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ABSTRACT
This research investigates how to properly place garment industry workers to work stations in the assembly line to achieve a
more balanced production and to reduce the production cycle time. We simulate the assembly line balancing problem via staff
assignments. In our research, we conduct a comparative case study and implement our own simulation. The experiments are
designed with both single- and multitasking modes. Each experiment is carried out for 10 runs. Finally, we compare our results
obtained among constructive greedy, tabu search and simulated annealing. We find that tabu search algorithm is better than
simulated annealing on the problem of staff assignment. Meanwhile, we also observe that if we adjust 30% labor force from single
task into multitasking mode, the assembly line performance deteriorates. This case is accentuated for workers with disparate skill
levels for different tasks.
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1. INTRODUCTION

Nowadays, the garment manufacturing industries are facing
numerous challenges and intense market competition. For exam-
ple, the industry is struggling with a urgent demand to raise the
production efficiency while reduce the costs to gain the competitive
edge. Furthermore, garment industries can be characterized with
the mass-produced process and labor-intensive production. As the
consequence, manufacturers would need to plan well the task place-
ment and staff allocation at the early stage as to meet the customers’
requirements. Usually, the production process of garment manu-
facturing industries is executed in a sequential manner. Figure 1
shows that the general process can consist of the raw material selec-
tion, material inspection, sample production, cutting, sewing, iron-
ing, packing, and so on. Please note that the steps from cutting to
ironing are mostly labor-intensive. Also, the sequential relationship
between the steps enables the production process to be treated as
the assembly line model.

In the garment industry, the production quantity per day has to
comply with the daily order in the industry. As a result, the assembly
line layout can be a major factor and greatly impacts the production
output. Additionally, the load distribution at each assembly line
workstation may affect productivity. Therefore, the output rate of
the assembly line would determine the balancing condition for each
workstation and further influence production costs and customer
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satisfaction. The assembly line balancing (ALB) problem has been
studied by enterprises for many decades. The ALB model ensures
that the staff assignment balances the whole production process in
order to effectively reduce the production time or idle time. To meet
the ALB, employees’ mastery of skills at each task would be con-
sidered as an indicator. However, there are few studies investigat-
ing into the multifunctional (multitasking) workers with multiple
levels of skills working at work stations. Our research incorporates
the concept of Toyota Sewing System (TSS) derived from the Toy-
ota Production System (TPS) for clothing or footwear industry. TSS
is credited with less floor space, flexibility and better working envi-
ronment [1]. TSS is featured with a U-shaped assembly line and
teams of workers making garments on a single-piece flow basis.
Employees move between tasks and pass pieces of garments to the
next employees as soon as they become available to process more
products. The Toyota sewing machine system is shown in Figure 2
where sewing machines are represented by rectangle symbols while
employees are labeled alphabetically.

       As mentioned earlier, the labor-intensive feature of garment indus-
try would be studied. Chan et al. [2] state that the skill and expe-
rience of supervisors can be treated as the important factor in
controlling the production line and therefore improve the per-
formance. Similar, Guo et al. [3] point out that the performance
of the job shop mainly depends on supervisor’s experience and
knowledge. Aǧrali et al. [4] develop their employee schedul-
ing model considering the employee skill levels. To solve the
problem within a reasonable amount of time, Aǧrali et al. [4]
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Figure 1 Garment
manufacturing
production process.

Figure 2 Toyota sewing machine planning system schematic.

considers reformulation strategy. Dekena et al. [5] claim that the
employees place the great impact on productivity and flexibility of
the production system. They develop the production plan adopt-
ing the employee competence. Chen et al. [6] highlight that there
is growing pressure in the skilled labor market. Chen et al. [6] pro-
poses the model where the technicians must complete the given
tasks within the time period and then gain the experiences. As
such, technicians can be assigned to the job in the future. Wang et
al. [7] study the problem of the employee competence in precast
production planning. Furthermore, they propose a competence-
based model to optimize the worker allocation. Chen et al. [8]
address a multi-skill project scheduling problem for IT product
development. In their research [8], the project is divided into mul-
tiple projects which are completed by a skilled employee. To solve

the scheduling problem, they proposed a multi-objective nonlin-
ear mixed integer programming model. This research takes into
consideration of employees’ skill proficiency at performing tasks,
multifunctional employees and cell formation to minimize the pro-
duction cycle time. Also, we adopt another manner to calculate
the cycle time different from the previous studies and further con-
sider the workers’ skills to reflect the real-world situation. We
find that the production time can be effectively reduced with a
better personnel assignment and a preferred mode of production
system.

2. RELATED WORKS

In this section, there are two main parts: ALB and TPS together
with its extension TSS. The first part would introduce ALB problem
and meta-heuristic algorithm. Then the TPS and TSS would pro-
vide readers with the production process approaches. Based on the
aforementioned research, we develop our solution algorithm and
enhance the solution procedure.

2.1. Assembly Line Balancing

Assembly line is an arrangement of workers, machines and equip-
ment in which the product being assembled passes consecutively
from operation to operation until completed. Furthermore, the
ALB can be considered as one of the classical problems in assem-
bly line and occurs frequently in the manufacturing industry [9,10].
Suer [11] states that ALB operates with precedence relationship to
assign a number of operators or machines to each operation of an
assembly line to meet the required production rate with a min-
imum idle time and to keep a leveled workstation time at each
operation. In general, ALB includes Simple Assembly Line Balanc-
ing Problem (SALBP) and General Assembly Line Balancing Prob-
lem (GALBP). The SALBP can be divided into several categories
[12]. That is, SALBP – 1, SALBP – 2, SALBP – E and SALBP –
F. Note that the objective function of those SALBP is to minimize
the idle time at the assembly line. As a result, researchers usually
intend to obtain a total minimal idle time at each workstation in
the assembly line under different production models or resource
allocation. Regarding GALBP, Scholl and Klein [12] categorize it
as Mixed ALB Problem (MALBP/MSP) and U-type ALB Problem
(UALBP). Furthermore, ALB problem and its variants are consid-
ered to be NP-hard. This encourages one to apply meta-heuristic
algorithms to derive the approximately optimal solutions due to its
feature reducing solution space to accelerate the solution process.
There are several meta-heuristic algorithms such as genetic algo-
rithm (GA), tabu search (TS), simulated annealing (SA), and so
on. Chan et al. [2] solve SALBP-E in garment industry by utiliz-
ing GA. In their solution procedure, they consider the skill level of
the workers at each machine station and adopt the filtering mecha-
nism of GA to properly assign workers to different station to reduce
the total idle time and improve the production efficiency. Lin [13]
employs GA to derive the optimal solutions of the shortest move-
ment path of the single-row machine layout problem. The author
applies a two-dimensional matrix to mark the movement distance
of each machine and its sequence priority. Then the movement dis-
tance and suitability degree can be obtained by mathematical cal-
culations of permutations and combinations. Suwannarongsri and
Puangdownreong [14] propose a TS method to reduce the work
load for the solving of the ALB problem. Given the cycle time and
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the number of workstations being fixed, the proposed method can
not only maximize workstation load reduction but also cut down
the idle time if machines are sectorized into different workstations
based on the TS method. Dinh and Nguyen [15] develop three dif-
ferent approaches, exhaustive search, SA and SA with greedy, to
solve ALB problem and further indicate that SA is the best one in
terms of both accuracy and running time. Xu et al. [16] adopt an
adaptive ant colony (AAC) algorithm with modifications to solve
ALB problem. They define an objective function for minimizing
the smoothness index measuring the difference among worktime
and the targeted cycle time of each workstation on an assembly
line. Quyen et al. [17] propose a hybrid genetic algorithm (HGA)
to solve the resource -constrained assembly line balancing problem
(RCALBP) in the sewing line of a footwear manufacturing plant.
In their algorithm, the initial solution can be derived by the prior-
ity rule-based method (PRBM) in the first stage and then the solu-
tion is obtained by GA in the second stage. Gansterer and Hartl
[18] consider balancing problems of one- and two-sided assembly
lines with real-world constraints. The GA is utilized to solve the
problem and then compare the performance of GA with TS by a set
of larger test cases. They further show that GA outperforms a spe-
cific differential evolution (DE) algorithm and TS. Dang and Pham
[19] utilize discrete event simulation (DES) to depict the perfor-
mance measure and then integrate the adaptive large neighborhood
search (ALNS) heuristic into the model to derive the solution. The
authors conduct a footwear manufacturing factor with real data as
the case study to see the proposed algorithm capability. Pereira [20]
enhances the multi-Hoffmann heuristic to solve the ALB problem
and further shows that its performance better than previous studies
based on the results. He also validates the algorithm by implement-
ing the model in the clothing company. Bautista et al. [21] propose
their model maximizing the comfort of operators in mixed-model
assembly lines. They further utilize mixed integer linear program-
ming (MILP) and greedy randomized adaptive search procedure
(GRASP) to derive the solutions. The authors state that even though
the MILP provides the best solution, the results obtained by GRASP
are comparative. As we can see, there are lots of papers solving
the ALB problem by employing the meta-heuristic method. In this
paper, we take a different approach of involving employee assign-
ment to calculate cycle time in our research for garment industry,
which differs from the existing approach of calculating cycle time.
Also, the factor of workers’ skills is considered to reflect the real
world.

2.2. Toyota Production System

In our research, we adopt TPS as one of our production process
approaches to solve the ALB problem due to its U-shape feature.
Pujo et al. [22] indicate that U-shaped layout is always at least effi-
cient than an equivalent linear cell. Additionally, the TPS is devel-
oped by Taiichi Ohno, Shigeo Shingo and Eiji Toyoda between 1948
and 1975. The main objectives of TPS are to design for reducing
cost, improving productivity, and thus eliminating wastes such as
excess inventory, redundant human resources, and so on.

2.2.1. Toyota Sewing System

TSS is the extension of the just-in-time (JIT) production concept.
TSS assists the garment industry in accepting the cellular manufac-
turing concept. The worker serving at the U-shape production line

can operate multiple machines concurrently. The workers normally
move counterclockwise to operate in a cell. When a worker com-
pleted his/her own jobs while his/her previous coworker delayed,
this worker would adjust the direction and move clockwise to help
the previous worker. Therefore, we may need to keep the produc-
tion in the cells smooth and flexible. TSS production method is
shown as Figure 3 [1].

In Figure 3, TSS assigns 3 to 5 workers to operate 13 machine sta-
tions. The workers can execute their jobs following the production
process introduced above while achieve an effective balanced sta-
tus. The workers can collaborate each other flexibly to minimize the
idle time [1].

3. RESEARCH METHODS

In this section, we would introduce the limitations, formulation and
the meta-heuristics algorithms applied in the model.

3.1. Research Definition and Limitations

In this research, we focus on the assignment problem of multiple
tasks and different workers’ skill proficiency. Based on TPS, we
modify one part of production process to the cell layout to solve the
minimal cycle time of work.

3.1.1. The basic assumption

This study aims to solve the ALB problem in the garment indus-
try. We make some assumptions about the issues and limitations for
our research due to the cellular manufacturing concept. The basic
assumptions and limitations are presented in the following bullets:

∙ Workers have a specified skill proficiency for each task.

∙ Each task is associated with the standard allowable minutes for
the example of male short-sleeved shirt in the garment industry.

∙ Operating processes observe the precedence relationship.

∙ The worker’s operating routes cannot be crossed in each subcell.

∙ Some production processes are not necessary classified as
multitasking as depicted in the precedence relationship graph.

Figure 3 TSS production method [1].
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3.2. Mathematical Model

In our mathematical model, the objective function is to minimize
the maximum cycle time.

minC =
n∑

k=1
max

m∑
j=1

tjmjk (1)

Subject to
m∑
k=1

n∑
l=1

wkl = 1 (2)

n∑
k=1

wik ≤
n∑

k=1
wjk

(
1 ≤ i, j ≤ n

)
∧
(
i ∈ pj

)
(3)

mjk ∈ {0, 1}
(

1 ≤ j ≤ n
)
∧ (1 ≤ k ≤ m) (4)

tj: the completion time of task j

mjk: task j assigned to work station k

C: cycle time

pj: task i precedes task j

In (1), we calculate the working hours for each workstation
and select a largest working time as the cycle time. Then our
study selects a minimum working cycle time of the combinations.
Equation (2) is the constraint that each work station must be
assigned to at least one worker. Equation (3) states the preceding
relationship of tasks. For example, task i must be operated before
task j; we use work stations to sectorize the positions of tasks that
task i is in the work station that must be processed prior to that work
station where task j is located. Equation (4) indicates the 0–1 vari-
able; mjk is 1 if task j is assigned to work station k, 0 otherwise.

3.3. Cycle Time Calculation

In this research, the calculation of the cycle time is the main objec-
tive. One can derive the cycle time by selecting the longest comple-
tion time among the work stations as the completion time of the
entire work. When we calculate the working cycle time, we have to
make sure the number of tasks, work stations and working time for
each task.

3.3.1. Placement of tasks

Based on the assumption as described earlier, we start to place tasks
into the stations according the precedence relationship of the tasks.
This approach is in accordance with the “most followers” decision
rules of assigning the work element or task to a work station to sat-
isfy the precedence requirements [23]. For example, task 1 is per-
formed before task 3, while task 2 before task 4; task 5 is operated
later than all tasks. The precedence relationship of tasks is shown as
Figure 4.

Once we have the above relationship among tasks, we put tasks into
each station. We put 5 tasks into three different stations. First, we

Figure 4 Precedence
relationship of task
arrangement.

put the tasks without predecessors into a station. That is, we put task
1 and task 2 into station 1, and then we may put succeeding tasks
of 3 and 4 into the next workstation. In the final stage, we put the
last task 5 into the third station. Next, we calculate the completion
time at each station, and the calculating of the cycle time is to select
the longest station completion time as the cycle time. The layout
of the tasks may not be optimized initially for cycle time reduc-
tion. The tasks at different work stations would then be readjusted
to reduce the cycle time. During the process of readjustment, the
precedence relationship must be observed among tasks. For exam-
ple, we utilize Figure 4 to illustrate that task 3 or task 4 may be
moved to work station 1. However, it is subject to the constraint
that the rearranged tasks must be moved to any station where their
predecessors are located or to any station which follows the prede-
cessors’ work stations. For example, task 3 may be put at the origi-
nal station 2 or be placed into station 1, which also includes task 1.
However, suppose task 1 is moved station 2, task 3 must be placed
at either station 2 or station 3; otherwise, such task movement vio-
lates the precedence constraint defined initially among tasks.

After a series of readjustment, we may get a near-optimal arrange-
ment of task placement resulting in the shortest cycle time. How-
ever, in our case study, tasks at each station are stationery right from
the beginning—the rearrangement occurs with the worker reas-
signment because the worker’s performance impacts the production
line very much.

3.3.2. Worker assignment and working hour
calculation

Due to the workforce’s varied working experiences, their skill profi-
ciency would be affected. It follows that, whenever we assign work-
ers, we should choose employees with high skill proficiency to be
assigned in advance. Under the constraint of one worker, one sta-
tion, we compare all tasks first to find an efficient assignment.
After the staff assignment process, we calculate the workers’ com-
pletion time which is related to their working proficiency. In accor-
dance with the reality, workers’ completion times vary; therefore,
we divide the standard completion time at each task by workers’
skill proficiency in our research. The formula of the adjusted pro-
cessing time is shown below:

ai =
ti
wij

(5)
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where i, j = 1, 2,… , n

ai: adjusted processing time

ti: standard allowable minutes of task i

wij: skill level of worker j for performing task i

3.4. Toyota Sewing System

TSS also known as modular production system, was proposed to
improve highly labor-intensive industries by switching from the
single-task to multitask production mode. In this study, we apply
the cell manufacturing concept which can help workers to enter the
one-to-many, multitasking production mode in the garment indus-
try. We take a page from TSS derived from TPS is developed for
garment or footwear industries to eliminate unnecessary waste and
improve production efficiency.

Based on the original placement approach of TPS, we devise a new
labor staff assignment model with characteristics outlined as the fol-
lowing:

(1) Select work station randomly.

(2) Set the standard completion time of the work station as the
standard time of labor staff assignment.

(3) Choose workers based on their skill proficiency of operating
tasks according to the standard above.

(4) Once the workers are assigned, begin calculating the comple-
tion time of each station.

3.4.1. Computing completion time of workstation

After the workers are assigned into stations, we can calculate the
work time of each task according to the workers’ skill proficiency of
operating the tasks and then calculate the total time of each station.
For example, suppose that six workers with various level of skill pro-
ficiency for different tasks work at an assembly line where four work
stations exist; additionally, workers operate within a standard com-
pletion time of tasks and stations. We use the method introduced in
this section to calculate the completion time of each station as the
following:

(1) Add up the standard allowable minutes or completion time of
all tasks, for example, 72 minutes in total, and then divided by
the number of work stations to get the number of 18 minutes
each.

(2) The time obtained from step 1 is set as the standard; if the
processing time of a task selected is not over 18 minutes, we
must add up the processing time of the next tasks. Once the
processing time of the task(s) selected are over 18 minutes, we
assign a worker to work on those two tasks.

(3) The strategy to select workers to task depends on their skill
proficiencies of completing tasks.

(4) A chosen worker can only be assigned to only one
workstation.

We summarize the above case study according to the calculation
method, three workers’ assignments exist: tasks 1 and 2 are assigned
to worker 4; tasks 3 and 4 are assigned for worker 1; tasks 5 and task
6 are assigned to worker 2. We can add more work in and we may
compute actual completion time of each station after the workers
are assigned, and then calculate the objective function value—the
cycle time.

3.5. Heuristics and Meta-Heuristics
Approaches

In the following sections, three proposed approaches are introduced
to solve the ALB problem with workers’ performances for each task:
constructive greedy (CG) algorithm, TS and SA.

3.5.1. CG algorithm steps

The CG algorithm is developed by selecting the most proficient
worker for each task starting from the first task to the last. Once
the most skilled worker is determined, the standard allowable min-
utes are adjusted by formula (5). As all workers have been assigned
to those tasks, the tasks then are assigned to work stations with the
restrictions of not exceeding the average cycle time of each work
station and following the precedence relationship. Later, the cycle
time of each station is calculated and the minimum cycle time of
the assembly process is determined.

3.5.2. TS steps

In the following, we discuss the TS to solve the ALB problem in the
garment industry with the objective of minimizing the cycle time.
We describe the algorithmic steps in the following sections.

Step 1. The workers are randomly assigned to tasks, and the adjusted
processing time of each worker at each task is computed with
respect to each individual’s skill proficiency.

Step 2. Initialize the Tabu list. At the beginning stage of the calcu-
lation, the Tabu list, the record-keeping matrix for potential candi-
date solution, is empty. Whenever a new candidate solution exists,
it goes into the Tabu list; the solution cannot be reconsidered until
it reaches an expiration point. A best solution variable is also ini-
tialized to store the current best solution.

Step 3. At each iteration, a number of random swapping is con-
ducted. If a randomly selected worker is better than the current
worker assigned to the based on the skill proficiency, the workers’
swapping occurs. After the swapping, the new solution will be com-
pared to the current best solution or the initial solution. If the new
solution is better, the swapping sequence is recorded. Additionally,
the updated current best solution is entered into the Tabu list as a
“taboo” and not considered for a certain number of iterations.

Step 4. At the end of each iteration, the expiration time is decre-
mented for each solution in the Tabu list; when the expiration time
reaches zero for a particular solution, the solution is formerly con-
sidered as a “taboo” and can be revisited.

Step 5. At each iteration, a better solution would be found and
recorded. If the newer solution is better than current best solution,
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Figure 5 Tabu search for assembly line balancing
problem with workers’ assignment.

the solution will replace the existing solution. The iterations will be
run until a certain number of iterations has been performed.

Step 6. After the best current solution is found for the minimum
complete processing time, we assign each station to their respective
workstation one-by-one according to the “most-followers” to sat-
isfy the precedence requirement. We then compute the work time
at each station and then select the longest work time as the initial
solution. For example, suppose that 7 tasks, 7 workers, and 3 work
stations are sequenced as {1, 2, 3}, {4, 5}, {6, 7} and the workers’
assignment sequence numbers as {2, 5, 3}, {6, 1}, {7, 4}; in another
word, task l is assigned to worker 2; task 2 is assigned to worker 5,
task 3 worker 3 in work station 1 and so on. The processing time at
each station is presented as the following, where ti is the standard
allowable time and wij is the skill proficiency of workers to tasks.

station1 = t1∕l21 + t2∕l52 + t3∕l33

station2 = t4∕l64 + t5∕l15

station3 = t6∕l76 + t7∕l47

The flowchart of TS is shown below in Figure 5.

3.5.3. SA steps

SA is a meta-heuristic, which imitates the annealing process in met-
allurgy by starting with the initial high temperature and slowly cool-
ing down coupled with the Metroplis random sampling. The aim of

Figure 6 Simulated annealing for assembly line
balancing with worker’s assignment.

the SA is to discover the global near-optimal solution. The algorith-
mic steps of SA are described as following and shown as Figure 6.

Step 1. Similar to TS algorithm aforementioned, the workers are
randomly assigned to tasks, and the adjusted processing time of
each worker at each task is computed with respect to each individ-
ual’s skill proficiency.

Step 2. We Initialize the SA parameters: 𝜆 and T0. 𝜆 corresponds to
the proportion of lowering the temperature while T0 corresponds
to the initial temperature.

Step 3. We generate the initial solution, which is assigned as the cur-
rent best solution, fbest, and calculate the solution’s fitness value or
quality.
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Step 4. We randomly select a pair of tasks for exchanging their cor-
responding workers.

Step 5. After the exchange, the new solution is generated and calcu-
lated its fitness or solution quality.

Step 6. Check the new solution, fnew, is less than the current best
solution, fbest. If this is the case, the current best solution is updated
with the new solution; otherwise, a random float number between
(0, 1) is generated and compared against the Boltzmann constant.
If the random value is less than the Boltzmann constant, the cur-
rent best solution is updated with the new solution even though the
new solution is no better than the current best solution. This type
of update corresponds to the Metroplis random sampling strategy
with the purpose to explore the global search.

Step 7. The algorithm is repeated until the maximum iteration is
reached; in this case, the temperature has been lowered below the
defined final temperature.

Step 8. Once the near-optimal solution of workers’ assignment to
tasks is determined, the next step is to assign the tasks to the work
stations with the restriction of not exceeding the average cycle time
for every work station and following the precedence relationship.

4. RESULTS AND ANALYSIS

We would analyze and discuss the resulting outcomes of our pro-
posed model in this section.

4.1. Research Environment

The research environments are as the following.

∙ We wrote the algorithms in Java.

∙ We executed the simulation under the Eclipse integrated
development environment.

∙ The PC where the simulation occurred consists of Intel (R)
Core (TM) i3 CPU 2GB RAM PC.

4.2. Experiments and Data Analysis

Chan et al. [2] discuss the issues of task planning and person-
nel’s skill proficiency for men’s short-sleeved T-shirt production in
the garment industry. In that paper, each task is associated with a
standard allowable minute. However, Chan et al. [2] do not take
into account of multitasking workers as introduced by the TPS. To
better reflect the real-world scenario, thus we design two
scenarios—single-task and multitask scenarios—where we assume
that workers have arbitrary proficiencies at completing the tasks.
The precedence relationship chart, the tables of 41-task processing
time and workers’ skill tables according to Chan et al. [2] are pro-
vided as the following.

The precedence relationship of tasks is as shown in Figure 7 [13],
which can be further identified as the task-work station assignment
in Figure 8 [13]. During the simulations we do not update the task
positions; however, we do adjust and decide the personnel assign-
ment to tasks to obtain a better work cycle time.

Lin [13] proposes the modular diagram by grouping tasks in
the sub-assembly lines or branches of the precedence relationship

[6] into modules or “work stations.” For example, Tasks 1–6 are
grouped into a work station and so on. This configuration in
Figure 7 is used in the simulations of multitasking workers later
discussed.

The processing times of tasks in the garment industry are measured
in standard allowable minutes, which consists of the basic time of
the particular task and slack time (e.g., the allowable time of untying
and tying garment bundles). By reducing the slack time, therefore,
improve the standard allowable minutes [9]. Table 1 displays tasks
and their corresponding standard allowable minutes.

The workers’ performances for each task are rated from 0 (no skill
at all) to 1.5 (fully skilled) according to the workers’ skill table pro-
vided by Chan et al. [2]. Due to the space limitation, we split up the
41-workers’ skill table into several sub-tables (Tables 2a–2d).

4.2.1. Worker’s assignment in the single-task mode

We first calculate the total processing time or standard allowable
minutes of all tasks to be performed. In the example of the garment
industry given by Chan et al. [2] the total processing time comes
out to be 1,749 minutes. Next, we divide the total processing time
by the number of work stations as indicated by the precedence rela-
tionship graph where each branch of the graph is an equivalent of
a work station according to Chan et al. [2] and Lin [13]. The aver-
age processing time thus comes out to be roughly 135 minutes per

Figure 7 Task precedence relationship [13].
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Table 1 41-task and their processing time [2].

Figure 8 Task-work
station assignment [13].

work station. The calculated average processing time is used as the
soft time constraint for assigning tasks to work stations to achieve
the work balance. However, if the processing times of some tasks
go slightly above the average processing time, the solution is still
acceptable.

Table 3a provides the statistics on the CG algorithm and 13 work
stations (corresponding to 13 branches) with task-worker assign-
ments. The total adjusted SAM corresponding to the adjusted stan-
dard allowable minutes obtained from formula (5). The min and
max correspond to the minimum and maximum work station pro-
cessing times, respectively. The Std. Dev. represents the standard
deviation of all the work station processing times. Additionally,
Txx-Wxx represents the task and assigned worker numbers.

Furthermore, we also explore the possibility of assigning tasks to
work stations based on the average processing time for the CG algo-
rithm; that is, the accumulated processing time of tasks at a partic-
ular work station is less than the average processing time. Table 3b
indicates the statistics of the work station processing time.

In Table 4, the parameter values used in the TS are presented. The
values are determined through the empirical approach. The number
of iterations is user-defined at 1000 iterations; the length of Tabu list
is set at 1681, which corresponds to number of workers × number
of workers; the Tabu move is set at 5—number of iterations or time
period within which the same move recorded in the Tabu list are
prevented from making.

In Table 5, the parameter values of SA are presented. Three param-
eters are selected: the maximum iteration, 𝜆 (the proportional tem-
perature cooling schedule) and initial temperature.

The results of TS executed for single-task workers are given in
Table 6. Note that 24 work stations are required in this instance; the
cycle time comes out to be 132 minutes.

The results of SA executed for single-task workers are given in
Table 7. Note that 21 work stations are required in this instance; the
maximum cycle time comes out to be 183 minutes.

In the single-task worker scenario, we apply the CG algorithm,
TS and SA algorithms to find solutions. The results indicate that
in the single-task worker scenario, the CG algorithm for non-
predetermined work stations performs the best among all the algo-
rithms with shortest maximum cycle time and less work stations.
The best solutions are obtained after 10 execution runs. Table 8
presents the comparison results of all algorithms executed in this
paper.

4.2.2. Worker’s assignment in the multitask scenario

In this section, we adopt the idea of TSS and make 30% of work-
ers operate through multitasking approach (one staff being assigned
to multiple tasks). Assume that we have 41 tasks and thus we will
have 13 multitasking workstations. The configuration of task and
work stations are shown earlier in Figure 7. Assigning one individ-
ual worker to a work station is an unique challenging problem since
a worker has a portfolio of various skill levels for different tasks.

The CG algorithm operates on the principle of finding the “most fit”
worker for a particular task. This principle works well for a single
task; however, for a work station with multiple tasks assigned with
a single worker, the strategy fails to produce promising results. This
is understandable for a worker with wildly fluctuating skill levels
for different tasks. Table 9 presents this point. The processing time
of 13 work stations varies wildly from minimum of 18.919 minutes
to maximum of 6124.305 minutes. On the other hand, with their
improving and probabilistic nature of TS and SA in the multitasking
mode understandably perform better by rejecting inferior solutions
and keeping promising ones.

Table 10 shows the statistics of work station processing time and
task-worker assignment for the TS. The processing time of 13 work
stations for TS varies from minimum of 605.017 minutes to maxi-
mum of 2769.603 minutes.

Table 11 shows the statistics of work station processing time and
task-worker assignment for the SA search. The processing time of
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Table 2a Worker skill (No. 1–20) vs. Task (No. 1–20) [2].

Table 2b Worker skill (No. 1–20) vs. Task (No. 21–41) [2].

13 work stations for SA varies from minimum of 762.782 minutes
to maximum of 4129.875 minutes.

The following Table 12, displays the statistics of execution results by
three algorithms. The results indicate that the TS is the best among
those three when it comes to multitasking. The reason behind this
may be the random skills of workers make it harder to apply greedy
approach of assigning a particular best worker to a particular work
station since no worker has the best of all skills (skills are varied) for
a particular work station. Since the TS and SA are both improve-
ment algorithms, they fares better than the CG algorithm which
operates only on finding the best worker for a single task. Never-
theless, because a single worker may not perform top-notched for
all tasks for a work station with multiple tasks, the processing time
suffers for the CG algorithm.

4.2.3. Discussion

In this section, we summarize and compare our research analy-
sis. As mentioned earlier, there are few studies investigating into
the issue of “labor skill”— a resource assignment problem with
task precedence. This encourages us to adopt the concept of the
labor skill in our model and further apply meta-heuristic algo-
rithms to solve for the optimal solutions. With the data from Chan
et al. [2], we executed the single-tasking and multitasking experi-
ments against the CG algorithm, TS algorithm and SA approach.
In the single-task scenario, the CG method turns out to be the best
approach, with less required number of work stations and lowest
cycle time. On the other hand, the TS outperforms both CG algo-
rithm and SA in terms of the lowest maximum cycle time of the
entire assembly line. It is worthy of mentioning that our research
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Table 2c Worker skill (No. 21–41) vs. Task (No. 1–20) [2].

Table 2d Worker skill (No. 21–41) vs. Task (No. 21–41) [2].

utilizes the existing meta-heuristic algorithms to derive the near-
optimal solutions within a limited time. This would assist garment
industry in implementing the scheduling model with consideration
of the labor skill in an efficient manner. Furthermore, because of
the Internet of Things (IoT) trend, one can expect that the data
at the shop floor can be automatically collected. We can apply the
labor performance data captured by tasks and then employ the arti-
ficial intelligence (AI) model to predict the behaviors of labors. This
would be more accurate to formulate the labor skills in our model.

5. CONCLUSIONS AND
RECOMMENDATIONS

In this research, we apply the TS and SA algorithms to solve the
ALB problem considering the labor-intensive nature of the garment
industry. The objective of the proposed model is to minimize the

cycle time in the assembly line performed through task placement.
Nevertheless, in the garment industry, since tasks or machines
usually are placed at fixed positions at the early stage of facility lay-
out planning, the cycle time can be minimized via the staff assign-
ment. Based on the resulting outcomes for the single-task scenario,
the CG method outperforms TS and SA in two aspects: work sta-
tions numbers and cycle time. Furthermore, this paper also adopts
the multitasking concept of TSS derived from TPS to solve the ALB
problem in the garment industry by assigning 30% of workers to
work stations in the multitasking mode. The TS comes out to be
the winner in terms of the lowest cycle time. We observe that with
a worker with randomized skill levels for different tasks as given by
[6], it is less likely that a worker, exceptional for a single task, may
perform equally well against multiple tasks. Therefore, in regards
to the managerial implication, a team of workers with specific tal-
ents (high skill proficiency) for particular tasks performs better than
multitasking workers with disparate skill levels do.
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Table 3a Statistics of constructive greedy algorithm for 13 work stations.
Total adjusted SAM 1,282.26 minutes
Work station process-
ing time statistics

Mean: 98.635; Min: 18.919; Max:
235.258; Std. Dev.: 69.964

WS1 {T1-W6, T2-W16, T3-W37, T4-W38,
T5-W10, T6-W9}

WS2 {T7-W31}
WS3 {T8-W27, T9-W20, T10-W14,

T11-W34, T12-W22}
WS4 {T13-W39, T14-W12, T15-W41,

T16-W2, T17-W32}
WS5 {T18-W8, T19-W7}
WS6 {T20-W30}
WS7 {T21-W28, T22-W13, T23-W17}
WS8 {T24-W40}
WS9 {T25-W33, T26-W23, T27-W11,

T28-W5, T29-W4}
WS10 {T30-W15, T31-W25, T32-W3,

T33-W1}
WS11 {T34-W21, T35-W24, T36-W18,

T37-W19, T38-W29, T39-W26}
WS12 {T40-W36}

Work station
assignment

WS13 {T41-W35}

Table 3b Statistics of constructive greedy algorithm for
nonpredetermined work stations.
Total adjusted SAM 1,282.26 minutes
Work station process-
ing time statistics

Mean: 116.5689; Min: 93.649; Max:
132.904; Std. Dev: 14.73408

WS1 {T1-W6, T2-W16, T3-W37, T4-W38,
T5-W10}

WS2 {T6-W9, T7-W31, T8-W27, T9-W20}
WS3 {T10-W14, T11-W34, T12-W22,

T13-W39, T14-W12}
WS4 {T15-W41, T16-W2, T17-W32,

T18-W8}
WS5 {T19-W7, T20-W30, T21-W28,

T22-W13}
WS6 {T23-W17, T24-W40, T25-W33}
WS7 {T26-W23, T27-W11, T28-W5}
WS8 {T29-W4, T30-W15, T31-W25}
WS9 {T32-W3, T33-W1, T34-W21,

T35-W24}
WS10 {T36-W18, T37-W19, T38-W29}

Work station
assignment

WS11 {T39-W26, T40-W36, T41-W35}

Table 4 Parameter values for Tabu search.
Number of
Iterations

Tabu List Tabu Move

1000 1681 5

We outline the contributions of this research as following.

(1) Three algorithms—CG, TS and SA algorithms—are proposed
and discussed.

Table 5 Parameters for simulated annealing.
Maximum
Iteration

𝜆 Initial Temperature

1000 0.70 100

Table 6 Statistics of Tabu search for single-task workers for
nonpredetermined work stations.
Total adjusted SAM 2,325.415 minutes
Work station process-
ing time statistics

Mean: 96.892; Min: 47.235; Max:
131.998; std. Dev: 23.085

WS1 {T1-W25, T2-W6, T3-W39}
WS2 {T4-W21, T5-W8}
WS3 {T6-W38, T7-W22}
WS4 {T8-W17, T9-W28}
WS5 {T10-W27}
WS6 {T11-W2}
WS7 {T12-W14}
WS8 {T13-W40, T14-W16, T15-W7}
WS9 {T16-W5, T17-W4, T18-W3}
WS10 {T19-W24, T20-W35}
WS11 {T21-W10, T22-W37}
WS12 {T23-W41}
WS13 {T24-W33}
WS14 {T25-W26, T26-W23}
WS15 {T27-W34}
WS16 {T28-W29}
WS17 {T29-W15}
WS18 {T30-W13}
WS19 {T31-W19, T32-W20}
WS20 {T33-W30, T34-W1}
WS21 {T35-W12}
WS22 {T36-W18, T37-W9}
WS23 {T38-W36, T39-W11}

Work station
assignment

WS24 {T40-W32, T41-W31}

(2) The original single-task mode of production line is revised;
30% labor force are assigned to work stations in the multitask-
ing scenario.

In our research, we adjust the cycle time based on employee’s profi-
ciency assignment to calculate the cycle time. To reflect the reality of
the world, we consider employee’s skill to update the standard task
working time. Although, TSS promote the concept of multitasking,
it should be noted that the existing limitations of production pro-
cesses prevent the entire update of all or most single production
into multitasking mode. For example, the turnover rate of skilled
or cross-trained workers can be quite high. This may discourage
employers from cross-training the entire workforce. Additionally,
the ramp-up time for multitasking may dissuade the management
to put new workers immediately in a cell to handle multiple tasks.
Therefore, in our research we only consider 30% of workforce as
multitasking workers in terms of predetermined number of work
stations. For future work, we suggest a number of issues for future
researchers.
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Table 7 Statistics of simulated annealing for single-task workers.
Total adjusted SAM 2,129.846 minutes
Work station process-
ing time statistics

Min: 47.714; Max: 183.007; Std Dev:
31.796

WS1 {T1-W18, T2-W37, T3-W38}
WS2 {T4-W40}
WS3 {T5-W12, T6-W5, T7-W2}
WS4 {T8-W41, T9-W24}
WS5 {T10-W30, T11-W20, T12-W4}
WS6 {T13-W19, T14-W25}
WS7 {T15-W33}
WS8 {T16-W16, T17-W28}
WS9 {T18-W9}
WS10 {T19-W6}
WS11 {T20-W27, T21-W1, T22-W15}
WS12 {T23-W36, T24-W32}
WS13 {T25-W35}
WS14 {T26-W3}
WS15 {T27-W22, T28-W21}
WS16 {T29-W34}
WS17 {T30-W7, T31-W26}
WS18 {T32-W13, T33-W23, T34-W14,

T35-W10}
WS19 {T36-W11, T37-W17}
WS20 {T38-W31, T39-W8, T40-W39}

Work station
assignment

WS21 {T41-W29}

Table 8 Comparison of solution results in the single-task scenario.
Fixed Size
(CG)*

CG TS SA

Best Soln. (maxi-
mum cycle time)

235.258
132.904 131.998 183.007

Number of work
stations

13 11 24 21

*13 pre-determined work stations.

Table 9 Statistics of constructive greedy algorithm for multitasking.
Work station process-
ing time statistics

Mean: 965.792; Min: 18.919; Max:
6124.305; Std Dev: 1861.080

WS1 {T[1-6]-W9}
WS2 {T7-W31}
WS3 {T[8-12]-W20}
WS4 {T[13-17]-W39}
WS5 {T[18-19]-W7}
WS6 {T20-W30}
WS7 {T[21-23]-W14}
WS8 {T24-W28}
WS9 {T[25-29]-W2}
WS10 {T[30-33]-W25}
WS11 {T[34-39]-W8}
WS12 {T40-W22}

Work station
assignment

WS13 {T41-W27}

Table 10 Statistics of tabu search for multitasking.
Work station process-
ing time statistics

Mean: 605.017; Min: 91.503; Max:
2769.603; Std Dev: 755.573

WS1 {T[1-6]-W12}
WS2 {T7-W33}
WS3 {T[8-12]-W13}
WS4 {T[13-17]-W11}
WS5 {T[18-19]-W28}
WS6 {T20-W15}
WS7 {T[21-23]-W6}
WS8 {T24-W7}
WS9 {T[25-29]-W29}
WS10 {T[30-33]-W10}
WS11 {T[34-39]-W2}
WS12 {T40-W1}

Work station
assignment

WS13 {T41-W26}

Table 11 Statistics of simulated annealing for multitasking.
Work station process-
ing time statistics

Mean: 762.782; Min: 38.654; Max:
4129.875; Std Dev: 1211.692

WS1 {T[1-6]-W3}
WS2 {T7-W6}
WS3 {T[8-12]-W25}
WS4 {T[13-17]-W33}
WS5 {T[18-19]-W8}
WS6 {T20-W30}
WS7 {T[21-23]-W2}
WS8 {T24-W16}
WS9 {T[25-29]-W35}
WS10 {T[30-33]-W21}
WS11 {T[34-39]-W10}
WS12 {T40-W11}

Work station
assignment

WS13 {T41-W4}

Table 12 Best solutions of three algorithms for
multitasking.

CG TS SA
Best Soln. (maxi-
mum cycle time) 6124.305 2769.603 4129.875

(1) Our research focuses on the scenario of tasks placed at fixed
positions at the construction stage—we can only change labor
assignment. For further investigation, we may take into con-
sideration of both employee and task swapping.

(2) In the research, we implement CG, TS and SA algorithms in
this research. We can employ other approaches in the future
research.

(3) The study is concerned with a single objective—the cycle
time; multiple objectives may be investigated in the future.
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(4) Due to the trend of IoT and applications of AI, researchers
may further incorporate the machine learning algorithms into
our model to better predict the performance of labor.
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[4] S. Aǧrali, Z.C. Taşkin, A.T. Ünal, Employee scheduling in ser-
vice industries with flexible employee availability and demand,
Omega. 66 (2017), 159–169.

[5] B. Denkena, M.A. Dittrich, F. Winter, C. Wagener, Simulation-
based planning and evaluation of personnel scheduling in
knowledge-intensive production systems, Prod. Eng. Res. Dev. 10
(2016), 489–496.

[6] X. Chen, B.W. Thomas, M. Hewitt, Multi-period technician
scheduling with experience-based service, Comput. Oper. Res. 82
(2017), 1–14.

[7] Z. Wang, H. Hu, J. Gong, Competence based worker assign-
ment and impacts on production scheduling in precast
construction, in IEEE Technology and Engineering Management
Conference (TEMSCON), Evanston, IL, USA, 2018.

[8] R. Chen, C. Liang, D. Gu, J.Y.-T. Leung, A multi-objective model
for multi-project scheduling and multi-skilled staff assignment
for IT product development considering competency evolution,
Int. J. Prod. Res. 55 (2017), 6207–6234.

[9] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide
to the Theory of NP-Completeness, W.H. Freeman, New York, NY,
USA 1979.

[10] A.L. Gutjahr, G.L. Nemhauser, An algorithm for the line balancing
problem, Manag. Sci. 11 (1964), 308–315.

[11] G.A. Suer, Designing parallel assembly lines, Comput. Ind. Eng.
35 (1998), 467–470.

[12] A. Scholl, R. Klein, ULINO: optimally balancing U-shaped JIT
assembly lines, Int. J. Prod. Res. 37 (1999), 721–736.

[13] M.-T. Lin, The single-row machine layout problem in apparel
manufacturing by hierarchical order-based genetic algorithm, Int.
J. Cloth. Sci. Technol. 20 (2009), 258–270.

[14] S. Suwannarongsri, D. Puangdownreong, Optimal assembly line
balancing using Tabu search with partial random permutation
technique, Int. J. Manag. Sci. Eng. Manag. 3 (2008), 3–18.

[15] M.H. Dinh, V.D. Nguyen, Cycle time enhancement by simulated
annealing for a practical assembly line balancing problem, Infor-
matica. 44 (2020), 127–138.

[16] H. Xu, B. Xu, J. Yan, Balancing apparel assembly lines through
adaptive ant colony optimization, Text. Res. J. 89 (2019),
3677–3691.

[17] N.T.P. Quyen, J.C. Chen, C.-L. Yang, Hybrid genetic algo-
rithm to solve resource constrained assembly line balancing
problem in footwear manufacturing, Soft Comput. 21 (2017),
6279–6295.

[18] M. Gansterer, R.F. Hartl, One- and two-sided assembly line bal-
ancing problems with real-world constraints, Int. J. Prod. Res. 56
(2018), 3025–3042.

[19] Q.-V. Dang, K. Pham, Design of a footwear assembly line using
simulated-based ALNS, Procedia CIRP. 40 (2016), 596–601.

[20] J. Pereira, Modelling and solving a cost-oriented resource-
constrained multi-model assembly line balancing problem, Int.
J. Prod. Res. 56 (2018), 3994–4016.

[21] J. Bautista, R. Alfaro-Pozo, C. Batalla-Garcia, Maximizing comfort
in assembly lines with temporal, spatial and ergonomic attributes,
Int. J. Comput. Int. Syst. 9 (2016), 788–799.

[22] P. Pujo, I.E. Khabous, F. Ounnar, Experimental assessment of
the productivity improvement when using U-shaped production
cells with variable takt time, Int. J. Lean Six Sigma. 6 (2015),
17–38.

[23] L.J. Krajewski, M. Malhotra, L.P. Malhotra, Operations Manage-
ment: Processes and Supply Chains, eleventh ed., Pearson, Lon-
don, England, 2016.

https://doi.org/10.1108/09556229810205240
https://doi.org/10.1108/09556229810205240
https://doi.org/10.1108/09556229810205240
https://doi.org/10.1016/j.cie.2006.03.003
https://doi.org/10.1016/j.cie.2006.03.003
https://doi.org/10.1016/j.cie.2006.03.003
https://doi.org/10.1016/j.cie.2006.03.003
https://doi.org/10.1016/j.cie.2006.03.003
https://doi.org/10.1016/j.omega.2016.03.001
https://doi.org/10.1016/j.omega.2016.03.001
https://doi.org/10.1016/j.omega.2016.03.001
https://doi.org/10.1007/s11740-016-0693-4
https://doi.org/10.1007/s11740-016-0693-4
https://doi.org/10.1007/s11740-016-0693-4
https://doi.org/10.1007/s11740-016-0693-4
https://doi.org/10.1016/j.cor.2016.12.026
https://doi.org/10.1016/j.cor.2016.12.026
https://doi.org/10.1016/j.cor.2016.12.026
https://doi.org/10.1109/TEMSCON.2018.8488407
https://doi.org/10.1109/TEMSCON.2018.8488407
https://doi.org/10.1109/TEMSCON.2018.8488407
https://doi.org/10.1109/TEMSCON.2018.8488407
https://doi.org/10.1080/00207543.2017.1326641
https://doi.org/10.1080/00207543.2017.1326641
https://doi.org/10.1080/00207543.2017.1326641
https://doi.org/10.1080/00207543.2017.1326641
https://doi.org/10.1287/mnsc.11.2.308
https://doi.org/10.1287/mnsc.11.2.308
https://doi.org/10.1016/S0360-8352(98)00135-1
https://doi.org/10.1016/S0360-8352(98)00135-1
https://doi.org/10.1080/002075499191481
https://doi.org/10.1080/002075499191481
https://doi.org/10.1108/09556220810898872
https://doi.org/10.1108/09556220810898872
https://doi.org/10.1108/09556220810898872
https://doi.org/10.1080/17509653.2008.10671032
https://doi.org/10.1080/17509653.2008.10671032
https://doi.org/10.1080/17509653.2008.10671032
https://doi.org/10.31449/inf.v44i2.3083
https://doi.org/10.31449/inf.v44i2.3083
https://doi.org/10.31449/inf.v44i2.3083
https://doi.org/10.1177/0040517518819836
https://doi.org/10.1177/0040517518819836
https://doi.org/10.1177/0040517518819836
https://doi.org/10.1007/s00500-016-2181-3
https://doi.org/10.1007/s00500-016-2181-3
https://doi.org/10.1007/s00500-016-2181-3
https://doi.org/10.1007/s00500-016-2181-3
https://doi.org/10.1080/00207543.2017.1394599
https://doi.org/10.1080/00207543.2017.1394599
https://doi.org/10.1080/00207543.2017.1394599
https://doi.org/10.1016/j.procir.2016.01.140
https://doi.org/10.1016/j.procir.2016.01.140
https://doi.org/10.1080/00207543.2018.1427899
https://doi.org/10.1080/00207543.2018.1427899
https://doi.org/10.1080/00207543.2018.1427899
https://doi.org/10.1080/18756891.2016.1204125
https://doi.org/10.1080/18756891.2016.1204125
https://doi.org/10.1080/18756891.2016.1204125
https://doi.org/10.1108/IJLSS-07-2013-0038
https://doi.org/10.1108/IJLSS-07-2013-0038
https://doi.org/10.1108/IJLSS-07-2013-0038
https://doi.org/10.1108/IJLSS-07-2013-0038

	Applying Meta-Heuristics Algorithm to Solve Assembly Line Balancing Problem with Labor Skill Level in Garment Industry
	1. INTRODUCTION
	2. RELATED WORKS
	2.1. Assembly Line Balancing
	2.2. Toyota Production System
	2.2.1. Toyota Sewing System


	3. RESEARCH METHODS
	3.1. Research Definition and Limitations
	3.1.1. The basic assumption

	3.2. Mathematical Model
	3.3. Cycle Time Calculation
	3.3.1. Placement of tasks
	3.3.2. Worker assignment and working hour calculation

	3.4. Toyota Sewing System
	3.4.1. Computing completion time of workstation

	3.5. Heuristics and Meta-Heuristics Approaches
	3.5.1. CG algorithm steps
	3.5.2. TS steps
	3.5.3. SA steps


	4. RESULTS AND ANALYSIS
	4.1. Research Environment
	4.2. Experiments and Data Analysis
	4.2.1. Worker’s assignment in the single-task mode
	4.2.2. Worker’s assignment in the multitask scenario
	4.2.3. Discussion


	5. CONCLUSIONS AND RECOMMENDATIONS


