpreted
a large extent ofHF power AOs and in turn, examined different fascinating properties and relationships among those operators. Zhang and
Wu [50] suggested twoweightedHF AOs invoking theArchimedean t-conorms and t-norms, leading to aggregate weightedHF information.
Zhang et al. [51] considered some induced generalized HF operators and utilized them to MADM problems. It was Liao and Xu [52] who
lead a significant contribution for searching some HF hybrid weighted AOs and at the same time formed a decision algorithm to assist
MADM problems utilizing HF information. Surprisingly, Zhou and Xu [53] put forward two new aggregation approaches-first one is an
optimal discrete fitting AO and the second one is, simplified optimal discrete fitting AO to analyze group decision-making problems. In the
meantime, twoAOs for hesitant fuzzy linguistic term set (HFLTS) were defined byWei et al. [54] which are respectively theHFLWA (Hesitant
fuzzy linguistic weighted aggregation) operator and theHFLOWA (Hesitant fuzzy linguistic ordered weighted aggregation) operator and on
the other hand, utilized these operators to solveMADMproblems based on the conditions inwhich importanceweights of criteria or experts
are known or unknown. Based on Einstein’s operational laws, Yu [55] established a fewmoreHF AOs. Some special kinds of operators called
HF Hamacher AOs were introduced by Tan et al. [56] for handling the MADM problems. It is equally important to mention here that Qin
et al. [57] with their work stimulated the idea by presenting some new HF operators associating the Maclaurin symmetric mean and also
considered a variety of allied eligible properties. We recall that upon a state of being more or less with HF Bonferroni mean operators [58],
the notable characteristics ofHFMaclaurin symmetric mean is that it can record the entire interrelationships between the arguments; hence
it is more usual and appropriate for serving the real-world decision-making problems.We also refer here that it is possible to determine new
someHF AOs using Frank operations which exclusively achieved by Qin et al. [59] together with solving theMADM problems. Liao and Xu
[60] developed a VIKOR method for solvingMADM underHF environment. The notion of the cubicHFS was developed by Mahmood et
al. [61] to deal with MCDM problems. He [62] successfully carried out the operations of Dombi operators to Typhoon disaster assessment
under a HF environment. Xu and Zhou [63] implemented hesitant probabilistic fuzzy operations and used them to solve group decision-
making problems. In this context, it may be pointed out that as an augmentation of the hesitant probabilistic fuzzy weighted averaging
operator and hesitant probabilistic fuzzy weighted geometric operator, Park et al. [64] made their remarkable contribution by introducing
hesitant probabilistic fuzzy Einstein weighted averaging operator and hesitant probabilistic fuzzy Einstein weighted geometric operator
respectively. It is worthy to say that various theoretical and practical reasoning can be simplified with the help of a uniformly typical hesitant
fuzzy set (UTHFS) which was articulated by Alcantud and Torra [65]. Fairly recently, Wang and Li [66] introduced operational laws of
picture hesitant fuzzy elements (PHFEs) and attributed them to define generalized picture HF AOs which genuinely helped to tackle the
varied situations while we cope up with MCDM in the framework of picture HF environment. Interestingly, an improved A* algorithm
based on hesitant FS theory for multi-criteria Arctic Route planning was developed by Wang et al. [67]. We do refer here that Lioa et al.
[68] practiced HF linguistic preference utility set in the selection process of fire rescue plans. To serve the personnel selection problem,
Yalcin and Pehlivan [69] were able to construct a methodology in which the fuzzy CODAS method gets connected with the fuzzy envelope
of HFLTSs concerning the comparative linguistic expressions. Moreover, Wu et al. [70] formulated a unique dynamic emergency decision-
making method with probabilisticHF information underlying the GM (1, 1) model for prophecy of the decision-making information at the
subsequent stage. Alcantud et al. [71] first reported the notion of dual extendedHFSs and even employed them to develop an algorithm that
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involves a weight score function. Furthermore, Liu et al. [72] initiated the HF cognitive maps and showed how to use it for the exploration
of the risk factors that arise in an electric power system. Exploiting the regret theory, Liu et al. [73] submitted an approach for probabilistic
HF MADM in view of the selection process of venture capital investment projects.

The Dombi operations, after the name of Dombi [74] are nothing but the operations of t-norm and t-conorm, bearing the nature of good
flexibility with the general parameter. On the contrary, Archimedean t-norms and t-conorms [75–77] are the generalizations of many other
t-norms and t-corms like algebraic t-norm and t-conorm, Einstein t-norm and t-conorm,Hamacher t-norm and t-corm, etc. The operations
of Archimedean t-norms and t-conorms are treated as Archimedean operations. The growing capacity of decision complexity induces the
real-life decision-making problems that indulge both generality of the operations used and flexibility of the parameters that appeared. In this
context, it ismore appropriate to suggest a tool obtained throughmerging theDombi andArchimedean operations to serve the purpose. Due
to different characteristics, AOs obtained through Archimedean operations will not generate the same ranking order deduced from Dombi
operations based AOs. Thus, optimal alternative(s) may not be the same in these two cases. Since the fusion of Dombi and Archimedean
operations will retain their individual characteristics, so it is logical to combine them for the purpose of aggregation. As far as we know,
no such study has been carried out related to AOs based on the simultaneous act of the Dombi and Archimedean operations when we deal
with the HF decision-making problems. Getting inspired and provoked by that fact, in this paper, we have tried to investigate a family of
AOs with the coalescence of Dombi operations and Archimedean operations that regard HF information and successfully conjoin them to
solveMADM problems. The aims in this article are pursued below:

1. Suggest some operational laws and AOs under HF environment with the help of the simultaneous act of Dombi and Archimedean
operations.

2. Construct a novelMADM method with HF information based on the proposed AOs and illustrate it with a numerical example.

In such scenarios, we propose in this study, some Dombi–Archimedean operational laws for hesitant fuzzy elements (HFEs) alongside some
HF Dombi–Archimedean AOs, such as hesitant fuzzy Dombi–Archimedean weighted arithmetic aggregation operator (HFDAWAA), hes-
itant fuzzy Dombi–Archimedean ordered weighted arithmetic aggregation operator (HFDAOWAA), hesitant fuzzy Dombi–Archimedean
hybrid arithmetic aggregation operator (HFDAHAA), hesitant fuzzy Dombi–Archimedean weighted geometric aggregation operator
(HFDAWGA), hesitant fuzzy Dombi–Archimedean ordered weighted geometric aggregation operator (HFDAOWGA), hesitant fuzzy
Dombi–Archimedean hybrid geometric aggregation operator (HFDAHGA). In addition to this, we require to initiate a procedure for the
MADM approach after interposed by the proposed AOs in the regime of HF environment.

We summarize the rest part of this paper as follows. In Section 2, we introduce in brief some important and vital concepts of HFSs,
Archimedean t-norm (t-conorm) and Dombi t-norm (t-conorm). In Section 3, we define the Dombi–Archimedean operational laws
for HFEs. In Sections 4, we develop some HF Dombi–Archimedean AOs, such as HFDAWAA, HFDAOWAA, HFDAHAA, HFDAWGA,
HFDAOWGA, and HFDAHGA. All the essential properties of these operators are also demonstrated. In Section 5, we present a novel
approach using the proposed AOs beneficial for stirring the various kinds ofMADM problems in which the attribute values take the form
of HF information. In Section 6, we allow an example of personnel selection to gloss the proposed method. Section 7 is solely devoted to a
comparative study to confirm the superiority of the proposed method. In the end, in Section 8, we make some conclusions upon this entire
study.

2. PRELIMINARIES

In this section, we briefly review some basic concepts of HFS, Archimedean and Dombi operations, which will be directly used in the next
sections.

2.1. Hesitant Fuzzy Sets

Definition 1. [14] Let U be a finite universe of discourse. Then a HFS 𝜉 on U is defined as:

𝜉 = {< x, 𝜇h
𝜉(x) >∶ x ∈ U}

where 𝜇h
𝜉 ∶ U → 2[0,1] is a mapping and 𝜇h

𝜉(x) denotes the set (finite) of possible membership degrees of the element x ∈ U.

Given x ∈ U, 𝜇h
𝜉 is termed as a HFE [43]. For sake of simplicity, the HFS 𝜉 is represented by ⟨𝜇h

𝜉⟩. The set of all HFEs on U is denoted by
HFEU.

Definition 2. [43] For two HFEs 𝜇h
𝜉1 and𝜇

h
𝜉2 on U, some basic operations between them can be described as:

1. 𝜇h
𝜉1 ∪ 𝜇

h
𝜉2 = ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2

max {𝛼1, 𝛼2}
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2. 𝜇h
𝜉1 ∩ 𝜇

h
𝜉2 = ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2

min {𝛼1, 𝛼2}

3.
(
𝜇h
𝜉1

)c
= ∪

𝛼1∈𝜇h
𝜉1

{1 − 𝛼1}

4. 𝜇h
𝜉1 ⊕ 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{𝛼1 + 𝛼2 − 𝛼1𝛼2}

5. 𝜇h
𝜉1 ⊗ 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{𝛼1𝛼2}

6. 𝜆𝜇h
𝜉1 = ∪

𝛼1∈𝜇h
𝜉1

{1 − (1 − 𝛼1)𝜆} (𝜆 > 0)

7.
(
𝜇h
𝜉1

)𝜆
= ∪

𝛼1∈𝜇h
𝜉1

{(𝛼1)𝜆} (𝜆 > 0)

Theorem 1. [43] Let 𝜇h
𝜉1 and𝜇

h
𝜉2 be two HFEs defined on U and 𝜆, 𝜆1, 𝜆2 > 0. Then

i. 𝜇h
𝜉1 ⊕ 𝜇h

𝜉2 = 𝜇h
𝜉2 ⊕ 𝜇h

𝜉1

ii. 𝜇h
𝜉1 ⊗ 𝜇h

𝜉2 = 𝜇h
𝜉2 ⊗ 𝜇h

𝜉1

iii. 𝜆
(
𝜇h
𝜉1 ⊕ 𝜇h

𝜉2

)
=
(
𝜆𝜇h

𝜉1

)
⊕

(
𝜆𝜇h

𝜉2

)
iv.

(
𝜇h
𝜉1 ⊗ 𝜇h

𝜉2

)𝜆
=
(
𝜇h
𝜉1

)𝜆
⊗

(
𝜇h
𝜉2

)𝜆
v. (𝜆1 + 𝜆2)𝜇h

𝜉1 =
(
𝜆1𝜇h

𝜉1

)
⊕

(
𝜆2𝜇h

𝜉1

)
vi.

(
𝜇h
𝜉1

)𝜆1+𝜆2
=
(
𝜇h
𝜉1

)𝜆1
⊗

(
𝜇h
𝜉1

)𝜆2
Definition 3. [43] Let 𝜇h

𝜉 be a HFE on U. Then the score value of 𝜇h
𝜉 is defined as:

S
(
𝜇h
𝜉

)
= 1

#𝜇h
𝜉
∑
𝛼∈𝜇h

𝜉

𝛼

where #𝜇h
𝜉 denotes the number of elements in 𝜇h

𝜉.

Based on the score values of HFEs, a comparison method of HFEs is described below:

Definition 4. [43] Suppose 𝜇h
𝜉1 and𝜇

h
𝜉2 be two HFEs on U. Then

1. if S
(
𝜇h
𝜉1

)
> S

(
𝜇h
𝜉2

)
, then 𝜇h

𝜉1 ≻ 𝜇h
𝜉2

2. if S
(
𝜇h
𝜉1

)
< S

(
𝜇h
𝜉2

)
, then 𝜇h

𝜉1 ≺ 𝜇h
𝜉2

3. if S
(
𝜇h
𝜉1

)
= S

(
𝜇h
𝜉2

)
, then 𝜇h

𝜉1 = 𝜇h
𝜉2

2.2. Archimedean t-norm and t-conorm

Definition 5. [75,76] A fuzzy t-norm f ∶ [0, 1] × [0, 1] → [0, 1] is a function which satisfies the following axioms:

i. f(x, 1) = x for x ∈ [0, 1]
ii. f(x, y) ≤ f(x′, y′)providedx ≤ x′, y ≤ y′ for x, x′, y, y′ ∈ [0, 1]
iii. f(x, y) = f(y, x) for x, y, ∈ [0, 1]
iv. f(x, f(y, z)) = f(f(x, y), z) for x, y, ∈ [0, 1]
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Definition 6. [75,76] A fuzzy t-conorm g ∶ [0, 1] × [0, 1] → [0, 1] is a function which satisfies the following axioms:

i. g(x, 0) = x for x ∈ [0, 1]
ii. g(x, y) ≤ g(x′, y′)providedx ≤ x′, y ≤ y′ for x, x′, y, y′ ∈ [0, 1]
iii. g(x, y) = g(y, x) for x, y, ∈ [0, 1]
iv. g(x, g(y, z)) = g(g(x, y), z) for x, y, ∈ [0, 1]
Definition 7. [75,76] A t-norm function f(x, y) is called a strictly Archimedean t-norm if it is continuous, f(x, x) < x ∀x ∈ (0, 1) and strictly
increasing for x, y ∈ (0, 1).
Definition 8. [75,76] A t-conorm function g(x, y) is called a strictly Archimedean t-conorm if it is continuous, g(x, x) > x ∀x ∈ (0, 1) and
strictly increasing for x, y ∈ (0, 1).
Definition 9. [77] Suppose 𝜃 ∶ (0, 1] → R is a continuous function such that 𝜃 is strictly decreasing and 𝜃(1) = 0. Then a strictly
Archimedean t-norm is expressed by:

𝛿(x, y) = 𝜃−1
(
𝜃(x) + 𝜃(y)

)
for x, y ∈ (0, 1]

Definition 10. [77] Suppose 𝜓 ∶ [0, 1) → R is a continuous function such that 𝜓(l) = 𝜃(1 − l), l ∈ [0, 1) and 𝜓 is strictly increasing. Then
a strictly Archimedean t-conorm is expressed by:

𝜌(x, y) = 𝜓−1(𝜓(x) + 𝜓(y)) forx, y ∈ [0, 1)

2.3. Dombi Operations

The operations of t-norm and t-conorm, developed by Dombi [74] are generally known as Dombi operations described below:

Definition 11. [74] For any two real numbers x and y in [0, 1], the Dombi t-norm and Dombi t-conorm can be defined as follows:

Dom(x, y) = 1

1 + {
( 1−x

x

)k
+
( 1−y

y

)k
}
1
k

,Domc(x, y) = 1 − 1

1 + {
(

x
1−x

)k
+
(

y
1−y

)k
}
1
k

(k ≥ 1)

Dombi operations have good precedence of change w.r.t values of the parameter “k.” Based on the Dombi operations, He [62] developed a
few operations between HFEs given below:

Definition 12. [62] Let 𝜇h
𝜉1 and𝜇

h
𝜉2 be two HFEs on U.

i. 𝜇h
𝜉1 ⊕D 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

1−
⎛⎜⎜⎜⎝1+ {

(
𝛼1

1−𝛼1

)k
+
(

𝛼2
1−𝛼2

)k
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

ii. 𝜇h
𝜉1 ⊗D 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1+ {
(
1−𝛼1
𝛼1

)k
+
(
1−𝛼2
𝛼2

)k
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

iii. 𝜆 ∗D 𝜇h
𝜉1 = ∪

𝛼1∈𝜇h
𝜉1

⎧⎪
⎨⎪
⎩

1−
⎛⎜⎜⎜⎝1+ {𝜆

(
𝛼1

1−𝛼1

)k
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(𝜆 > 0)

iv. 𝜆 ∘D 𝜇h
𝜉1 = ∪

𝛼1∈𝜇h
𝜉1

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1+ {𝜆
(
1−𝛼1
𝛼1

)k
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(𝜆 > 0)
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3. DOMBI–ARCHIMEDEAN OPERATIONS ON HFEs

In this section, we develop a few operations between HFEs using Dombi and Archimedian operations and study the underlying properties
of these proposed operations.

Definition 13. Let 𝜇h
𝜉1 and𝜇

h
𝜉2 be two HFEs on U. Suppose Δk(𝜗) =

(
𝜗

1−𝜗

)k
, ∇k(𝜗′) =

(
1−𝜗′
𝜗′

)k
, 𝜗 ∈ [0, 1), 𝜗′ ∈ (0, 1]and k ≥ 1. Then

we define the Dombi–Archimedian operations on HFEs as below:

1. 𝜇h
𝜉1 ⊕DA 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜓−1 (Δk(𝛼1)) + 𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

}

2. 𝜇h
𝜉1 ⊗DA 𝜇h

𝜉2 = ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{
(
1 + {𝜃

(
𝜃−1 (∇k(𝛼1)) + 𝜃−1 (∇k(𝛼2))

)
}
1
k

)−1

}

3. 𝜆 ∗DA 𝜇h
𝜉1 = ∪

𝛼1∈𝜇h
𝜉1

{1 −
(
1 + {𝜓

(
𝜆𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

} (𝜆 > 0)

4. 𝜆 ∘DA 𝜇h
𝜉1 = ∪

𝛼1∈𝜇h
𝜉1

{
(
1 + {𝜃

(
𝜆𝜃−1 (∇k(𝛼1))

)
}
1
k

)−1

} (𝜆 > 0)

Example 1. Suppose𝜇h
𝜉1 = {0.5} and𝜇h

𝜉2 = {0.2, 0.3} be twoHFEs onU. Then for k = 2, 𝜆 = 0.3,𝜓(t) = − ln(1−t), 𝜓−1(t) = 1−e−t, 𝜃(t) =
− ln(t), 𝜃−1(t) = e−t; we have,

i. 𝜇h
𝜉1 ⊕DA 𝜇h

𝜉2

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
1 − e−

( 𝛼1
1−𝛼1

)2
+ 1 − e−

( 𝛼2
1−𝛼2

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {− ln

(
1 −

(
1 − e−

( 𝛼1
1−𝛼1

)2)
−
(
1 − e−

( 𝛼2
1−𝛼2

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

=
⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {− ln

(
1 −

(
1 − e−

(
0.5

1−0.5

)2)
−
(
1 − e−

(
0.2

1−0.2

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1

,

1 −
⎛⎜⎜⎜⎝1 + {− ln

(
1 −

(
1 − e−

(
0.5

1−0.5

)2)
−
(
1 − e−

(
0.3

1−0.3

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= {0.5206, 0.5591}

ii. 𝜇h
𝜉1 ⊗DA 𝜇h

𝜉2

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(
e−

( 1−𝛼1
𝛼1

)2
+ e−

( 1−𝛼2
𝛼2

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {− ln

(
e−

( 1−𝛼1
𝛼1

)2
+ e−

( 1−𝛼2
𝛼2

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

=
⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {− ln

(
e−

(
1−0.5
0.5

)2
+ e−

(
1−0.2
0.2

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1

,
⎛⎜⎜⎜⎝1 + {− ln

(
e−

(
1−0.5
0.5

)2
+ e−

(
1−0.3
0.3

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= {0.5000, 0.5014}
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iii. 𝜆 ∗DA 𝜇h
𝜉1

= ∪
𝛼1∈𝜇h

𝜉1

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
0.3 ×

(
1 − e−

( 𝛼1
1−𝛼1

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {− ln

(
0.3 ×

(
1 − e−

( 𝛼1
1−𝛼1

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

=
⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {− ln

(
0.3 ×

(
1 − e−

(
0.5

1−0.5

)2))
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= {0.3143}

iv. 𝜆 ∘DA 𝜇h
𝜉1

= ∪
𝛼1∈𝜇h

𝜉1

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(
0.3 × e−

( 1−𝛼1
𝛼1

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {− ln

(
0.3 × e−

( 1−𝛼1
𝛼1

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {− ln

(
0.3 × e−

(
1−0.5
0.5

)2)
}

1
2 ⎞⎟⎟⎟⎠

−1
⎫⎪
⎬⎪
⎭

= {0.4024}

Theorem 2. Let 𝜇h
𝜉1 and𝜇

h
𝜉2 be two HFEs defined on U and 𝜆, 𝜆1, 𝜆2 > 0. Then we have,

i. 𝜇h
𝜉1 ⊕DA 𝜇h

𝜉2 = 𝜇h
𝜉2 ⊕DA 𝜇h

𝜉1

ii. 𝜇h
𝜉1 ⊗DA 𝜇h

𝜉2 = 𝜇h
𝜉2 ⊗DA 𝜇h

𝜉1

iii. 𝜆 ∗DA
(
𝜇h
𝜉1 ⊕DA 𝜇h

𝜉2

)
=
(
𝜆 ∗DA 𝜇h

𝜉1

)
⊕DA

(
𝜆 ∗DA 𝜇h

𝜉2

)
iv. 𝜆 ∘DA

(
𝜇h
𝜉1 ⊗DA 𝜇h

𝜉2

)
=
(
𝜆 ∘DA 𝜇h

𝜉1

)
⊗DA

(
𝜆 ∘DA 𝜇h

𝜉2

)
v. (𝜆1 + 𝜆2) ∗DA 𝜇h

𝜉1 =
(
𝜆1 ∗DA 𝜇h

𝜉1

)
⊕DA

(
𝜆2 ∗DA 𝜇h

𝜉1

)
vi. (𝜆1 + 𝜆2) ∘DA 𝜇h

𝜉1 =
(
𝜆1 ∘DA 𝜇h

𝜉1

)
⊗DA

(
𝜆2 ∘DA 𝜇h

𝜉1

)
Proof: (i)-(ii) are straight forward.

(iii) 𝜆 ∗DA
(
𝜉1 ⊕DA 𝜉2

)
= 𝜆 ∗DA

⎛⎜⎜⎝ ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜓−1 (Δk (𝛼1)) + 𝜓−1 (Δk (𝛼2))

)
}
1

k

)−1

}
⎞⎟⎟⎠

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1+

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜆𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(𝜓
−1(∆k(𝛼1))+𝜓−1(∆k(𝛼2)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(𝜓
−1(∆k(𝛼1))+𝜓−1(∆k(𝛼2)))}

1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1

k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭
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= ∪
𝛼1∈𝜇h

𝜉1
, 𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜆
(
𝜓−1 (Δk (𝛼1)) + 𝜓−1 (Δk (𝛼2))

))
}
1

k

)−1

}

On the other hand, (𝜆 ∗DA 𝜉1)⊕DA (𝜆 ∗DA 𝜉2)

=
⎛⎜⎜⎝ ∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
𝜆𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}
⎞⎟⎟⎠⊕DA

⎛⎜⎜⎝ ∪
𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜆𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

}
⎞⎟⎟⎠

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(𝜆𝜓
−1(∆k(𝛼1)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(𝜆𝜓−1(∆k(𝛼1)))}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(𝜆𝜓
−1(∆k(𝛼2)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(𝜆𝜓−1(∆k(𝛼2)))}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜆𝜓−1 (Δk(𝛼1)) + 𝜆𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

}

Hence 𝜆 ∗DA (𝜉1 ⊕DA 𝜉2) = (𝜆 ∗DA 𝜉1)⊕DA (𝜆 ∗DA 𝜉2).
(iv) The proof is similar to (iii).

(vi) By Dombi–Archimedean operational laws (1 and 3) in Definition 13, we have, (𝜆1 + 𝜆2) ∗DA 𝜉1=

∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
(𝜆1 + 𝜆2)𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}

Next, using Dombi–Archimedean operational laws (3 and 1) in Definition 13, we have,

(𝜆1 ∗DA 𝜉1)⊕DA (𝜆2 ∗DA 𝜉1)

=
⎛⎜⎜⎝ ∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
𝜆1𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}
⎞⎟⎟⎠⊕DA

⎛⎜⎜⎝ ∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
𝜆2𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}
⎞⎟⎟⎠

= ∪
𝛼1∈𝜇h

𝜉1

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(𝜆1𝜓
−1(∆k(𝛼1)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(𝜆1𝜓−1(∆k(𝛼1)))}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(𝜆2𝜓
−1(∆k(𝛼1)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(𝜆2𝜓−1(∆k(𝛼1)))}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
𝜆1𝜓−1 (Δk(𝛼1)) + 𝜆2𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}

Hence, (𝜆1 + 𝜆2) ∗DA 𝜉1 = (𝜆1 ∗DA 𝜉1)⊕DA (𝜆2 ∗DA 𝜉1).
(vi) The proof is similar to (v).

4. HF DOMBI–ARCHIMEDEAN WEIGHTED AOS

In this section, we develop some hesitant fuzzy Dombi–Archimedean weighted AOs with the help of the Dombi–Archimedean operations.

4.1. HF Dombi–Archimedean Arithmetic AOs

In this sub-section, we propose Dombi–Archimedean arithmetic AOs with HFEs such as HFDAWAA, HFDAOWAA, and HFDAHAA.
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Definition 14. Suppose 𝜇h
𝜉1 (j = 1, 2, 3, ......, n)be a collection of HFEs on U. Then HF Dombi–Archimedean weighted arithmetic aggrega-

tion operator (HFDAWAA) is a function HFDAWAA ∶ HFEU → HFEU which is defined as follows:

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉2 , ........, 𝜇

h
𝜉n

)
=

n
⊕

j=1 DA

(
wj ∗DA 𝜇h

𝜉1

)

where wj (j = 1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

The following theorem follows from Definition 14.

Theorem 3. The aggregated value HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is also a HFE and

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼1 ∈ 𝜇h
𝜉1 , 𝛼2 ∈ 𝜇h

𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(1)

where wj(j = 1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

Proof: The first result holds immediately from Definition 14. Now to show the rest part, we use the method of mathematical induction on
n which are summarized as follows:

For n = 1, the result is obvious.
For n = 2, we have, HFDAWAA(𝜉1, 𝜉2)

= (w1 ∗DA 𝜉1)⊕DA (w2 ∗DA 𝜉2)

=
⎛⎜⎜⎝ ∪
𝛼1∈𝜇h

𝜉1

{1 −
(
1 + {𝜓

(
w1𝜓−1 (Δk(𝛼1))

)
}
1
k

)−1

}
⎞⎟⎟⎠⊕DA

⎛⎜⎜⎝ ∪
𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
w2𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

}
⎞⎟⎟⎠

= ∪
𝛼1 ∈ 𝜇h

𝜉1 ,
𝛼2 ∈ 𝜇h

𝜉2

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓(w1𝜓
−1(∆k(𝛼1)))}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓(w1𝜓−1(∆k(𝛼1)))}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1 −

(
1 + {𝜓

(
w2𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

(
1 + {𝜓 (w2𝜓−1 (Δk(𝛼2)))}

1
k

)−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
w1𝜓−1 (Δk(𝛼1)) + w2𝜓−1 (Δk(𝛼2))

)
}
1
k

)−1

}

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼2∈𝜇h

𝜉2

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

( 2
∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

Thus Equation (1) holds good for n = 2. Let us assume that Equation (1) holds for n = r. Then,

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼1 ∈ 𝜇h
𝜉1 , 𝛼2 ∈ 𝜇h

𝜉2
,

......, 𝛼r ∈ 𝜇h
𝜉r

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
r

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭



P. Liu et al. / International Journal of Computational Intelligence Systems 14(1) 386–411 395

Now for n = r + 1, we have

HFDAWAA(𝜉1, 𝜉2, 𝜉3, ........, 𝜉r+1)

=

⎛⎜⎜⎜⎜⎜⎝
∪

𝛼1 ∈ 𝜇h
𝜉1 , 𝛼2 ∈ 𝜇h

𝜉2
,

......, 𝛼r ∈ 𝜇h
𝜉r

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
r

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

⎞⎟⎟⎟⎟⎟⎠
⊕DA

(
wk+1 ∗DA 𝜉r+1

)

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼r+1 ∈ 𝜇h
𝜉r+1

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−

⎛⎜⎜⎜⎜⎜⎝
1+

⎧
⎨
⎩
𝜓
⎛⎜⎜⎜⎝

r

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

)⎞⎟⎟⎟⎠
⎫
⎬
⎭

1
k
⎞⎟⎟⎟⎟⎟⎠

−1

⎛⎜⎜⎜⎜⎜⎝
1+

⎧
⎨
⎩
𝜓
⎛⎜⎜⎜⎝

r

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

)⎞⎟⎟⎟⎠
⎫
⎬
⎭

1
k
⎞⎟⎟⎟⎟⎟⎠

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1 −

(
1 + {𝜓

(
wr+1𝜓−1

(
Δk(𝛼r+1)

))
}
1
k

)−1

(
1 + {𝜓

(
wr+1𝜓−1

(
Δk(𝛼r+1)

))
}
1
k

)−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼r+1 ∈ 𝜇h
𝜉r+1

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
r

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

)
+ wr+1𝜓−1

(
Δk(𝛼r+1)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼r+1 ∈ 𝜇h
𝜉r+1

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
r+1
∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

Thus, Equation (1) also holds good for n = r + 1. Thus, Equation (1) is true for all natural number n.

Theorem 4. (Shift invariance) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU. Then

HFDAWAA
(
𝜇h
𝜉0 ⊕DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉n

)
= 𝜇h

𝜉0⊕DA HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
.

Proof: Since 𝜇h
𝜉0 ⊕DA 𝜇h

𝜉j = ∪
𝛼0∈𝜇h

𝜉1
,𝛼j∈𝜇h

𝜉2

{1 −
(
1 + {𝜓

(
𝜓−1 (Δk(𝛼0)) + 𝜓−1

(
Δk(𝛼j)

))
}
1
k

)−1

}, we have,

HFDAWAA
(
𝜇h
𝜉0 ⊕DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉n

)

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n , 𝛼0 ∈ 𝜇h

𝜉0

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎝
n

∑
j=1

wj𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝1+{𝜓
(
𝜓−1(∆k(𝛼0))+𝜓−1

(
∆k(𝛼j)

))
}
1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1+{𝜓
(
𝜓−1(∆k(𝛼0))+𝜓−1

(
∆k(𝛼j)

))
}
1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎬
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n , 𝛼0 ∈ 𝜇h

𝜉0

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj
(
𝜓−1 (Δk(𝛼0)) + 𝜓−1

(
Δk(𝛼j)

)
)
))

}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n , 𝛼0 ∈ 𝜇h

𝜉0

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
𝜓−1 (Δk(𝛼0)) +

n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

)
)

)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭
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Again, using Dombi–Archimedean operational laws, we have,

𝜉0 ⊕DA HFDAWAA(𝜉1, 𝜉2, 𝜉3, ........, 𝜉n)

=
⎛⎜⎜⎝ ∪
𝛼0∈𝜇h

𝜉0

{𝛼0}
⎞⎟⎟⎠⊕DA

⎛⎜⎜⎜⎜⎜⎝
∪

𝛼1 ∈ 𝜇h
𝜉1 , 𝛼2 ∈ 𝜇h

𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

⎞⎟⎟⎟⎟⎟⎠

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n , 𝛼0 ∈ 𝜇h

𝜉0

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

𝜓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓−1 (Δk(𝛼0)) + 𝜓−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝1 + {𝜓
(

n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

1
k
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

= ∪
𝛼1 ∈ 𝜇h

𝜉1 , 𝛼2 ∈ 𝜇h
𝜉2
,

......, 𝛼n ∈ 𝜇h
𝜉n , 𝛼0 ∈ 𝜇h

𝜉0

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
𝜓−1 (Δk(𝛼0)) +

n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

Hence, HFDAWAA
(
𝜇h
𝜉0 ⊕DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉n

)
= 𝜇h

𝜉0⊕DA HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
.

Theorem 5. (Idempotency) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU such that 𝜇h
𝜉0 = 𝜇h

𝜉j ∀ j. Then we

have, HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= 𝜇h

𝜉0 .

Proof: we have,

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)

= ∪
𝛼1∈𝜇h

𝜉1
,𝛼∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼0∈𝜇h

𝜉0

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1 (Δk(𝛼0))
)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼0∈𝜇h

𝜉0

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
𝜓−1 (Δk(𝛼0))

n

∑
j=1

wj

)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

= ∪
𝛼0∈𝜇h

𝜉0

{1 −
(
1 + {𝜓

(
𝜓−1 (Δk(𝛼0))

)
}
1
k

)−1

}

= ∪
𝛼0∈𝜇h

𝜉0

{1 −
(
1 + {Δk(𝛼0))}

1
k

)−1

}

= ∪
𝛼0∈𝜇h

𝜉0

{1 −
(
1 + 𝛼0

1 − 𝛼0

)−1
}

= ∪
𝛼0∈𝜇h

𝜉0

{𝛼0} = 𝜇h
𝜉0 .
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Theorem 6. (Boundedness) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then,

(
𝜇h
𝜉

)−
≺

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺
(
𝜇h
𝜉

)+
where

(
𝜇h
𝜉

)+
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

max {𝛼1, 𝛼2, ....., 𝛼n} and
(
𝜇h
𝜉

)−
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

min {𝛼1, 𝛼2, ....., 𝛼n}.

Proof: For any j ∈ {1, 2, 3, ......, n}, we have, min
j
(𝛼j) ≤ 𝛼j ≤ max

j
(𝛼j)where𝛼j ∈ 𝜇h

𝜉j . This gives,

𝜓
(

n

∑
j=1

wj𝜓−1
(
Δk(𝛼′)

))
≤ 𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
≤ 𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼′′)

))
where𝛼′ ∈

(
𝜇h
𝜉

)−
, 𝛼′′ ∈

(
𝜇h
𝜉

)+
(
since𝜓 ismonotonic increasing on [0, 1]

)

⇒ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼′))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼′′))
)
}

1
k
⎞⎟⎟⎟⎠
−1

⇒ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
𝜓−1(Δk(𝛼′))

n

∑
j=1

wj

)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
𝜓−1(Δk(𝛼′′))

n

∑
j=1

wj

)
}

1
k
⎞⎟⎟⎟⎠
−1

⇒ 1 −
(
1 + {𝜓

(
𝜓−1(Δk(𝛼′))

)
}
1
k

)−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
(
1 + {𝜓

(
𝜓−1(Δk(𝛼′′))

)
}
1
k

)−1

⇒ 1 −
(
1 + {Δk(𝛼′)}

1
k

)−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
(
1 + {Δk(𝛼′′)}

1
k

)−1

⇒1− 1
1+ 𝛼′

1−𝛼′

≤ 1−
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1− 1
1+ 𝛼′′

1−𝛼′′

⇒ 𝛼′ ≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 𝛼′′

Therefore, by definition of score values of HFEs, we obtain S
((
𝜇h
𝜉

)−)
≤ S

(
HFDAWAA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

))
≤ S

((
𝜇h
𝜉

)+)
.

Hence, by ranking rules of HFEs, we get,
(
𝜇h
𝜉

)−
≺ HFDAWAA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺
(
𝜇h
𝜉

)+
.

Theorem 7. (Monotonocity) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n)and𝜇h

𝜉′j
(j = 1, 2, 3, ......, n) be two collections of HFEs on U such

that 𝛼j ≤ 𝛼′j where𝛼j ∈ 𝜇h
𝜉j , 𝛼

′
j ∈ 𝜇h

𝜉′j
∀(j = 1, 2, 3, ......, n). Then we have, HFDAWAA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺

HFDAWAA
(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
.

Proof: We have from Theorem 3,

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼j))
)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

,

HFDAWAA
(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
= ∪

𝛼′
1∈𝜇h

𝜉′1
,𝛼′

2∈𝜇h
𝜉′2
,......,𝛼′n∈𝜇h

𝜉′n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1(Δk(𝛼′j ))
)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

.
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Since 𝛼j ≤ 𝛼′j where𝛼j ∈ 𝜇h
𝜉j , 𝛼

′
j ∈ 𝜇h

𝜉′j
(j = 1, 2, 3, ......, n), Δ

k
(𝛼j) ≤ Δ

k
(𝛼′j ).

Since 𝜓 is monotonic increasing on [0, 1], we get 𝜓
(

n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
≤ 𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼′j )

))
. which implies that 1 −

⎛⎜⎜⎜⎝1 + {𝜓
(

n

∑
j=1

wj𝜓−1
(
Δk(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1

≤ 1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼′j )

))
}

1
k
⎞⎟⎟⎟⎠
−1

.

Consequently, S
(
HFDAWAA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

))
≤ S

(
HFDAWAA

(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

))
and so by ranking rules ofHFEs,

HFDAWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺ HFDAWAA

(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
.

Next, based on HFDAWAA operator, we shall develop the HFDAOWAA operator as follows:

Definition 15. Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then HFDAOWAA is a function HFDAOWAA ∶ HFEU →

HFEU which is defined as follows:

HFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
=

n
⊕
j=1DA

(
wj ∗DA 𝜇h

𝜉𝜍(j)

)

where (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n) such that 𝜇h
𝜉𝜍(j−1) ≥ 𝜇h

𝜉𝜍(j) for all j = 1, 2, 3, ........, n and wj(j =

1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

Theorem 8. The aggregated value HFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is still a HFE and

HFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼𝜍(1) ∈ 𝜇h
𝜉𝜍(1)

, 𝛼𝜍(2) ∈ 𝜇h
𝜉𝜍(2)

,

..............., 𝛼𝜍(n) ∈ 𝜇h
𝜉𝜍(n)

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼𝜍(j))

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

where wj is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

Proof: Similar to Theorem 3.

In particular, if wj =
1
n
∀ j = 1, 2, 3, ...., n;, then the operator HFDAOWAA reduces to the HFDAWAA operator.

Theorem 9. (Shift invariance) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU. Then

HFDAOWAA
(
𝜇h
𝜉0 ⊕DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊕DA 𝜇h

𝜉n

)
= 𝜇h

𝜉0⊕DAHFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
.

Proof: Similar to Theorem 4.

Theorem 10. (Idempotency) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU such that 𝜇h
𝜉0 = 𝜇h

𝜉j ∀ j. Then we

have, HFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
= 𝜇h

𝜉0 .

Proof: Similar to Theorem 5.

Theorem 11. (Boundedness) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then,

(
𝜇h
𝜉

)−
≺

HFDAOWAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺
(
𝜇h
𝜉

)+
where

(
𝜇h
𝜉

)+
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

max {𝛼1, 𝛼2, ....., 𝛼n} and
(
𝜇h
𝜉

)−
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

min {𝛼1, 𝛼2, ....., 𝛼n}

Proof: Similar to Theorem 6.
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Theorem 12. (Monotonocity) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n)and𝜇h

𝜉′j
(j = 1, 2, 3, ......, n) be two collections of HFEs on U such

that 𝛼j ≤ 𝛼′j where𝛼j ∈ 𝜇h
𝜉j , 𝛼

′
j ∈ 𝜇h

𝜉′j
∀ (j = 1, 2, 3, ......, n). Then we have, HFDAOWAA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺

HFDAOWAA
(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
.

Proof: Similar to Theorem 7.

We can differentiate HFDAWAA and HFDAOWAA operators in terms of HFE assessment which means that the HFDAWAA operator
specifies only the self-importance of eachHFE, whereas theHFDAOWAA operator specifies the ordered position importance of eachHFE.
In many practical situations, we need to consider both these cases altogether. Because of this, by means of linking up the features of these
two operators each other, we propose HFDAHAA operator in the ambiance of the Dombi–Archimedean operations as follows:

Definition 16. Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then HFDAHAA (for short) is a function HFDAHAA ∶

HFEU → HFEU which is defined as follows:

HFDAHAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
=

n
⊕
j=1AD

(
ŵj ∗AD 𝜇h

̂𝜉𝜍(j)

)

Where ŵ = (ŵ1, ŵ2, ŵ3, ...., ŵn)
T is the weight vector associated with the HFDAHAA operator such that ŵj > 0 and

n

∑
j=1

ŵj = 1, (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n), 𝜇h
̂𝜉𝜍(j)

is the jth largest of the weighted HFE of

𝜇h
̂𝜉j

(
𝜇h

̂𝜉j
= (nŵj) ∗DA 𝜇h

𝜉j , j = 1, 2, 3, ...., n
)
and wj is the weight of 𝜇h

𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and
n

∑
j=1

wj = 1.

Theorem 13. The aggregated value HFDAHAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is still a HFE and

HFDAHAA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ........, 𝜇

h
𝜉n

)
= ∪

�̂�𝜍(1)∈𝜇h
̂𝜉𝜍(1)

,�̂�𝜍(2)∈𝜇h
̂𝜉𝜍(2)

,......,�̂�𝜍(n)∈𝜇h
̂𝜉𝜍(n)

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

ŵj𝜓−1
(
Δk(�̂�𝜍(j))

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

where ŵ = (ŵ1, ŵ2, ŵ3, ...., ŵn)T is the weight vector associated with the HFDAHAA operator such that ŵj > 0 and
n

∑
j=1

ŵj = 1, (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n), 𝜇h
̂𝜉𝜍(j)

is the jth largest of the weighted HFE of

𝜇h
̂𝜉j

(
𝜇h

̂𝜉j
= (nŵj) ∗DA 𝜇h

𝜉j , j = 1, 2, 3, ...., n
)
and wj is the weight of 𝜇h

𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and
n

∑
j=1

wj = 1.

In particular, ifwj =
1
n
∀ j = 1, 2, 3, ...., n;, then the operatorHFDAHAA reduces to theHFDAWAAoperator and if ŵj =

1
n
∀ j = 1, 2, 3, ...., n;,

then the operator HFDAHAA reduces to the HFDAOWAA.

4.2. HF Dombi–Archimedean Geometric AOs

In this sub-section, we propose Dombi–Archimedean geometric AOs with HFEs such as HFDAWGA, HFDAOWGA, and HFDAHGA.

Definition 17. Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then HFDAWGA (for short) is a function HFDAWGA ∶

HFEU → HFEU which is defined as follows:

HFDAWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
=

n
⊗
j=1DA

(
wj ∘DA 𝜇h

𝜉j

)

where wj(j = 1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

The following theorems readily follow from Definition 17 and Dombi–Archimedean operational laws for HFEs.
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Theorem 14. The aggregated value HFDAWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is also a HFE and

HFDAWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(

n

∑
j=1

wj𝜃−1
(
∇k(𝛼j)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

where wj(j = 1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

Theorem 15. (Shift invariance) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU. Then

HFDAWGA
(
𝜇h
𝜉0 ⊗DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊗DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊗DA 𝜇h

𝜉n

)
= 𝜇h

𝜉0 ⊗DA HFDAWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
.

Theorem 16. (Idempotency) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU such that 𝜇h
𝜉0 = 𝜇h

𝜉j ∀ j. Then we

have, HFDAWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= 𝜇h

𝜉0 .

Theorem 17. (Boundedness) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then

(
𝜇h
𝜉

)−
≺ HFDAWGA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺
(
𝜇h
𝜉

)+
where

(
𝜇h
𝜉

)+
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

max {𝛼1, 𝛼2, ....., 𝛼n} and
(
𝜇h
𝜉

)−
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

min {𝛼1, 𝛼2, ....., 𝛼n}

Theorem 18. (Monotonocity) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n)and𝜇h

𝜉′j
(j = 1, 2, 3, ......, n) be two collections of HFEs on U such

that 𝛼j ≤ 𝛼′j where𝛼j ∈ 𝜇h
𝜉j , 𝛼

′
j ∈ 𝜇h

𝜉′j
(j = 1, 2, 3, ......, n). Then we have, HFDAWGA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺

HFDAWGA
(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
.

Next, based on HFDAWGA operator, we shall develop the HFDAOWGA operator as follows:

Definition 18. Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then HFDAOWGA is a function HFDAOWGA ∶ HFEU →

HFEU which is defined as follows:

HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
=

n
⊗
j=1DA

(
wj ∘DA 𝜇h

𝜉𝜍(j)

)
where (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n) such that 𝜇h

𝜉𝜍(j−1) ≥ 𝜇h
𝜉𝜍(j) for all j = 1, 2, 3, ........, n and wj(j =

1, 2, 3, ........, n) is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

Theorem 19. The aggregated value HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is still a HFE and

HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ........, 𝜇

h
𝜉n

)
= ∪

𝛼𝜍(1) ∈ 𝜇h
𝜉𝜍(1)

, 𝛼𝜍(2) ∈ 𝜇h
𝜉𝜍(2)

,

......, 𝛼𝜍(n) ∈ 𝜇h
𝜉𝜍(n)

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(

n

∑
j=1

wj𝜃−1(∇k(𝛼𝜍(j)))
)
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

where wj is the weight of 𝜇h
𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and

n

∑
j=1

wj = 1.

In particular, if wj =
1
n
∀ j = 1, 2, 3, ...., n;, then the HFDAOWGA operator reduces to the HFDAWGA operator.

Theorem 20. (Shift invariance) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU. Then,

HFDAOWGA
(
𝜇h
𝜉0 ⊗DA 𝜇h

𝜉1 , 𝜇
h
𝜉0 ⊗DA 𝜇h

𝜉2 , ......, 𝜇
h
𝜉0 ⊗DA 𝜇h

𝜉n

)
= 𝜇h

𝜉0⊗DA HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ......, 𝜇

h
𝜉n

)
.
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Theorem 21. (Idempotency) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U and 𝜇h

𝜉0 ∈ HFEU such that 𝜇h
𝜉0 = 𝜇h

𝜉j ∀ j. Then we

have, HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
= 𝜇h

𝜉0 .

Theorem 22. (Boundedness) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then,

(
𝜇h
𝜉

)−
≺

HFDAOWGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺
(
𝜇h
𝜉

)+
where

(
𝜇h
𝜉

)+
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

max {𝛼1, 𝛼2, ....., 𝛼n}

and
(
𝜇h
𝜉

)−
= ∪

𝛼1∈𝜇h
𝜉1
,𝛼2∈𝜇h

𝜉2
,......,𝛼n∈𝜇h

𝜉n

min {𝛼1, 𝛼2, ....., 𝛼n}.

Theorem 23. (Monotonocity) Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n)and𝜇h

𝜉′j
(j = 1, 2, 3, ......, n) be two collections of HFEs on U such

that 𝛼j ≤ 𝛼′j where𝛼j ∈ 𝜇h
𝜉j , 𝛼

′
j ∈ 𝜇h

𝜉′j
(j = 1, 2, 3, ......, n). Then we have, HFDAOWGA

(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
≺

HFDAOWGA
(
𝜇h
𝜉′1
, 𝜇h

𝜉′2
, 𝜇h

𝜉′3
, ........, 𝜇h

𝜉′n

)
.

According to the definitions of HFDAWGA and HFDAOWGA operators, the HFDAWGA operator can only contemplate the self-
importance of each HFE and on the other hand, the HFDAOWGA operator indulges the ordered position importance of each HFE. In
several real -world situations, it is required to consider simultaneously both these two categories. So, by combining the characteristics of
these two operators, we propose HFDAHGA operator in the verge of Dombi–Archimedean operations as follows:

Definition 19. Suppose 𝜇h
𝜉j (j = 1, 2, 3, ......, n) be a collection of HFEs on U. Then HFDAHGA (for short) is a function HFDAHGA ∶

HFEU → HFEU which is defined as follows:

HFDAHGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
=

n
⊗
j=1DA

(
ŵj ∘DA 𝜇h

̂𝜉𝜍(j)

)
where ŵ = (ŵ1, ŵ2, ŵ3, ...., ŵn)T is the weight vector associated with the HFDAHGA operator such that ŵj > 0 and
n

∑
j=1

ŵj = 1, (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n), 𝜇h
̂𝜉𝜍(j)

is the jth largest of the weighted HFE of

𝜇h
̂𝜉j

(
𝜇h

̂𝜉j
= (nŵj) ∘DA 𝜇h

𝜉j , j = 1, 2, 3, ...., n
)
and wj(j = 1, 2, 3, ........, n) is the weight of 𝜇h

𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and
n

∑
j=1

wj = 1.

Theorem 24. The aggregated value HFDAHGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , 𝜇

h
𝜉3 , ........, 𝜇

h
𝜉n

)
is still a HFE and

HFDAHGA
(
𝜇h
𝜉1 , 𝜇

h
𝜉2 , ........, 𝜇

h
𝜉n

)
= ∪

�̂�𝜍(1) ∈ 𝜇h
̂𝜉𝜍(1)

, �̂�𝜍(2) ∈ 𝜇h
̂𝜉𝜍(2)

,

..........., �̂�𝜍(n) ∈ 𝜇h
̂𝜉𝜍(n)

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(

n

∑
j=1

ŵj𝜃−1
(
∇k(�̂�𝜍(j))

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

where ŵ = (ŵ1, ŵ2, ŵ3, ...., ŵn)T is the weight vector associated with the HFDAHGA operator such that ŵj > 0 and
n

∑
j=1

ŵj = 1, (𝜎(1), 𝜎(2), 𝜎(3), ......., 𝜎(n)) is a permutation of (1, 2, 3, ...., n), 𝜇h
̂𝜉𝜍(j)

is the jth largest of the weighted HFE of

𝜇h
̂𝜉j

(
𝜇h

̂𝜉j
= (nŵj) ∘DA 𝜇h

𝜉j , j = 1, 2, 3, ...., n
)
and wj(j = 1, 2, 3, ........, n) is the weight of 𝜇h

𝜉j (j = 1, 2, 3, ........, n) with wj > 0 and
n

∑
j=1

wj = 1.

In particular, if wj =
1
n
∀ j = 1, 2, 3, ...., n;, then the operator HFDAHGA reduces to the HFDAWGA operator and if ŵj =

1
n
∀ j =

1, 2, 3, ...., n;, then the operator HFDAHGA reduces to the HFDAOWGA operator.

5. MULTI-ATTRIBUTE DECISION-MAKING

In this section, we shall utilize theHFDAWAA (orHFDAWGA orHFDAOWAA orHFDAOWGA) operator to develop an approach to solve
MADM problems with HF information.
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Let U = {A1,A2,A3, .....,Am} be a set of alternatives, A = {C1,C2,C3, .....,Cn} be a set of attributes, and w = {w1,w2,w3, .....,wn} be a set

of weights (wj is the weight of attribute cj
(
j = 1, 2, 3, …… , n

)
) such that wj > 0 and

n

∑
j=1

wj = 1. Suppose D̃ = [dij]m×n represents the HF

decision matrix, where each dij is represented in the form of HFE 𝜇h
𝜉ij

(
i = 1, 2, 3, ......,m; j = 1, 2, 3, ........, n

)
.

Now, the proposed approach based on HFDAWAA (or HFDAWGA or HFDAOWAA or HFDAOWGA) operator to resolve the MADM
problems with HF information involves the following steps:

ALGORITHM:

Step-1: Normalize the decision matrix.

In case of real-world decision-making situations, the attributes often divided into two categories, namely- benefit attributes and cost
attributes. The first type is taken as profit index which renders positive impact on the decision-making result that means, the better eval-
uation result is directly proportional to the attribute values. On the other hand, the second one i.e., the cost attribute is treated as the cost
index which is carrying the negative effect at the time of final assessment of the decision-making problem. In turn it means that the better
evaluation result is inversely proportional to the attribute values. In this aspect, we shall keep in mind which is, it requires standardizing
and transforming the cost type attributes into benefit type attributes in case of appearance of cost type attributes. If such scenario doesn’t
occur then we shall not entertain this step during this discussion.

The Normalized decision matrix is D̃ = [dij]m×n, where

d̃ij = {
𝜇h
𝜉ij ifCj is a benefit type attribute(
𝜇h
𝜉ij

)c
ifCj is a cost type attribute

Step-2: Compute the aggregation (overall preference) values gi(i = 1, 2, ...,m) of Ai (i = 1, 2, ...,m) as;

gi = HFDAWAA
(
d̃i1, d̃i2, ....., d̃in

)
= ∪

𝛼i1∈d̃i1,𝛼i2∈d̃i2,..........,𝛼in∈d̃i n

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼ij)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(i = 1, 2, ...,m)

or

gi = HFDAWGA
(
d̃i1, d̃i2, ....., d̃in

)
= ∪

𝛼i1∈d̃i1,𝛼i2∈d̃i2,..........,𝛼in∈d̃i n

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(

n

∑
j=1

wj𝜃−1
(
∇k(𝛼ij)

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(i = 1, 2, ...,m)

or

gi = HFDAOWAA
(
d̃i1, d̃i2, ....., d̃in

)
= ∪

𝛼i𝜍(1) ∈ d̃i𝜍(1),
𝛼i𝜍(2) ∈ d̃i𝜍(2),
....................,
𝛼i𝜍(n) ∈ d̃i𝜍(n)

⎧⎪
⎨⎪
⎩

1 −
⎛⎜⎜⎜⎝1 + {𝜓

(
n

∑
j=1

wj𝜓−1
(
Δk(𝛼i𝜍(j))

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(i = 1, 2, ...,m)

or

gi = HFDAOWGA
(
d̃i1, d̃i2, ....., d̃in

)
= ∪

𝛼i𝜍(1) ∈ d̃i𝜍(1),
𝛼i𝜍(2) ∈ d̃i𝜍(2),
....................,
𝛼i𝜍(n) ∈ d̃i𝜍(n)

⎧⎪
⎨⎪
⎩

⎛⎜⎜⎜⎝1 + {𝜃
(

n

∑
j=1

wj𝜃−1
(
∇k(𝛼i𝜍(j))

))
}

1
k
⎞⎟⎟⎟⎠
−1
⎫⎪
⎬⎪
⎭

(i = 1, 2, ...,m)

Step-3: Calculate the score values of gi(i = 1, 2, ...,m) of Ai(i = 1, 2, ...,m) based on Definition 3.

Step-4: Rank the alternatives Ai (i = 1, 2, ...,m) using Definition 4.
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6. NUMERICAL EXAMPLE

In this section, an illustrative example is provided to emphasize the application of the proposedmethod for “enterprise personnel selection.”

6.1. Problem Description

It is quite natural that there should be a large impact of rising globalization and fast technological advancement upon the world markets
which immediately start demanding companies to supply high-quality products as well as to provide quality service. To attain so, we need
to make sure about the employability of reasonable personnel. Personnel selection is a procedure of opting individuals who fit in the qual-
ifications needed to accomplish a defined job at best. It aims to decide the input quality of personnel and plays a crucial part in human
resourcemanagement. Due to accretive competition in globalmarkets, the organizations are being rebuked to focus considerably on person-
nel selection process. Formally, the personnel selection process and its recruitment get influenced by some major grounds such as changes
in organizations, work, society, regulations, and marketing. A skillful decision is made by some enterprises to sort out the best candidate
by taking advantage of stern and expensive selection procedures. This is required just because of the fact that during personnel selection
process many individual attributes are taken into consideration which manifest the vagueness and imprecision and consequently the HFS
theory appears to be a competent approach to come up with an infrastructure that includes dubious judgments intrinsic at the personnel
selection procedure.

Now, let’s think about a manufacturing company, which desires to appoint a sales manager against the unfilled post (adopted from Boran
et al. [78]). We confer here that six candidates Ai(i = 1, 2, ..., 6) get nominated for further evaluation after preelimination. In this regard, a
decision has to make to someone upon consideration of four Attributes given below:

i. C1: oral communication skill

ii. C2: past experience

iii. C3: general aptitude

iv. C4: self-confidence.

The attribute weight is given by decision-maker as: w = (0.35, 0.25, 0.25, 0.15)T. The decision-maker can start the evaluation process of the
six candidates Ai(i = 1, 2, ..., 6) subject to anonymous HF information under the aforementioned four attributes, which is presented in the
following Table 1.

6.2. Problem Solution

To solve theMADM problem described above, we apply HFDAWAA operator for the evaluation of alternatives with HF information. The
proposed method involves the following consecutive steps:

Step-1: Since all the given attributes Cj(j = 1, 2, 3, 4) are benefit attribute, so, the attribute values of the alternatives Ai(i = 1, 2, ..., 6) do not
require normalization.

Step-2: Utilizing the decision information presented in Table 1 and using the HFDAWAA operator, we compute the aggregation (overall
preference) values (taking k = 2) gi(i = 1, 2, ..., 6) of Ai (i = 1, 2, ..., 6).

To do so, take 𝜓(𝛽) = 𝛽
1−𝛽 , 𝛽 ∈ [0, 1); 𝜃(𝛽′) = 1−𝛽′

𝛽′ , 𝛽′ ∈ (0, 1]. Then clearly, 𝜓−1(𝛽)= 𝛽
1+𝛽 and 𝜃−1(𝛽′)= 1

1+𝛽′ .

Table 1 Hesitant fuzzy decision matrix D̃ = [dij]6×4.

C 1 C 2 C 3 C 4

A1 <{0.2, 0.4}> <{0.2, 0.6, 0.8}> <{0.3, 0.6, 0.7}> <{0.4, 0.6}>
A2 <{0.4, 0.7, 0.9}> <{0.2, 0.4}> <{0.4, 0.6, 0.9}> <{0.4, 0.6}>
A3 <{0.3, 0.4}> <{0.4, 0.8}> <{0.3, 0.4, 0.7}> <{0.2, 0.4, 0.7}>
A4 <{0.3, 0.4, 0.6}> <{0.1, 0.3}> <{0.2, 0.4, 0.9}> <{0.2, 0.3}>
A5 <{0.4, 0.7}> <{0.2, 0.3}> <{0.3, 0.7, 0.8}> <{0.3, 0.4, 0.8}>
A6 <{0.7, 0.8, 0.9}> <{0.4, 0.6, 0.7}> <{0.4, 0.6}> <{0.7, 0.8}>
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To reduce the length of this article, alternative A1 is provided as a representative example.

g1 = HFDAWAA
(
d̃11, d̃12, d̃13, d̃14

)
= {0.250269475, 0.283480375, 0.314132359, 0.33138089, 0.325953704, 0.34093905,
0.321805241, 0.337562841, 0.354272232, 0.364585279, 0.361269889, 0.370581059,
0.338668082, 0.351429379, 0.365327952, 0.374084452, 0.371255031, 0.379235433,
0.313749186, 0.334439886, 0.355154173, 0.367393055, 0.363500897, 0.374334358,
0.360550882, 0.371870223, 0.384189522, 0.391938976, 0.38943631, 0.396491213,
0.372675435, 0.382072224, 0.39250103, 0.399166213, 0.397004974, 0.403118578.

Step-3: Calculate the score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i = 1, 2, ..., 6) of the alternatives Ai(i = 1, 2, ....., 6).
Here, S(g1) = 0.0181, S(g2) = 0.0218, S(g3) = 0.0193, S(g4) = 0.0178, S(g5) = 0.0207, S(g6) = 0.0248.
Step-4: Rank the alternatives Ai(i = 1, 2, ....., 6) according to the score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i =
1, 2, ..., 6).
Thus the ranking order of the alternatives is: A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4 where the symbol “≻” means “superior to.” Hence, the most
desirable person is A6.

Now, if we apply the other proposedweightedAO namely,HFDAWGA orHFDAOWAA orHFDAOWGA instead of the operatorHFDAWAA,
then the above problem can be solved similarly as discussed and the final score values and the ranking order of the given alternatives are
summarized in Table 2. We can conclude from Table 2 that although the ranking orders of the alternatives are slightly different; the most
desirable alternative is still A6 in all cases.

6.3. Analysis of the Effect of the Parameter k on Score Values

In order to diagnose the effect of the parameter “k,” on the ranking of the alternatives, we utilize the operators HFDAWAA, HFDAWGA,
HFDAOWAA, and HFDAOWGA for different values of k and we summarize the final score values and the ranking order of the given
alternatives in Table 3 and Figure 1.

As we see from Table 3 and Figure 1, the ranking order of the alternatives for different values of k is mostly same and the best alternative is
A6 in all cases. Further analyzing Table 3, we observe that:

1. The score values of the alternatives A1,A2,A3,A4,A5,A6obtained from HFDAWAA operator increase with the increasing value of k
which varies from 1 to 8. The same is obeyed for the operator HFDAOWAA.

2. The score values of each of the alternatives A2,A3,A5,A6received by the operatorHFADWGA are found to decrease with the increase
of k, starting from 1 to 8, whereas remarkably the score values of the alternative A1derived from the operatorHFDAWGA are observed
considerably to be decreased in the sub-intervals 1 ≤ k ≤ 4 and increased in 4 < k ≤ 8 respectively in the stipulated interval
1 ≤ k ≤ 8. On the other hand, interestingly, the score values of the alternative A4determined by the operator HFDAWAA are found
to occur decrease in the sub-interval 1 ≤ k ≤ 2 and increase in 2 < k ≤ 8 respectively. The HFDAOWGA operator complies with the
same behavior.

Thus the above analysis makes it clear that the operatorsHFDAWAA andHFDAOWAA exhibit the similar response and on the other hand
surprisingly the same behavior is found to observe for the case ofHFDAWGA andHFDAOWGA operators while changing the values of the
parameter k lying in [1,8] in our proposedMADM process. As a result, decision-makers can select any of the operators either from of the
pairHFDAWAA operator-HFDAOWAA operator or from the pairHFDAWGA operator-HFDAOWGA operator to get the desired outcome.

6.4. Validity Test

To examine the legality and authenticity of the proposed method, some test criteria [79] are asserted below:

Table 2 Ranking order of alternatives (for k = 2).

Operators Score Values Ranking Order
A1 A2 A 3 A4 A5 A6

HFDAWGA 0.0236 0.0281 0.0253 0.0209 0.0259 0.0350 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0208 0.0221 0.0212 0.0187 0.0212 0.0250 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0264 0.0292 0.0276 0.0215 0.0276 0.0364 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
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Table 3 Ranking order of alternatives for different values of k.

Operators Score Values Ranking Order
A1 A2 A3 A4 A5 A6

k = 1
HFDAWAA 0.0138 0.0179 0.0148 0.0139 0.0163 0.0206 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A4 ≻ A1
HFDAWGA 0.0238 0.03 0.0258 0.0212 0.0263 0.0363 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0166 0.0181 0.0170 0.0155 0.0171 0.0208 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWGA 0.0266 0.0311 0.0280 0.0223 0.0283 0.0377 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4

k = 2
HFDAWAA 0.0181 0.0218 0.0193 0.0178 0.0207 0.0248 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0236 0.0281 0.0253 0.0209 0.0259 0.0350 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0208 0.0221 0.0212 0.0187 0.0212 0.0250 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0264 0.0292 0.0276 0.0215 0.0276 0.0364 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4

k = 3
HFDAWAA 0.0198 0.0230 0.0208 0.0192 0.0221 0.0260 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0235 0.0270 0.0249 0.0210 0.0255 0.0339 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0221 0.0233 0.0224 0.0197 0.0223 0.0261 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWGA 0.0262 0.0281 0.0270 0.0213 0.0269 0.0352 A6 ≻ A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

k = 4
HFDAWAA 0.0207 0.0236 0.0216 0.0199 0.0228 0.0265 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0235 0.0265 0.0246 0.0213 0.0253 0.0331 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0227 0.0238 0.0229 0.0202 0.0229 0.0266 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0260 0.0274 0.0266 0.0214 0.0264 0.0343 A6 ≻ A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

k = 5
HFDAWAA 0.0214 0.0239 0.0221 0.0204 0.0232 0.0267 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0237 0.0261 0.0245 0.0214 0.0252 0.0325 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0232 0.0241 0.0233 0.0205 0.0233 0.0268 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0258 0.0270 0.0262 0.0215 0.0261 0.0336 A6 ≻ A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

k = 6
HFDAWAA 0.0219 0.0242 0.0225 0.0207 0.0234 0.0269 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0238 0.0259 0.0244 0.0216 0.0251 0.0322 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0235 0.0243 0.0235 0.0208 0.0235 0.0270 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0257 0.0267 0.0259 0.0216 0.0258 0.0331 A6 ≻ A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

k = 7
HFDAWAA 0.0223 0.0243 0.0228 0.0209 0.0237 0.0270 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0239 0.0258 0.0244 0.0217 0.0251 0.0319 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0237 0.0244 0.0237 0.0209 0.0237 0.0271 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA 0.0256 0.0265 0.0258 0.0217 0.0257 0.0327 A6 ≻ A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

k = 8
HFDAWAA 0.0226 0.0244 0.0231 0.0211 0.0238 0.0271 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA 0.0240 0.0257 0.0244 0.0217 0.0251 0.0317 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA 0.0238 0.0245 0.0238 0.0211 0.0238 0.0272 A6 ≻ A2 ≻ A5 = A3 = A1 ≻ A4
HFDAOWGA 0.0256 0.0263 0.0256 0.0218 0.0256 0.0324 A6 ≻ A2 ≻ A5 = A3 = A1 ≻ A4

• Test criterion 1: If on replacing a nonoptimal alternative by another worse alternative without changing the relative importance of each
decision-attribute, the indication of the best alternative remains the same, theMCDM method is effective.

• Test criterion 2: An effectiveMCDM method should follow the transitive property.

• Test criterion 3:We decompose theMCDM problem into smaller problems and apply the same MCDMmethod to these sub-problems
for ranking the alternatives. If the overall ranking of the alternatives remains the same as the ranking of the original problem, then the
MCDM method is effective.

Let us implement the above criteria on the proposed approach.

6.4.1. Test with criterion 1 (taking k = 2)

1. UsingHFDAWAA operator:We replace the initial ratings of A1with A2 and then execute the steps of the decision-making algorithm.
The final score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i = 1, 2, ..., 6) of the alternatives Ai(i = 1, 2, ....., 6) are
computed as:

S(g1) = 0.0244, S(g2) = 0.0226, S(g3) = 0.0231, S(g4) = 0.0211, S(g5) = 0.0238, S(g6) = 0.0271.

Hence A6 is the best alternative. Therefore, “test criterion 1” is validated for HFDAWAA operator.

2. UsingHFDAWGA operator:We replace the initial ratings of A1with A2 and then execute the steps of the decision-making algorithm.
The final score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i = 1, 2, ..., 6) of the alternatives Ai(i = 1, 2, ....., 6) are
computed as:

S(g1) = 0.0257, S(g2) = 0.0240, S(g3) = 0.0244, S(g4) = 0.0217, S(g5) = 0.0250, S(g6) = 0.0317.

Hence A6 is still the best alternative. Therefore, “test criterion 1” is validated for HFDAWGA operator.
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Figure 1 Scores of the alternatives based on different values of “k.”

3. UsingHFDAOWAA operator:We replace the initial ratings ofA1withA2 and then execute the steps of the decision-making algorithm.
The final score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i = 1, 2, ..., 6) of the alternatives Ai(i = 1, 2, ....., 6) are
computed as:

S(g1) = 0.0181, S(g2) = 0.0166, S(g3) = 0.0170, S(g4) = 0.0155, S(g5) = 0.0171, S(g6) = 0.0208.

Hence A6 is the best alternative. Therefore, “test criterion 1” is validated for HFDAOWAA operator.

4. UsingHFDAOWGA operator:We replace the initial ratings ofA1withA2 and then execute the steps of the decision-making algorithm.
The final score values S(gi)(i = 1, 2, ..., 6) of overall HF preference values gi(i = 1, 2, ..., 6) of the alternatives Ai(i = 1, 2, ....., 6) are
computed as:

S(g1) = 0.0311, S(g2) = 0.0266, S(g3) = 0.0280, S(g4) = 0.0223, S(g5) = 0.0283, S(g6) = 0.0377.

Hence A6 is the best alternative. Therefore, “test criterion 1” is validated for HFDAOWGA operator.

6.4.2. Test with criteria 2 and 3 (taking k = 2)

Assume that the given decision-making problem is split into four sub-problems by taking three groups of alternatives, namely-
{A1,A2,A3,A5} , {A1,A3,A4,A6} and {A2,A4,A5,A6}.
Now for each sub-problem, all the steps of proposed algorithms are executed. Then

1. utilizing HFDAWAA operator, the ranking orders are: A2 ≻ A5 ≻ A3 ≻ A1,A6 ≻ A3 ≻ A1 ≻ A4,A6 ≻ A2 ≻ A5 ≻ A4 and hence
overall ranking order is: A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4which validates the test criteria 2 and 3.

2. utilizing HFDAWGA operator, the ranking orders are: A2 ≻ A5 ≻ A3 ≻ A1,A6 ≻ A3 ≻ A1 ≻ A4, A6 ≻ A2 ≻ A5 ≻ A4 and hence
overall ranking order is: A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4which validates the test criteria 2 and 3.
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3. utilizing HFDAOWAA operator, the ranking orders are: A2 ≻ A5 = A3 ≻ A1,A6 ≻ A3 ≻ A1 ≻ A4, A6 ≻ A2 ≻ A5 ≻ A4 and hence
overall ranking order is: A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4which validates the test criteria 2 and 3.

4. utilizing HFDAOWGA operator, the ranking orders are: A2 ≻ A5 = A3 ≻ A1,A6 ≻ A3 ≻ A1 ≻ A4, A6 ≻ A2 ≻ A5 ≻ A4 and hence
overall ranking order is: A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4which validates the test criteria 2 and 3.

7. COMPARATIVE STUDY

In pursuance of performance comparison of the eloquent method developed by us discussed here with some existing MADM methods
under hesitant fuzzy environment, we have conducted an analysis with some of the existing methods namely- Yu’s method [55] using Hes-
itant fuzzy Einstein weighted arithmetic aggregation operator (HFEWA),Hesitant fuzzy Einstein weighted geometric aggregation operator
(HFEWG), Hesitant fuzzy Einstein ordered weighted arithmetic aggregation operator (HFEOWA), and Hesitant fuzzy Einstein ordered
weighted geometric aggregation operator (HFEOWG) operators [55]; Xia and Xu’s method [43] using Hesitant fuzzy weighted arithmetic
aggregation operator (HFWA) and Hesitant fuzzy weighted geometric aggregation operator (HFWG) operators; Qin et al.’s method [59]
by using Hesitant fuzzy Frank weighted averaging operator (HFFWA) and Hesitant fuzzy Frank weighted geometric operator (HFFWG)
operators; Tan et al.’s method [56] using Hesitant fuzzy Hamachar weighted arithmetic aggregation operator (HFHWA), Hesitant fuzzy
Hamachar weighted geometric aggregation operator (HFHWG),Hesitant fuzzy Hamachar ordered weighted arithmetic aggregation opera-
tor (HFHOWA), and Hesitant fuzzy Hamachar ordered weighted geometric aggregation operator (HFHOWG) operators; and He’s method
[62] using Hesitant fuzzy Dombi weighted arithmetic aggregation operator (HFDWA),Hesitant fuzzy Dombi weighted geometric aggrega-
tion operator (HFDWG),Hesitant fuzzy Dombi ordered weighted arithmetic aggregation operator (HFDOWA), and Hesitant fuzzy Dombi
ordered weighted geometric aggregation operator (HFDOWG) operators. We have utilized these operators in step-2 of the proposed algo-
rithm. The final score values of the alternatives and the ranking order are summarized in a tabular form, numbered by 4. It is very much
translucent from Table 4 that despite the appearance of slight difference occurs to the respective ranking order of the alternatives; the best
i.e., most desirable alternative is absolutely same as found in the existing methods [43,55,56,59,62].

Alongside the above comparative study (Table 4 and Figure 2), we discuss also some characteristic comparison of our proposed MADM
approach and the decision-making methods suggested by Xia and Xu [43], Yu [55], Tan et al. [56], Qin et al. [59] and He [62], which are
summarized in Table 5.

Table 4 Comparative study with existing approaches.

Operators Score Values Ranking Order
A1 A2 A3 A4 A5 A6

HFDAWAA (proposed) 0.0181 0.0218 0.0193 0.0178 0.0207 0.0248 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAWGA (proposed) 0.0236 0.0281 0.0253 0.0209 0.0259 0.0350 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFDAOWAA (proposed) 0.0208 0.0221 0.0212 0.0187 0.0212 0.0250 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAOWGA (proposed) 0.0264 0.0292 0.0276 0.0215 0.0276 0.0364 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFHWA (𝛾 = 2) [56] 0.0246 0.0319 0.0266 0.0232 0.0274 0.0377 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFHWG (𝛾 = 2) [56] 0.0232 0.0291 0.0252 0.0199 0.0254 0.0359 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFHOWA (𝛾 = 2) [56] 0.0272 0.0327 0.0285 0.0247 0.0291 0.0389 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFHOWG (𝛾 = 2) [56] 0.0261 0.0305 0.0276 0.0210 0.0276 0.0373 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDWA (k = 2) [62] 0.0284 0.0350 0.0296 0.0304 0.0304 0.0421 A6 ≻ A2 ≻ A4 ≻ A5 ≻ A3 ≻ A1
HFDWG (k = 2) [62] 0.0195 0.0217 0.0211 0.0141 0.0185 0.0316 A6 ≻ A2 ≻ A3 ≻ A1 ≻ A5 ≻ A4
HFDOWA (k = 2) [62] 0.0301 0.0353 0.0305 0.0308 0.0311 0.0425 A6 ≻ A2 ≻ A5 ≻ A4 ≻ A3 ≻ A1
HFDOWG (k = 2) [62] 0.0218 0.0235 0.0230 0.0146 0.0201 0.0328 A6 ≻ A2 ≻ A3 ≻ A1 ≻ A5 ≻ A4
HFEWA [55] 0.0246 0.0319 0.0266 0.0232 0.0274 0.0377 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFEWG [55] 0.0232 0.0291 0.0252 0.0199 0.0254 0.0359 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFEOWA [55] 0.0272 0.0327 0.0285 0.0247 0.0291 0.0389 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFEOWG [55] 0.0261 0.0305 0.0276 0.0210 0.0276 0.0373 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFWA [43] 0.0249 0.0320 0.0268 0.0238 0.0277 0.0380 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFWG [43] 0.0229 0.0285 0.0249 0.0193 0.0249 0.0355 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFFWA [59] 0.0248 0.0321 0.0267 0.0235 0.0275 0.0378 A6 ≻ A2 ≻ A5 ≻ A3 ≻ A1 ≻ A4
HFFWG [59] 0.0231 0.0288 0.0251 0.0196 0.0251 0.0357 A6 ≻ A2 ≻ A5 = A3 ≻ A1 ≻ A4
HFDAWAA, Hesitant fuzzy Dombi–Archimedean weighted arithmetic aggregation operator; HFDAWGA, Hesitant fuzzy Dombi–Archimedean weighted geometric aggregation operator;
HFDAOWAA, Hesitant fuzzy Dombi–Archimedean ordered weighted arithmetic aggregation operator; HFDAOWGA, Hesitant fuzzy Dombi–Archimedean ordered weighted geometric
aggregation operator;HFHWA, Hesitant fuzzyHamacharweighted arithmetic aggregation operator;HFHWG, Hesitant fuzzyHamacharweighted geometric aggregation operator;HFHOWA,
Hesitant fuzzyHamachar orderedweighted arithmetic aggregation operator;HFHOWG, Hesitant fuzzyHamachar orderedweighted geometric aggregation operator;HFDWA, Hesitant fuzzy
Dombi weighted arithmetic aggregation operator;HFDWG, Hesitant fuzzy Dombi weighted geometric aggregation operator;HFDOWA, Hesitant fuzzy Dombi ordered weighted arithmetic
aggregation operator; HFDOWG, Hesitant fuzzy Dombi ordered weighted geometric aggregation operator; HFEWA, Hesitant fuzzy Einstein weighted arithmetic aggregation operator;
HFEWG, Hesitant fuzzy Einstein weighted geometric aggregation operator;HFEOWA, Hesitant fuzzy Einstein ordered weighted arithmetic aggregation operator;HFEOWG, Hesitant fuzzy
Einstein orderedweighted geometric aggregation operator;HFWA, Hesitant fuzzyweighted arithmetic aggregation operator;HFWG, Hesitant fuzzyweighted geometric aggregation operator;
HFFWA, Hesitant fuzzy Frank weighted averaging operator; HFFWG, Hesitant fuzzy Frank weighted geometric operator.
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Figure 2 Comparative study.

Table 5 Characteristic comparisons.

Methods Whether Handle
MADM Problems?

Whether
Aggregation

Operators Are in
Generalized Form?

Whether the
Aggregation

Operators Are
Flexible in Nature?

Whether the Method
Reduces

Computational
Complexity?

Whether
Compatible with
Risk Preferences?

Xia and Xu [43] Yes No No Yes No
Yu [55] Yes No No Yes No
Tan et al. [56] Yes Yes No No Yes
He [62] Yes No No Yes Yes
Proposed Yes Yes Yes Yes Yes

Thus, our proposed approach leads to the following advantageous facts:

1. The proposed AOs are obtained through the coalescence of the Dombi and Archimedean operations under HF environment and
hence the raised MADM approach can be considered as one such blooming works because it develops a new flexible measure for
decision-makers to choose the appropriate functions and parameters in accordancewith the risk preferences whereas the existingmeth-
ods [43,55,56,59,62] envisage theHF information in nonappearance of the simultaneous act of flexibility of functions and parameters.

2. Our proposed AOs include a parameter “k” which can try on the aggregate value based on the real decision needs. Thus, our proposed
operators reveal themselves with higher generality and flexibility.

8. CONCLUSION

Keeping in mind the sensitive issue of growing perplexity and dubiousness of real-world decision-making problems, at the time of the for-
mation of MADM, the attribute value is represented suitably as a HFE. The existing many information fusion methods developed so far
for aggregating HF information, are restricted to algebraic t-norm and t-conorm, Einstein t-norm and t-conorm, Hammacher t-norm and
t-conorm, and even we observe the inflexibility in the process of aggregation. Motivated by the idea of Dombi and Archimedean opera-
tions, in this paper, we have introduced some new operations between HFE. The prominent characteristics of these proposed operators
are studied. Furthermore, we have developed some HF AOs based on the proposed operations, such as HFDAWAA, HFDAOWAA, HFDA-
HAA,HFDAWGA,HFDAOWGA, andHFDAHGA operators. Some essential properties such as idempotency, boundedness, shift invariance,
monotonicity etc., of the proposed AOs are discussed in detail. Next, a procedure ofMADM based on the proposed operators is presented
under a HF environment. At the end, we fetch a practical example of a human resource selection to be comfortable with the decision steps
in the proposed method. The result demonstrates the practicality and effectiveness of the new method.
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