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Abstract 
Most of GA-based portfolio assets 

allocation uses normalization method to allocate 
investment asset’s weight. However, the 
normalization process will cause unease 
converging and even diverging characteristics, 
because it changes the gene’s relativity of address 
in chromosome. In this paper, we propose a 
weighed encoding scheme and crossover algorithm 
to allocate suitable assets in portfolio. Each gene 
encoded as a real number in a chromosome is 
denoted as the weighted number of assets in our 
approach. Due to no specific relationship assumed 
in our encoding scheme, the crossover process 
would not influence overall converging speed. In 
addition, in order to avoid losing optimal asset 
allocations through quicker converging, we also 
introduce the expanding rate to allow enlarging the 
possible range of asset allocation weight during the 
evolutionary process.  Our experiments also show 
that higher expanding rate produces higher excess 
profit of investment. 
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1. Introduction 
Portfolio asset allocation problem is 

concerned with the percentage of the overall 
portfolio wealth allocated to each portfolio 
individual. The problem of Markowitz 
mean-variance approach [1] uses the covariance 
matrix derived to predict the investment risk of 
any allocation of assets. This approach only solves 
the efficient set problem for one portfolio rate of 
return at a time. Furthermore, the algorithm solves 
a set of linear simultaneous equations with 
efficient time complexity. To solve the asset 
allocation problem, the majority of research 
employs linear programming solvers. However, 
asset allocation optimization is complex and 
NP-hard problem. It is nonlinear with many local 
optima. 

The genetic algorithm (GA), introduced by 
Holland in 1975, is a well-known efficient 
nonlinear search methodology in large problem 
spaces [2][7]. The efficient set selections within a 
portfolio based on the Markowitz model have been 
efficiently solved by using GA [5][6]. These 
papers optimize return and risk simultaneously, 
and give rise to more significant performance than 
traditional quadratic programming approach. 
Chang et al. [7] indicated the representation of a 
solution with two distinct parts: a set of assets and 
proportion of individual. The proportion of each 
asset will be weighted average to new proportion. 
A GA is designed to solve such a portfolio 
optimization corresponding to non-concave 
maximization problem with an order of the 
expected returns of stocks [10]. Xia, Wang and 
Deng [12] further considered transaction costs 
with V-shaped function based on variance 
covariance matrix of return to construct the 
portfolio compromise solution. Ehrgott, Klamroth 
and Schwehm [7] defined five different objectives 
related risk and return with consideration of 
individual investors’ preferences based on GA to 
optimize the utility function of portfolio specified 
by decision maker. Orito and Yamazaki [10] used 
GA to select index fund portfolio to minimize risk 
in portfolio. Oh., Kim and Min [2] applied GA to 
optimize index fund portfolio management with 
fundamental variables. Their experimental results 
showed that the GA-based index fund portfolio 
provide better performance than S&P500 and 
FTSE100. Each asset weight is optimized by linear 
combination of minimum portfolio risk. 

However, the asset allocation weight 
optimization is difficult for encoding scheme of 
Genetic algorithms in portfolio selection. Most of 
previous studies use normalization method to 
precede their asset weight of portfolio in GA 
mechanism. Unfortunately, the normalization 
process would cause unstable oscillation situation, 
because one gene’s value changing would affect 
other genes’ values. It will reduce the converging 
speed seriously. In this article, we will introduce 



an evolutionary weighted encoding scheme and its 
corresponding crossover methodology to solve 
assets allocation in portfolio. It provides quicker 
converging speed without losing forecasting 
accuracy. 

The rest of this paper is organized as follows. 
Section 2 describes our evolutionary weight 
encoding scheme and crossover algorithm. Section 
3 shows our experimental results. Finally, Section 
4 gives our conclusions. 

2. An Evolutionary Weight 
Encoding Scheme and 
Crossover Algorithm 
The traditional GA mechanism cannot 

produce reasonable asset allocations, except 
normalizing the final results. In this section, we 
will introduce a novel weight encoding scheme 
and its crossover algorithm. 

3. Encoding Scheme 
Each chromosome represents one possible 

assets allocation. It is noted that each gene is a real 
number not a bit string. Let Xi and Xj represent two 
chromosomes in parent population shown in 
Figure 1, where wp,l denotes the asset allocation 
weight for l-th asset in p-th chromosome. Assume 
the chromosome length is L and the population 

size is P, 1≤p≤P, 1≤l≤L and 1
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chromosome p. 
Xi⇒ wi,1 wi,2 … wi,L 

 

Xj⇒ wj,1 wj,2 … wj,L 

Figure 1 Two chromosomes representation 

4. Crossover Algorithm 
The crossover method would select two 

chromosomes from parent population. Assume X’i 
and X’j shown in Equation ( 1) are their generated 
offsprings, where c is a constant.  
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The sum of asset allocation weights in X’i 
and X’j maintains 100%, which will be shown as 

below. Let { }L
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w
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!  denote the 

asset allocation weight sets in X’i and X’j, 
respectively. 
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Because each gene (w’ik) of child 
chromosome (X’i) represents the newly generated 
asset allocation weight in our portfolio, 0≤ w’ik ≤1. 
It means that  
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Let Rik and Rjk denote the reasonable ranges 
of c in the k-th gene of Xi and Xj. We have 
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Therefore, the reasonable range of c in the 
i-th chromosome denoted as Ric would be shown as 
Equation ( 4). 
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The recombination process works by 
selecting a reasonable range of c denoted as Rc first, 
then randomly selecting one real number from Rc, 
and creating the two children by Equation ( 2 ). Rc 
is defined as Equation ( 5 ). 

I jcicc RRR =

 
( 5 ) 

The evolutionary process would be iterated 
until a candidate with sufficient fitness is reached. 
It means that higher number of offspring with 
higher viability will match the problem 
requirements more closely. Nevertheless, Rc will 
diverge because wik≈wjk, for each k. 

Besides, the evolutionary process will 
converge gradually, if Rc=[0, α], 0<α≤1, because 
min(wik, wjk) ≤ w’ik, w’jk ≤ max(wik, wjk). Regrettably, 
if the randomly generated c approaches 0.5, it will 
carry the danger of missing the optimal solution. 
Furthermore, the variety of individuals in 
population would decrease rapidly. For example, if 
wik=0.2, wjk=0.6, c=0.5 and the optimal weight is 
0.3, their offspring are w’ik=0.4, w’jk=0.4. It is 
possible not to achieve the optimal weight 0.3. To 
avoid such a problem, our crossover algorithm 
allows Rc a little expansion and not only to be 
limited in [0, 1]. Assume the allowable range of Rc 
is [minc, maxc] shown in Figure 2. Let η denote a 



user-defined expansion rate. Therefore, the newly 
allowable range R’c is shown in Equation ( 6 ). 

 

0 1 minc max c 

max c-1 -minc 

 
Figure 2. The allowable range of Rc 

[ ])1(1, !"+"=#
ccc

maxminR $$
 

( 6 ) 
Our proposed crossover algorithm is illustrated in 
Figure 3. 

 
5.1  Input�  SP: Parent population 

η � Expanding rate 
5.2  Output�  SO: Offspring 

population 
5.3 DO 
5.4  Select two Chromosomes�  Xi� Xj from SP 
5.5  FOR each Xi and Xj 

5.6   Calculate (Rik | Rjk) by Equation ( 3). 
5.7   ( )I jkikcc RRRR |=  

5.8  End FOR 
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  where Rc=[minc, maxc] 

5.10  Random generate c from R’c 
5.11  Generate offspring:  
   X’i = cXi + (1-c)Xj  
   X’j =(1- c)Xi + cXj  
5.12 End DO 

Figure 3. Crossover Algorithm 

5. Fitness Function 
In order to find effective portfolio and asset 

weight under maximum return and minimum risk, 
the fitness function evaluates the return of the 
investment of trading. The fitness f(E) is derived 
from Equation (7), where ROI is return of 
investment from all trades and σ is the standard 
deviation from the net value of all of the trade days. 
Let NVi be the net value of i-th trades, NV  is the 
mean of NV, and N is the number of trades; σ is 
evaluated from Equation (8). 
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6. Experimental Results 
The simulation environment, sample data 

and experimental results are described in this 
Section. Our weighed encoding scheme and 
crossover methodology of GA program is written 
in J2SE 5.0 and run in Microsoft Window XP 
environment.   

7. Parameter Setting and Sample 
Data 
The parameters used in our GA algorithm 

are described as follows. The population size is 
100 and the chromosome length is n real positive 
values if considering n assets in portfolio. The 
number of generations is set to 700. The crossover 
rate is set to 0.9 and mutation rate is set to 0.01. 

Five companies are arbitrarily selected to be 
our testing targets. The stocks of these companies 
have been listed and traded on the Taiwan Stock 
Exchange (TSE). The experimental period extends 
from January 1, 2005 to December 31, 2005. The 
market value and the total asset of those 
companies are given in Table 1. The mean market 
value is $202,024.92 million and the mean total 
asset is $360,624,462.20 thousands.  
 
Table 1 The market value and total asset of data 
samples 

Stock 
ID 

Company 
Name 

Market 
Value 

(Millions) 

Total asset 
(Thousands) 

2317 

Foxconn 

Electronics 

Inc. 

622,933.49 312,200,692 

2301 
Lite-On 

Technology 
96,728.14 89,666,488 

2354 

FOXCONN 

Technology 

Co 

78,136.77 19,613,566 

2801 
Chang Hwa 

Bank 
81,280.13 1,288,444,615 

2880 

Hua Nan 

Financial 

Holdings 

131,046.07 93,196,950 

Mean 202,024.92 360,624,462.20 

8. Analysis of Results 
To avoid singularity arising from someone 

experiment, the average performances of eleven 
experiments under different expanding rate (0, 
0.1…1) are used, respectively. In Figure 4, higher 
expanding rate would produce higher ROI 
generally. Especially, ROI will be improved if the 
expanding rate is larger than 1. Figure 5 shows the 
capital allocation of our portfolio, where the 
highest ratio is 79.37% (Lite-On Technology) and 
the next ratio is 18.44% (Foxconn Electronics 
Inc.). 
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Figure 4. Investment ROI of testing phase 
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Figure 5. The capital allocation of portfolio 

9. Conclusion 
Asset allocation is the most important issue 

of portfolio management. The conventional 
Mean-Variance approach uses linear estimating a 
larger number of parameters such as co-variance 
metric to compute investment weights in portfolio. 
However, optimizing asset allocation is a complex 
and NP-hard problem. The traditional Simple GA 
finds efficient set with nonlinear capability in large 
problem spaces, but it can not produce reasonable 
asset allocation weights after crossover and 
mutation operations, except using normalization 
process. Unfortunately, the normalization process 
would cause serious unstable oscillation situation. 
It leads to converge slowly even diverge. In this 
article, we propose a novel weighted encoding 
scheme and crossover method to select an efficient 
asset allocation set in portfolio. From our 
experiments, higher expanding rate would produce 
higher ROI. It is interesting that ROI will be 
improved evidently, if the expanding rate is larger 
than 1. It means that restricting the expanding rate 
to 0 would lose optimality in the asset allocation 
problem. In addition, our experiments also 
demonstrate the stability and robustness of our 

algorithm.  
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