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ABSTRACT

This paper suggests five new contributions with respect to the state-of-the-art. First, the optimal tuning of cost-effective fuzzy
controllers represented by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs) is carried out using a fresh
metaheuristic algorithm, namely the Slime Mould Algorithm (SMA), and a fuzzy controller tuning approach is offered. Second,
a relatively easily understandable formulation of SMA is offered. Third, a real-world application of SMA is given, focusing on
the optimal tuning of TSK PI-FCs for nonlinear servo systems in terms of optimization problems that target the minimization of
discrete-time cost functions defined as the sum of time multiplied by squared control error. Fourth, using the concept of improv-
ing the performance of metaheuristic algorithms with information feedback models, proposed by Wang and Tan, Improving
metaheuristic algorithms with information feedback models, IEEE Trans. Cybern. 49 (2019), 542-555, Gu and Wang, Improving
NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Fut. Gen. Comput. Syst.
107 (2020), 49-69, and Zhang et al., Enhancing MOEA/D with information feedback models for large-scale many-objective opti-
mization, Inf. Sci. 522 (2020), 1-16, new metaheuristic algorithms are introduced in terms of inserting the model F1 in SMA and
other representative algorithms, namely Gravitational Search Algorithm (GSA), Charged System Search (CSS), Grey Wolf Opti-
mizer (GWO) and Whale Optimization Algorithm (WOA). Fifth, the real-time validation of the cost-effective fuzzy controllers
and their tuning approach is performed in the framework of angular position control of laboratory servo system. The compari-
son with other metaheuristic algorithms that solve the same optimization problem for optimal parameter tuning of cost-effective

1. INTRODUCTION

Nonlinear models characterize the majority of physical systems and
industrial processes, inspiring others to develop suitable approaches
for the analysis of nonlinear systems. The rapidly increasing
research on fuzzy control that copes with nonlinear systems has
taken place in recent decades. This is important because fuzzy con-
trol is a robust and inexpensive mathematical approach to con-
trol highly complex nonlinear or nonanalytical systems in many
industrial applications, and can be considered as a relatively sim-
ple initial nonlinear and convenient control approach. As shown by
Precup et al. [1] and Precup and David [2], respectively, the system-
atic design and tuning of fuzzy control systems is supported by anal-
yses that include stability, controllability, observability, sensitivity
and robustness. The optimal tuning of fuzzy controllers is com-
bined with these analyses. These analyses are viewed in the context
of one of the hot research topic in the recent years, namely the devel-
opment of the improvement of fuzzy systems performance, owing
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fuzzy controllers suggestively highlights the superiority of SMA. Experimental results are included.
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to their extensively growing applications. To improve the perfor-
mance of fuzzy control systems, type-1 fuzzy control systems were
also extended and generalized to type-2 and type-3 ones especially
focusing on interval ones in this regard.

Metaheuristic algorithms are successfully applied because they
ensure higher performance and require lower computing capacity
and time versus deterministic algorithms in several optimization
problems. Such challenging optimization problems are those spe-
cific to the optimal (parameter) tuning of fuzzy (logic) controllers,
where both the process and the controller are nonlinear and deter-
ministic algorithms are not successful. The following metaheuristic
algorithms have been applied most recently to the optimal tuning
of fuzzy controllers in representative examples: adaptive weight
Genetic Algorithm (GA) for gear shifting control [3], GA-based
multiobjective optimization for electric vehicle powertrain control
[4], GA for hybrid power systems control [5], engines control [6],
energy management in hybrid vehicles [7], servo system control
[2], wellhead back pressure control systems [8], micro-unmanned
helicopter control [9], Particle Swarm Optimization (PSO)
algorithm with compensating coefficient of inertia weight factor
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for filter time constant adaptation in hybrid energy storage sys-
tems control [10], set-based PSO algorithm with adaptive weights
for optimal path planning of unmanned aerial vehicles [11], PSO
algorithm for zinc production [12] and inverted pendulum control
[13], hybrid PSO-Artificial Bee Colony algorithm for frequency
regulation in microgrids [14], Imperialist Competitive Algorithm
for human immunodeficiency control [15], Grey Wolf Optimizer
(GWO) algorithms for sun-tracker systems [16] and servo system
control [2], PSO, Cuckoo Search and Differential Evolution (DE)
for gantry crane systems position control [17], Whale Optimiza-
tion Algorithm (WOA) for vibration control of steel structures
[18], Grasshopper Optimization Algorithm for load frequency
control [19], DE for electro-hydraulic servo system control [20],
Gravitational Search Algorithm (GSA) and Charged System Search
(CSS) for servo system control [2].

Slime Mould Algorithm (SMA) is a fresh metaheuristic algorithm
proposed in [21]. It mimics the oscillation mode of slime mould
(i.e., the Physarum polycephalum) in nature when producing posi-
tive and negative propagation feedback in the path toward the food.
Compared to other metaheuristic algorithms, it is proved in [21]
that SMA exhibits improved exploratory and exploitation features.

Other popular metaheuristic algorithms with fresh results are
hybrid PSO-GA [22] and hybrid GSA-GA [23] for constrained
solutions, water cycle [24] and bat [25] algorithms for combina-
torial optimization, GWO with hierarchical fuzzy operator [26],
hierarchical GA multiobjective optimization of neural networks
[27], Cross-Entropy algorithm for manufacturing processes [28],
Water Circle algorithm for traveling salesman problem [29], Con-
flict Monitoring algorithm [30], Jaya optimization algorithm for
biped robots [31] and load forecast [32] and Chemical Reaction
algorithm for community detection [33].

Some of the most recently proposed metaheuristic algorithms con-
cern both the improvement of other algorithms and the devel-
opment of new ones. Suggestive approaches are the improvement
of Nondominated Sorting Genetic Algorithm-III (NSGA-III) algo-
rithm with adaptive mutation operator and the application of this
improved NSGA-III to Big Data tuning [34], the analysis of the
behavior of crossover operators in NSGA-III algorithm and the
operator improvement such that to work in large-scale optimization
[35], the improvement of DE algorithm by a selection mechanism
and its application to fuzzy job-shop scheduling problems [36], and
population extremal optimization algorithms applied to continu-
ous optimization and nonlinear controller optimal tuning problems
[37-39].

An important and general improvement of metaheuristic algo-
rithms in terms of modifying their structure by including infor-
mation feedback models is proposed and formulated generally by
Wang and Tan [40]. Six types of information feedback models
are defined in [40], where individuals from previous iterations are
selected in either a fixed or random manner and embedded in the
update process of the algorithms. A detailed exemplification on
PSO is offered in [40], but experimental applications to other repre-
sentative algorithms are included as well. This concept is included
successfully by Gu and Wang in NSGA-III [41] and Zhang et al. in
multiobjective evolutionary algorithms based on decomposition in
[42], and has a big potential to be incorporated in other algorithms.

The optimal tuning of fuzzy controller can also be seen, discussed
and investigated in the more general and generous context of

fuzzy modeling. The estimation capability of fuzzy systems depends
on their rule parameters and structure of fuzzy sets. Up to now,
many learning methods have been developed for optimizing rule
parameters, i.e., which belongs to topic of optimal tuning of param-
eters of fuzzy model structures. Moreover, evolving fuzzy sys-
tems are also a popular topic as they also learn and optimally
build the structure of fuzzy systems along with their parameters.
Also, research is also focused on the tuning rules, which can be
extracted such that to adapt the structure of the fuzzy sets, but these
approaches usually also require that the output derivative of fuzzy
systems to be computed with respect to the parameters which are
actually learned and specifically tuned.

This paper is built upon authors’ recent papers on the optimal tun-
ing of Takagi-Sugeno-Kang proportional-integral fuzzy controllers
(TSK PI-FCs) [1,2,43-45] applied to servo systems control such
that to obtain a reduced parametric sensitivity (with respect to pro-
cess gain and time constants), and suggests a novel SMA-based
tuning approach. The approach is focused on the position control
of nonlinear servo systems viewed as controlled processes. SMA
is involved in solving a minimization-type optimization problem,
which involves a cost function that is equal to the sum of time mul-
tiplied by squared control error, representing the discrete-time ver-
sion of the Integral of Time Multiplied by Squared Error (ITSE)
used in continuous-time control.

The paper suggests the following new contributions:

o afuzzy controller tuning approach,
o arelatively easily understandable formulation of SMA,
o areal-world application of SMA,

o using the concept of improving the performance of
metaheuristic algorithms with information feedback models
[40-42], new metaheuristic algorithms are proposed by
inserting the model F1 in SMA and other representative
algorithms, namely GSA, CSS, GWO and WOA,

o the real-time validation of cost-effective fuzzy controllers and
their tuning approach.

These contributions are significant and also advantageous in the
context of the state-of-the-art briefly discussed in this section
as the superiority of SMA versus other optimization algorithms,
namely PSO, GSA, CSS, GWO and WOA, is proved by means a
comparison included in the paper. The comparison is supported
by experimental results on a real-world application, namely angular
position control of nonlinear servo system; real data from authors’
lab is included.

The next sections in the sequel are structured as follows: the
optimization problem is defined in Section 2, and the associ-
ated models of the process and fuzzy controller are specified.
SMA and, based on this algorithm, the new tuning approach
that produces optimal TSK PI-FCs are presented in Section 3.
Starting with the introduction of the information feedback model
F1 in PSO in [40], details on the new metaheuristic algorithms
obtained by inserting the information feedback model FI in
GSA, CSS, GWO and WOA are given in Section 4. The tuning
approach is validated in Section 5 in terms of offering experimen-
tal results and a comparison as well. The conclusions are drawn in
Section 6.
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2. PROCESS MODELS, CONTROLLER
MODELS AND OPTIMIZATION PROBLEM

The control system structure is illustrated in Figure 1. Figure 1 rep-
resents an extended version of the block diagram and description of
sub-systems given in [46], highlighting that a continuous-time pro-
cess is controlled (¢ > 0 indicates the continuous time) by a digital
control (t; € Z, t; > 0 is the discrete-time index).

The sub-systems and variables involved in Figure 1 are [46]: F -
the setpoint (or the reference input) filter, FC - the fuzzy con-
troller, which is represented by the TSK PI-FC, PWM-DAC - the
Pulse Width Modulated (PWM) Digital to Analog Converter that
produces the analog voltage applied to the process P (in fact, the
actuator), ADC - the Analog to Digital Converter needed for dig-
ital process control, r - the reference input, r; - the reference
input filtered through E y - the controlled output, u - the con-
trol signal, and e = r — y — the control error. The sub-system F is
included in Figure 1 because this control system is a setpoint fil-
ter type two-degree-of-freedom (2-DOF) structure, which usually
operates with Proportional-Integral (PI) or Proportional-Integral-
Derivative (PID) linear controllers, but nonlinear TSK PI-FCs will
be used in this paper. Disturbance inputs are not included in Figure
1 because the integral component of the controller copes with load-
type disturbance inputs. The presentation in this section is based
on authors’ past papers as, e.g., [2,43-46], therefore figures and
equations are reused in this regard.

The servo system that plays the role of P in Figure 1 is characterized
by the continuous-time state space model

-

—1, lfu(t) < —Uy,
[u(t) + uc] / (uy—u,), if —uy < u(t) < —u,

m(t) =4 0, if —u. < |u(®)| <u,,
[u(t) - ua] / (uy —u,), ifu, < u(®) < u,,
1, ifu(t) > u,,
) 1

qo| [o1 x,() 0
= + m(t),
|f‘2(0_ lo _1/T2] lxz(t)] [kP/TE]
Y0 =[10][x0 0]

where the dynamics of both measurement instrumentation and
actuator are included in P, the parameters and variables represent
[46]: kp > 0 - the servo system (or process) gain, Ty, > 0 — the small
time constant of the process, u(t) - the control signal as a PWM sig-
nal within the interval (due to the PWM duty cycle) -1 < u(t) < 1,
x,(t) = a(?) (rad) - the angular position, x, () = w(t) (rad/s) - the
angular speed, m(t) - the output of the saturation and dead zone

rt,)

) 3 “ y(fl-’

Figure 1 Setpoint filter type two-degree-of-freedom (2-DOF)

fuzzy control system structure.

static nonlinearity, T — matrix transposition, and the parameters of
the nonlinearity fulfill the conditions 0 < u, < u, and 0 < u, < uy.

As shown in [2,44-46], the nonlinearity in (1) is neglected in order
to enable the cost-effective linear and nonlinear (including fuzzy)
controller design. The transfer function of this simplified model of
P, which is next used in the controller design and tuning, is

P(s) = kgp/ [s (1 + Tzs)] , (2)
where kg is the equivalent process gain:

kp/(u, —uy), if —u, <u(t) < —u,
Ep = . 3)
kp/(uy —uy), ifu, <u(®) <uy.

The servo system process parameters are: kg, =
0.76s,u, = 0.15,u, = landu, = 0.15.

170, Ty =

PI controllers are recommended in [47,48] for the process modeled
in (2). The transfer function of the PI controller (to be replaced with
FCin Figure 1) is

Cs) =k, (1+5T;) [s=ke [1+1/ (sT})] . kc =k.T,,  (4)

where k, > 0 or k. > 0 is the controller gain and T; > 0 is the
controller integral time constant.

The Extended Symmetrical Optimum (ESO) method suggested in
[47,48] is recommended to be applied in order to carried out the
PI controller tuning as it guarantees a trade-off to a set of empirical
control system quality indices: percent overshoot, settling time, rise
time and phase margin. That trade-off is ensured by a single design
parameter with the notation f and the recommended domain 1 <
p < 20. The PI tuning conditions specific to the ESO method are
[47,48]

k.=1/ (ﬂ \/EkEPT§> T, =p Ty, ke =1/ (\/EkEPT)Z)’ (5)

and the transfer function of the setpoint filter F, which additionally
helps the control system performance enhancement by canceling a
zero in the closed-loop transfer function (in the linear case) with
respect to the setpoint, is

F(s)=1/ (1 + BTys). (6)

The quality of the control system is increased by inserting the cost-
effective nonlinear controller represented by TSK PI-FC in terms of
the structure given in Figure 1. Incidentally, the design and tuning
start with employing the knowledge and experience gained in terms
of experimenting PI controllers in various applications. The struc-
ture and input membership functions of TSK PI-FC are presented
in Figure 2, where [46]: g! - the backward shift operator, TISO-
FC - the Two Inputs-Single Output Fuzzy Controller sub-system (it
is actually a nonlinear sub-system without dynamics as it is intro-
duced outside), e(t,;) — control error, u(t;) — control signal, Ae(t;) -
e(t;) variation, and Au(t;) - u(t;) variation.

The expressions of the two increments illustrated in Figure 2 are
obtained by Tustin’s discretization method that leads to the recur-
rent equation of the incremental discrete-time PI controller

Au(ty) = Kp [Ae(ty) + pe(ty)] , 7)
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where K, and y are

Kszc(Ti_Ts/z)’M=2Ts/(2Ti_Ts)’ (8)

where T, > 0 is the sampling period, which has to be set such that
to have a quasi-continuous digital control implementation.

As considered in [47], TISO-FC in Figure 2 uses for defuzzifica-
tion a weighted average based approach, while the inference engine
employs SUM and PROD operators. The rule base of this sub-
system consists of only two rules for the sake of cost-effective fuzzy
control design and implementation [2,43-46], and it is expressed
in Table 1, where the parameter #,0.25 < < 0.75, is inserted for
overshoot diminution.

The parameter # makes the difference in the rule consequents,
which consist of two different linear discrete-time PI controllers.
This structure of the fuzzy controller makes it behave as a bumpless
interpolator between the two linear PI controllers in the rule con-
sequents.

The modal equivalence principle [49] is applied to express one tun-
ing equation for TSK PI-FC

BAe = #Bg’ (9)

so the parameters of TSK PI-FC are grouped in the parameter vector
p:

p=[pB.n]" (10)

of only three elements (the first one from the linear part and the
last two ones from the TISO-FC part), illustrating that cost-effective
fuzzy control is targeted.

e(t,) -

Ault ul(t
TISO-FC ( ")-= & -

m Ae(,) l-g

B, 0 B, et
-B,, B, Ae(t)

Figure2 Takagi--Sugeno--Kang proportional-integral fuzzy

As specified in Section 1, the optimization problem is defined as

p* =argminJ(p).J(p) = ). [ts€(ts p)] . (1)
pGDP £,=0

where ] is the cost function, which is expressed as the sum of dis-
crete times multiplied by squared control errors, p” is the optimal
parameter vector

pr=[p B ] (12)

and D, is the feasible domain of p. Several recommendations are
given in [2,43-46] to set to set the domain D, but the most impor-
tant ones concern technical and economical issues including stabil-
ity constraints [50-55]. Although the stability analysis appears to be
the source of many other synthesis issues, it is always important so
less conservative stability conditions need to be established. There-
fore, one of the first objectives of the stability investigation is to
evaluate the maximum permissible parameter variations in order to
sustain the delay models stability. In addition, that should be ana-
lyzed and discussed in relation to the accuracy of the controlled pro-
cess model in (1) and also the accuracy of the cost function model
in (11). Different approaches are used in case of model-free data-
driven control. Following, SMA is inserted in solving (11).

3. SMA AND FUZZY CONTROLLER
TUNING APPROACH

The operating mechanism of SMA described in accordance with
the standard formulation introduced in [21] starts with the random
initialization of the population of agents, i.e., agent positions in the
slime mould, such that to belong to the search domain D,. A total
number of N agents (i.e., elements of the slime mould) is used, and
each agent is assigned to a position vector X;(k)

X0 =[xk k) ...x?(k)]T eD.i=1.N, (13)

where [46] x{(k) is the position of i agent in f* dimension, f =
1...q, k is the index of the current iteration, k = 1...k_,, and k_,,
is the maximum number of iterations. The expression of the search
domain is

D, ="' x..x [P o] x..x [ul] cRY, (14)

where IV are the lower bounds, v are the upper bounds, f = 1...q,
and

controllers (TSK PI-FC) configuration. x{(k) € [lf’ uf] ,i=1.N,f=1.q. (15)
Table 1 Rule base of TISO-FC.
Aty N ZE P
e(ty)
p Kp[Ae(ty) + pety)] Kp[Ae(ty) + pe(ty) nKp|Ae(ty) + pe(ty)
ZE K [Ae(ty) + pecty)] Kp[Aety) + pe(ty)] Kp[Aety) + pe(ty)]

N nKp[Ae(ty) + pe(ty)

Kp [Ae(ty) + pe(ty)] Kp[Ae(ty) + pe(ty)]
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The search process specific to SMA continues with approach-
ing, wrapping and grabbling the food. This is modeled by several
equations. Using the notation S;(k) for the fitness (i.e., cost function
in the context of (11)) of i agent with the position vector X;(k), the
population is ranked in the ascending order of the fitness function
values (i.e., cost function values in the context of (11)) for optimiza-
tion problems that target the minimization of the cost functions.
The following sets of position vectors are obtained:

{X, (), X, (k), ..., Xy (k). Xy (K), ... . Xy (h) }
= Setpy U Setgy,

Setpy = {X,(k), X, (k), ..., Xu(k) } ,

Setgy = { Xy (h), ..., Xy (K},

(16)

where

S,(k) < Sy(k) < ... < Sk) < Sy (k) < ... < Sy(b),  (17)

H = |N/2] is the integer part of N/2, Setyy is the ranked set of
agents in the first half of the population, and Setgy, is the ranked set
of agents in the second half of the population.

The vector W (k) of weights of slime mould consists of the elements

(weights) w/(k), f = 1...q

W.(k) = [w}(k) W) ...w?(k)] TiSLN as)

which are computed in terms of

i { 1+ 7 log (g,(k)) , ifX,(k) € Setyy,

: 1+ r’Zlog (gi(k)) , otherwise,
19
g:(k) = (Sy(k) = $;()) / (Sp(k) = S (k) +€) + 1., "

i=1.N,f=1..q,

where log is the notation for the decimal logarithm, rlf are random
numbers, 0 < r{ < 1, S, (k) is the best fitness obtained at the current
iteration, S, (k) is the worst fitness obtained at the current iteration,
with the values (using (17))

Sp(k) = min;_;_y S;(k) = S,(k),

(20)
Sy(k) = max,_; y S;(k) = Sy(k),

and g, € = const > 0, is relatively small to avoid zero denominator
in (19).

The parameters involved in the position update equation are com-
puted in terms of
a = arctanh (1 - k/kmax) ,

b=1-k/k 2D

max?

which allow the computation of the uniformly distributed random

numbers VZ and v£

VZ € [—a,a] ,VQ S [—b, b] J=1.q (22)
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Using the notation X, (k) for the best agent, i.e., the solution

obtained in all iterations so far, with the elements xlf)(k), f=1.q
T
X, (k) = [xé(k) A xg(k)] , (23)

and introducing two agents X, (k) and Xy (k) randomly selected in
the population:

f T

NGRS PG IEA RG] o
T
Xp(k) = [xlg(k) X xg(k)] :

with randomly selected A and B, A,B = 1...N, the position update
equation is

rf<uf—1f) +lf, ifrf < z,

e+ 1) =4 50+ Viowl k)
) (k) = X (k)),
v{x{(k),

ifrf > zand r{ <P (25)

otherwise,

L

i=1..N,

where 1 are random numbers, 0 < ¥/ < 1, z is a parameter with
recommended values in [21] in the interval 0 < z < 0.1, and the
parameters p; are computed in terms of [21]

p; = tanh |S;(k) — S, (O], i = 1..N, (26)

min

and S_. (k) is the best fitness obtained in all iterations so far:

min

S

min(

k=_ min Sk 27)

i=

SMA consists of steps SMA1 to SMA7. These steps are given as fol-
lows after the revision of the algorithm presented in [21]:

o SMAI. The initial random population, which consists of the
position vectors X;(k) € D, of N agents, i.e.,i = 1...N, is
generated such that to fulfill (13)-(15). The maximum number
of iterations is set to k.. The iteration index is initialized to
k = 0. The best fitness Sy, is initialized to S;,,, = oo because
the optimization problem defined in (11) is a
minimization-type one.

o SMA2. The performance of each element of the population of
agents (i.e., the slime mould) is evaluated; this evaluation
involves simulations and/or experiments conducted on the
fuzzy control systems if the optimal tuning of fuzzy controllers
is carried out. The evaluation leads to the fitness function
values of all agents.

o SMAS3. The best fitness S, ;, (k) obtained in all iterations is
computed using (27). If S, (k) < S then the best fitness is
Spest Will be updated to S, ;, (k) and the corresponding agent will

represent the updated best agent (vector) X, (k).

o SMA4. The vector W,(k) of weights of slime mould is calculated
using (18)-(20).
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o SMAS. Agents’ positions are updated using (25), which is
supported by (21)-(24), (26) and (27).

o SMAG. The iteration index k is incremented with one. The
algorithm goes on with step 2 until k. is reached.

o SMA?7. The solution to the optimization problem is the last best
agent obtained so far, i.e., the vector X, (k,,,,), and the
minimum value of the cost function is Sy ;.

SMA is used in the optimization problem defined in (11) in terms
of the following relationships:

X(k)=p,i=1.N,
Sik)=J,i=1.N,
D,=D,, (28)

q=23.

Using the aspects presented in this section and the previous one,
the SMA-based tuning approach dedicated to TSK PI-FCs consists
of proceeding the steps 1-4. These steps are briefly described as fol-
lows:

Step 1. As pointed out in [46], the sampling period T is set in accor-
dance with the requirements of quasi-continuous digital control.

Step 2. The feasible domain D, is set in order to include all con-

straints imposed to the elements of p.

Step 3. SMA is integrated using steps SMAI to SMA7 and (28) in
solving the optimization problem defined in (11) leading to the
optimal parameter vector p" in (12) and three of the optimal param-
eters of TSK PI-FC, namely f*, B} and n*.

Step 4. The optimal parameter B, of TSK PI-FC, with the nota-
tion By , results from (9) calculated for the optimal parameters in
(12) substituted in (8). The setpoint filter with the transfer function
defined in (6) is used in the fuzzy control system structure using f*
instead of f.

4. INSERTING INFORMATION FEEDBACK
MODEL F1 IN METAHEURISTIC
ALGORITHMS

Using the notation in (13) for the position vector X;(k) of i agent
at iteration k of the metaheuristic algorithm without information
feedback model (i.e., the initial algorithm), the notation S;(k) for its
fitness, which is also equal to the cost function value ] in terms of
(28), and inserting the notation Z,(k) for the position vector of i
agent at iteration k of the metaheuristic algorithm with information
feedback model F1

T
Zk) = |2k .. 2k ... 20| €D,i=1.N, (29

where zif(k) is the position of i agent in f dimension, f = 1...q, the
information feedback model F1 is characterized by the recurrent
equation [40-42]

Z(k+1) = og, X;(k) + P Z;(k), (30)

where the expressions of the weighting factors ap, and f,, which
satisfy o, + Py = 1, are [40-42]

o, = S;(k)/(S;(k) + S;(k + 1)),

31
Brp = Sik + 1)/(Si(k) + S;(k + 1)). G
Equations (30) and (31) are successfully integrated in PSO algo-
rithms [40], in NSGA-III algorithms [41], and in multiobjective
evolutionary algorithms based on decomposition [42]. The agent
(or particle) velocity and position update equations employed in
PSO algorithms are [2]

Vilk + 1) = W) Vi(k) + €11, (Pypeg — Xi(k)
6,15 (P pest — Xi(K)), (32)
X(k+1)=X;(k)+ V(k+1),i =1..N,

where V,(k) is i agent particle (agent) velocity vector at iteration k,

Vi) = [0 R ) Lz LN, (33)

v{(k) is the velocity of i agent in f™ dimension, f = 1..q,r,1,
are random variables with uniform distribution between 0 and 1,
¢y, ¢, > 0 are weighting factors of the stochastic acceleration terms
that pull each particle toward their end position, w(k) > 0 is the
inertia weight, P, is the best position (vector) achieved by i
agent (particle), and Py, is the best position (vector) explored by
the entire swarm so far. The PSO algorithm with information feed-
back model F1 will be referred to as PSO-F1 algorithm.

The position and velocity updates in GSA are governed by the
recurrent equations [2]

v+ 1) = (k) + al(b),
(34)
k1) =k +v/(k+1),i=1.N,f=1.q,

where p; is a uniform random variable, 0 < p; < 1, and af(k) is
the acceleration of i™ agent at iteration k. GSA with information
feedback model F1 will be referred to as GSA-F1 algorithm.

The new position and velocity vectors of i agent (or charged par-
ticle) in CSS algorithms are calculated in terms of [2]
X,(k+ 1) = 1, k,(k)(F,/m,)(Ak)*
+r,k (k) V() Ak + X;(k), (35)
Vik+1) = (X;(k+ 1) = X;(k)) /Ak,i = 1..N,

where k, (k) is the acceleration parameter, k (k) is the veloc-
ity parameter, r;;, r;,, are uniformly distributed random numbers
within [0, 1], m; is the mass of i agent, and Ak is the time step set
to 1. The CSS algorithm with information feedback model F1 will
be referred to as CSS-F1 algorithm.

The updated agent (i.e., grey wolf) position vector in GWO algo-
rithms is obtained in terms of [2]
Xk+1)=X*k+1)+X(k+1)

36
+X°(k+1))/3,i=1..N, (36)
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where X*(k), X?(k) and X°(k) are the top three agents positions
vectors computed in terms of [2]

JX*(k) = min,_, \ {JX;(k)IX;(k) € D},

J(XP (k) = min_; {](X,(k))|
Xi(k) € DN\ {X*()} . (37)

JX°(k)) = min_y_y § JXi(k)|
X,(k) € D\ {X“(k), X (k) } .

The GWO algorithm with information feedback model F1 will be
referred to as GWO-F1 algorithm.

Using the notation X, (k) for the best agents’ position (i.e., the
position of the prey tracked by the whales, which are the agents)
vector in the population at iteration k, the position update equation
in WOA is [45]

Xbest(k) —ﬁ(k), 1fC1,
Xrand(t) - gl(k)’ ifCZ,
hy(k)e* cos(27]) + Xy (K), otherwise, ~ (38)

Cl : p<0.5and|d(k)| < 1Vf=1..q,
C2:p<05 andla{(k)| > 1Vf=1..q,i=1..N,

X(k+1) =

where p is random number within 0 < p < 1, the parameter
b = const defines the shape of the logarithmic spiral of whales’ path,
set to b = 1 for simplifying the shape, 1 is a uniformly distributed
random number, —1 < 1 < 1, rand is an arbitrary agent index,
and f(k), g;(k) are distance vectors. WOA with information feed-

back model F1 will be referred to as WOA-F1 algorithm.

5. VALIDATION AND COMPARISON

SMA with information feedback model F1 (SMA-F1) and the tun-
ing approach presented in Section 3 are validated in this section by
the optimal tuning of TSK PI-FCs for the angular position control of
the experimental setup described in [56], which belongs to the Intel-
ligent Control Systems Laboratory of the Politehnica University of
Timisoara, Romania. A photo of the experimental setup is given in
Figure 3. The parameter values of the servo system models given
in (1) and (2) are u, = 0.15, u, = 1, u. = 0.15, k, = kgp = 140
and Ty, = 0.92s. The application of the three steps of the tuning
approach is described as follows.

The sampling period was set to T, = 0.01 s in step 1 of the tuning
approach. The vector variables p of the cost function belong to the
feasible (and also search) domain D, set in step 2 as

D, ={pI3< B <17} x {B,[20 < B, < 38}

X {1]0.25 < 5 < 0.75} . (39)

The dynamic regimes considered in the optimization problem are
characterized by the r = 40 rad step type modification of the set-
point and zero initial conditions. The upper limit of the sum in (11)
was set to 2000 instead of co. Therefore, the time horizon used in
the evaluation of the cost function by experiments conducted on
the fuzzy control system is 20 s.

Figure 3 Experimental setup.

The parameters of SMA were set in step 3 using the recommen-
dations given in [21], namely z = 0.03 and € = 0.001. In addi-
tion, authors” experience in other metaheuristic algorithms applied
to optimal tuning of fuzzy controllers and fuzzy models as well
is reflected in setting the parameters N = 20 and k,_,, = 20 to
achieve an acceptable trade-off to convergence and computational
resources. Fast convergence is aimed in this paper versus our recent
papers [2,43-46], where k., = 100 was imposed.

The simulations and experiments were run in Matlab R2007b envi-
ronment on a personal computer with Windows 10 operating sys-
tem and the following hardware configuration: CPU Intel Core
i5-7500, 3.4 GHz quad-core, 16 GB of DDR3 RAM memory at 1600
MHz, 256 SSD. These details are convenient for other researchers to
redo the experiments, thus making the work in this paper relatively
easily acceptable.

The optimal controller parameters and the corresponding min-
imum cost function J;, in relation with (11) are presented in
Table 2. Table 2 includes suggestively the comparison with other
metaheuristic algorithms, namely PSO, GSA, CSS, GWO, WOA,
PSO with information feedback model F1 (PSO-F1), GSA with
information feedback model F1 (GSA-F1), CSS with information
feedback model F1 (CSS-F1), GWO with information feedback
model F1 (GWO-F1) and WOA with information feedback model
F1 (WOA-F1). The same numbers of agents N = 20 and maximum
number of iterations k,,, = 20 as in case of SMA and SMA-F1
were used for all algorithms in the comparison. In addition, also to
ensure a fair comparison of the algorithms, in order to reduce the
effects of random parameters in the algorithms (always present in
metaheuristic optimization algorithms), the results are presented
as averaged values after the first N, = 10 runs (trials) of the algo-
rithms; the comparisons included in the past papers were based on
the best five runs of algorithms. The values of the other nonrandom
parameters of the algorithms used in the comparison are presented
in [2,44-46]. The readers are invited to contact the authors if they
are interested in the implementations of all these algorithms.

The performance of SMA and other algorithms considered in
Table 2 was assessed using two quality indices. The first index
reflects the convergence speed ¢, by measuring the number of eval-
uations required for the cost function J(p) until obtaining the opti-
mal solution p". The second index reflects the accuracy rate a,
defined as the percent value of standard deviation of J(p) obtained
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by running a certain metaheuristic algorithm divided to the average
value of the solution, Avg (T, ):

_ % _ StDeV(Jinin )
a, = StDev (]min) = IOOW,
Nt
IR (]
AVg (]min) - N, min’ (40)
h=1
N, 5
SDEV (Jon) = | 57 2 (Fo = AVE (o) )
b=
where ], is the value of J(p) measured after running the algorithm,

and the superscript h indicates the observed trial, & = 1...N,. Since
Table 2 gives contains values, the values in the last column corre-
spond actually to Avg(J, ;) instead of ]

min min*
The search performance of all metaheuristic algorithms analyzed in
this section is synthesized in Table 3 in terms of the values of the

quality indices ¢, and a,.

The results presented in Table 2 indicate that the best performance
of the control system as far as the average value of the cost func-
tion is concerned is obtained by SMA and SMA-F1 followed by
WOA, and the worse performance is obtained by CSS and WOA-F1.
The comparison of accuracy and resource usage on the basis of the
results given in Table 3 reveals that the best accuracy rate is obtained
by SMA and SMA-F1 followed by WOA, and the worse is obtained
by GSA and GWO-FI. The best convergence speed is obtained by
SMA-F1 followed by SMA-F1 and GWO, and the worse by PSO-F1
and PSO. Concluding, the best overall performance is exhibited by
SMA and SMA-F1, which is followed by WOA, justifying the appli-
cation of SMA in this paper.

The results presented in Table 2 show that adding the information
feedback model F1 is beneficial for SMA, GSA and CSS as far as
the reduction of cost function values is concerned. The results pre-
sented in Table 3 highlight that adding the information feedback
model F1 offers the reduction of the convergence speed of SMA,
PSO and WOA. But the main advantage of adding the information
feedback model, as outlined in Table 3, is the reduction of the accu-
racy rate of all algorithms except GSO and WOA.
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These conclusions are drawn for the process, fuzzy controller, opti-
mization problem and dynamic regime considered in this paper.
Other processes, controllers, optimization problems and dynamic
regimes are expected to lead to different conclusions; challenging
processes in this regard are those considered in [57-64].

Two typical fuzzy control system responses are presented in
Figure 4 in terms of controlled output and control signal versus time
considering the average controller after the first iteration of SMA
(with the parameters B, = 33.2784, n = 0.5268 and B,, = 0.0676),
and the average controller after the application of the 20 iterations of
SMA (with the parameters given in the first row in Table 2). Figure 4
clearly shows the improvement of empirical quality indices after the
application of SMA. Both plots in Figure 4 also highlight the effects
of the process nonlinearity in the initial and final part of fuzzy con-
trol system responses.

It is certainly obvious from Figure 4 that the output trajectories
blend to reference input value as time approaches the end of the
time horizon. As a consequence, with the suggested controller, the
control system addressed can be stabilized. However, as pointed out
in [44], the stability cannot be proved.

6. CONCLUSIONS

This paper proposed an approach to the SMA-based tuning of
cost-effective fuzzy controllers for servo systems. This approach is
advantageous because of two reasons, (1) and (2), which represent
the pros of the approach proposed in this paper in the framework of
metaheuristic optimization algorithms: (1) it is computational effi-
cient as proved by the values of two quality indices related to accu-
racy and resource usage, (2) SMA has a small number of parameters.
The validation and comparison on real-world servo system position
control shows the superior performance of SMA versus other sim-
ilar metaheuristic algorithms reflected by smaller value of the cost
function, defined, as specified in Section 1, as the sum of time mul-
tiplied by squared control error, which is the discrete-time version
of ITSE used in continuous-time control.

The limitations of SMA, which are also the cons of the approach
proposed in this paper, are also twofold, (i) and (ii): its current

Table 2 Average values of controller parameters and minimum cost function J.

Algorithm B n* B;, i k. T; (s) T onin

SMA 38 0.75 0.00857633 4.821519 0.0035384 4.435799 2797210
PSO 36.5966 0.5935440 0.0819451 4.913505 0.00352454 4.520424 3523353
GSA 33.0287 0.7414017 0.0786853 4.770794 0.00360137 4.398443 3693850
CSS 23.1039 0.6662344 0.0715622 3.776415 0.00407048 3.4743 4935620
GWO 37.9457 0.6994276 0.0857001 4.910214 0.00352702 4.517395 3315304
WOA 35.0330 0.6513980 0.0748931 5.09787 0.0034414 4.682604 3297086
SMA-F1 38 0.75 0.0857638 4.821494 0.00353585 4.435774 2797210
PSO-F1 27.5769 0.6315154 0.0601471 5.161258 0.00341579 4.748359 3905199
GSA-F1 32.6942 0.7219313 0.0685116 5.194281 0.00340791 4.778737 3444169
CSS-F1 20.8791 0.7095039 0.0464305 4.962937 0.00351122 4.565903 4213287
GWO-F1 34.9617 0.7367405 0.0770037 4.030243 0.00350845 4.550747 3355471
WOA-F1 34.2792 0.6915126 0.1020510 3.799553 0.00407587 3.495585 5236392

CSS, Charged System Search; CSS-F1, Charged System Search with information feedback model F1; GSA, Gravitational Search Algorithm; GSA-F1, Gravitational Search Algorithm with
information feedback model F1; GWO, Grey Wolf Optimizer; GWO-F1, Grey Wolf Optimizer with information feedback model F1; PSO, Particle Swarm Optimization; PSO-F1, Particle
Swarm Optimization with information feedback model F1; SMA, Slime Mould Algorithm; SMA-F1, Slime Mould Algorithm with information feedback model F1; WOA, Whale Optimization
Algorithm; WOA-F1, Whale Optimization Algorithm with information feedback model F1.
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Table 3 Values of quality indices ¢, and q,.

Algorithm c a,

SMA 19.7 0

PSO 311.4 18.67
GSA 167.2 18.86
CSS 97.9 12.07
GWO 20 18.52
WOA 18.7 6.24
SMA-F1 14.3 0

PSO-F1 269.9 11.77
GSA-F1 204.4 12.82
CSS-F1 162.9 11.33
GWO-F1 180.4 20.49
WOA-F1 11.9 14.9

CSS, Charged System Search; CSS-F1, Charged System Search with infor-
mation feedback model F1; GSA, Gravitational Search Algorithm; GSA-
F1, Gravitational Search Algorithm with information feedback model F1;
GWO, Grey Wolf Optimizer; GWO-F1, Grey Wolf Optimizer with infor-
mation feedback model F1; PSO, Particle Swarm Optimization; PSO-F1,
Particle Swarm Optimization with information feedback model F1; SMA,
Slime Mould Algorithm; SMA-FI, Slime Mould Algorithm with informa-
tion feedback model F1; WOA, Whale Optimization Algorithm; WOA-F1,
Whale Optimization Algorithm with information feedback model F1.

output (position) vs time after 20 iterations ___ after 1 iteration ...
60 T T T T T T T T T

40
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P L
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Figure4 Real-time experimental results expressed as fuzzy
control system responses y and u with Takagi-Sugeno-Kang
proportional-integral fuzzy controllers (TSK PI-FC) after one
iteration of Slime Mould Algorithm (SMA) (dotted line) and after
20 iterations of SMA (continuous line).

implementation is offline, (ii) it requires a relatively large number of
evaluations of the cost function (or the fitness function). But these
two cons are also met at other metaheuristic algorithms.

Future research will be focused on the mitigation of these limita-
tions by modifying SMA in order to work online in adaptive fuzzy
control system structure, and solving other optimization problems
including those specific to optimal tuning of controller parameters
in optimization problems expressed as reference tracking control
problems.

Moreover, except the algorithms used in this paper, some of the
most representative computational intelligence algorithms can be
used to solve the problems, like Monarch Butterfly Optimization

R.- E. Precup et al. / International Journal of Computational Intelligence Systems 14(1) 1042-1052

(MBO) [65], Earthworm Optimization Algorithm (EWA) [66], Ele-
phant Herding Optimization (EHO) [67] and Moth Search (MS)
algorithm [68]. Another group of representative algorithms is dis-
cussed in [69].

Nevertheless, a viable way to apply the results given in this paper
is represented by networked control systems. With the increasing
progress in advanced data communication technology, sampled-
based event-triggered control protocols have been introduced in
such systems and especially in complex networked control systems
to effectively alleviate the communication burden by reducing com-
putation loads and data transmission rates. Therefore this motivates
the attempt to further enhance the performance of such control sys-
tems in terms of using fuzzy control, and the optimal tuning of tun-
ing parameters is a convenient way to cope with such systems.
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