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Abstract 
In 2004, Abe et al. proposed a threshold signer-
ambiguous signature scheme from variety of keys. 
Their scheme is a generalized case of the ring 
signature scheme, and it allows the key types to be 
based the trapdoor one-way permutations (TOWP) or 
sigma-protocols including Schnorr’s signature scheme. 
However, the signed message is public for all, which 
may result in disputes. In this paper, we present a 
novel threshold signer-ambiguous signature scheme, 
having the signed message concealed and keeping who 
the receivers are secret from variety of keys. 
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1. Introduction 
For many applications, anonymity is an important 
issue. As for the digital signature, anonymity could be 
still amended even though the digital signature is used 
to authenticate the signer of the corresponding 
document. In [15], one motivation for the above 
scenario comes into being. One of the possible signers 
can sign the document without the other possible 
signers’ agreement when the signed document may be 
harmful if exposed to be public. Note that the verifiers 
know the possible signers instead of the real signer to 
have the document trustworthy. Consequently, the real 
signer should be ambiguous instead of anonymous. 
Thus, signer-ambiguous signature schemes are 
preferred to be setup-free such that the real signer can 
select the possible signers at will to make 
himself/herself be able not to be noticed. On the other 
hand, in the threshold signature schemes [9, 10, 17] 

and in the group signature schemes [5-7], the possible 
signers are grouped to be a set after the setup process. 

Several proposed schemes [11, 12, 15] can be 
adopted as setup-free signer-ambiguous signature 
schemes. The partial knowledge proof CDS [11] leads 
efficient threshold signer-ambiguous schemes, and it 
can be combined with other signature schemes based 
on sigma-protocols such as Schnorr’s signature 
scheme. Nevertheless, the signature schemes based on 
TOWP cannot be employed in CDS—RSA and Rabin 
signature schemes [3, 8] for example. 

Rivest et al. proposed the ring signature scheme 
which almost directly adopts TOWP [15]. Bresson et 
al. proposed a t-out-of-n threshold ring signature 
scheme with the signature size exponential to the 
threshold t [4]. Later, a more efficient version was 
presented such that the signature size is linear to t and 
n [13]. Meanwhile, Abe et al. presented a modification 
on the ring signature scheme such that it can be based 
on both of sigma-protocols and TOWP [1], where the 
modification is 1-out-of-n. In 2004, Abe et al. 
proposed a t-out-of-n signer-ambiguous signature 
scheme [2]. They claimed that the base signature 
schemes can be based on sigma-protocols including 
Schnorr’s signature scheme, or TOWP. After 
analyzing Abe et al.’s scheme, we observe that 
Schnorr’s scheme cannot be directly applied to their 
scheme, and the base signature based on sigma-
protocols may be insecure. 

2. Preliminaries 
In the following, we introduce two types of signature 
schemes, type-OW and type-3M, which employ 
TOWP and sigma-protocols, respectively. Type-OW 
includes schemes such as the variants of RSA 
signature scheme, Rabin’s signature scheme [3, 8] and 
Paillier’s signature scheme [14], which use one-way 



trapdoor permutations. Let F, a claw-free permutation, 
be a one-way trapdoor permutation and I be the 
corresponding inverse function. F and I are both 
defined over the space C. Let SK and PK be the 
involved private and public keys, respectively. 
Suppose that EM is the encoded message, where EM 
∈ C. Then the signature s of EM is I(SK, EM), and 
EM can be obtained by computing EM = F(PK, s). 
Note that the verifier may check if EM = F(PK, s) to 
determine ifr the signature s of EM is valid. 

Type-3M, typified by Schnorr’s signature scheme, 
includes schemes derived from the sigma protocols. 
There are three polynomial-time algorithms A, Z and 
V performed by the signer and the verifier. The signer 
commits to a ← A (SK; r), randomly chooses the 
challenge c and computes s = Z(SK, r, c). The verifier 
checks if a = V(PK, c, s) to verify the signature. 

3. Abe et al.’s Threshold Signer-
ambiguous Signature Scheme 

In this section, the details of Abe et al.’s scheme are 
shown. First of all, the initialization is presented as 
follows. Let the set of the involved public keys be G = 
{PK1, PK2,…, PKn}, where the first v keys of G are of 
type-OW and the others are of type-3M. At least t 
corresponding private keys are known to the signers. 
Let p′ be a prime larger than any number in the 
challenge space Ci determined by PKi ∈ G for i = 1, 
2,…, n. For i = 1, 2,…, n, let H0, Hi and Ki be hash 
functions with the hashing results in Zp′, Ci and Ci, 
respectively. The signature scheme is composed of 
two phases: the signature generation phase and the 
verification phase described in Subsections 3.1 and 3.2, 
respectively. In Subsection 3.3, an example is given. 

3.1. The Signature Generation 
Phase 

Suppose that (G, t, m) are given, the corresponding 
signature α is generated as follows. 
Step 1: For the real signer Ui, he/she chooses ai from 

Ci if Ui’s key is of type-OW or computes ai ← 
A (SKi; ri) if Ui’s key is of type-3M. 

Step 2: For other signer Ui who does not sign m, zi is 
randomly chosen from Zp′, si is chosen from Si, 
and ci and ai are computed, where Si is the 
signature space. If Ui’s key is of type-OW, ci = 
Hi(zi) and ai = Fi(PKi, si) – ci. If Ui’s key is of 
type-3M, ci = Ki(zi) and ai = Vi(PKi, ci si). Note 
that this step is performed by the real signers. 

Step 3: z0 = H0(G, t, m, a1, a2,…, an) is computed, and 
an (n-t)-degree polynomial P over Zp′ is found, 
where P(i) = zi. 

Step 4: For the real signer Ui, he/she computes ci = 
Hi(P(i)) and si = Ii(SKi, ai + ci) if Ui’s key is of 
type-OW, or he/she computes ci = Ki(P(i)) and 
si = Zi(SKi, ri, ci) if Ui’s key is of type-3M. 

3.2. The Verification Phase 
While given (G, t, m) and the signature α = (P, s1, 
s2,…, sn), the verifier performs as follows to verify the 
signature. 
Step 1: If Ui’s key is of type-OW, the verifier 

computes ai = Fi(PKi, si) – Hi(P(i)). 
Step 2: If Ui’s key is of type-3M, the verifier computes 

ai = Vi(PKi, Ki(P(i)), si). 
Step 3: The verifier checks if P(0) = H0(G, t, m, a1, 

a2,…, an). If it holds, the verifier is convinced 
that the obtained signature α is valid. 

3.3. An Example of Abe et al.’s 
Scheme 

In [2], Abe et al. presented an example of a t-out-of-n 
signer-ambiguous signature scheme, where RSA and 
the Schnorr-like signature schemes are applied, t = 2, 
and n = 4. We extend Abe et al.’s example such that t 
= 3 and n = 5.  

Let G = {PK1, PK2, PK3, PK4, PK5}. The key 
types for U1 and U2 are of RSA signature scheme, and 
the others are of the Schnorr-like signature scheme. 
For i = 1 and 2, (SKi, PKi) = (di, (ni, ei)), where ei 
∈ )n( i
Z! and di = ei

-1 mod φ(ni). For i = 3, 4, 5, (SKi, 
PKi) = (xi, (gi, qi, pi, yi)), where gi is the primitive 
element with the order qi and the modulus pi, qi is a 
great prime factor of φ(pi) and i

x
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be a prime greater than n1, n2, p3, p4 and p5. Let H0, H1, 
H2, K3, K4 and K5 be hash functions with results in Zp′, 
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Suppose that U1 and U3 are the real signers who 
are going to sign the message m. The followings are 
performed. 
Step 1: U1 chooses a1 from

1
n
Z . U3 computes 

3
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Step 2: z2 is randomly chosen from Zp′, s2 is chosen 
from

2
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mod n2 are computed. For i = 4, 5, zi is 
randomly chosen from Zp′, si is chosen from 
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computed. This step is executed by U1 and U3. 

Step 3: z0 = H0(G, t, m, a1, a2, a3, a4, an) is computed, 
and a 3-degree polynomial P over Zp′ is found, 
where P(0)=z0, P(2)=z2, P(4)=z4, and P(5)=z5. 



Step 4: U1 computes c1 = H1(P(1)) and s1 = 

1
d

11 nmod)ca( 1+ . U3 computes c3 = K3(P(3)) 
and s3 = (r3 + c3x3) mod q3. 

Step 5: Finally, the signer-ambiguous signature α = (P, 
s1, s2, s3, s4, s5) is obtained. 
When the verifier wants to verify the signature 

α, he/she performs as follows: 
Step 1: The verifier computes ai = )))i(P(Hs( i

e
i
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mod ni for i = 1, 2.  
Step 2: The verifier computes ai = ))i(P(K

i
s
i

ii yg
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pi for i = 3, 4, 5. 

Step 3: The verifier checks if P(0) = H0(G, t, m, s1, s2, 
s3, s4, s5). If it holds, the verifier is convinced 
that the obtained signature α is valid. 

4. Schnorr’s Signature Scheme  
In this section, we review Schnorr’s signature scheme 
[16]. First, two primes, p and q, are chosen, where q is 
a prime factor of (p-1). Second, a primitive element g 
is chosen, where g≠1 and gq mod p =1. Note that g, p, 
and q are all public. For the user U, he/she chooses the 
private key x less than q and computes the 
corresponding public key y = g-x mod p. 

When U wants to sign a message m, he/she 
performs as follows: 
Step 1: Chooses a random number r, less than q, and 

computes j = gr mod p. 
Step 2: Computes a = h(M, j), where h() is a one-way 

hash function. 
Step 3: Computes s = (r + x*a) mod q. 

After the three steps, U generates the digital 
signature (a, s) for M. When the verifier V wants to 
verify the signature, he/she performs as follows: 
Step 1: Computes t′ = gs * ya mod p. 
Step 2: Computes a′ = h(M, t′) and checks if a′ equals 

a. If it holds, V confirms the validity of the 
signature (a, s); otherwise, the received 
signature is regarded as an illegal one. 

5. Discussions 
After reviewing Abe et al.’s scheme and Schnorr’s 
signature scheme, we observe that Schnorr’s signature 
scheme cannot be employed in Abe et al.’s proposed 
scheme because the real signer cannot generate the 
valid signature for other candidate signers. The details 
are shown in Subsection 5.1. In Subsection 5.2, we 
show that the type-3M base signature scheme is 
insecure. More discussions are given in Subsection 5.3. 

5.1. Another Example  

Schnorr’s signature scheme in Section 4 is employed 
in the example in Subsection 3.3. Note 
that i

x
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= . The following procedures are 
performed to generate the signature of the message m.  
Step 1: U1 chooses a1 from

1
n
Z . U3 computes 
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r
333
3= . 

Step 2: z2 is randomly chosen from Zp′, s2 is chosen 

from
2
n
Z , and c2 = H2(z2) and a2 = )cs( 2
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mod n2 are computed. For i = 4, 5, zi is 

randomly chosen from Zp′, si is chosen 

from
iq

Z , ci = Ki(zi).  
However, for i = 4, 5, ai cannot be computed by 

the real signer on behalf of Ui. The reasons are shown 
as follows: 
Since si = (ri + xi*ai) mod qi, we have the followings. 

   ri = (si - xi*ai) mod qi .         (1) 
i
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(2) can be rewritten as follows: 
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According to Equation (3), it is observed that ji cannot 
be retrieved because of the difficulties of solving the 
discrete logarithms and the security of the hash 
function even though si, gi, m and yi are known. In 
other words, only the user who knows xi can generate 
ai. According to the above analyses, it is ensured that 
Schnorr’s signature scheme cannot be adopted in Abe 
et al.’s signer-ambiguous signature scheme. 

5.2. Cryptanalysis of Abe et al.’s 
Scheme 

As shown in [2], Abe et al. presented an example. The 
type-3M base signature scheme in Abe et al.’s 
example is shown as follows. First, two primes, p and 
q, are chosen, where q = 2p+1. Then, a primitive 
element g is chosen, where g≠1 and gq mod p =1. Note 
that g, p, and q are all public. The user U, whose 
private key is x, possesses the corresponding public 
key y = gx mod p. When U wants to sign a message m, 
he/she performs as follows: 
Step 1: Chooses a random number r and computes a = 

gr mod p. 
Step 2: Computes s = (r + x* h(m)) mod q. 

After the above two steps, U generates the 
digital signature (a, s) for m. When the verifier V 
wants to verify the signature, he/she checks whether 

pmody*ag )m(hs
=  holds or not. If it holds, V 

ensures the validity of the signature (a, s); otherwise, 
the received signature is regarded to be illegal.  



In the type-3M base signature scheme, the 
malicious user Eve can impersonate the legal user U to 
sign the message at will without knowing U’s private 
key x. The details are shown as follows: 
Step 1: Eve chooses the desired message M′. 
Step 2: Eve randomly chooses s′∈Zq. 
Step 3: Eve computes pmod)y(*ga 1)M(hs !""

=" . 
Once the verifier wants to verify the signature 

(a′, s′) for M′, he/she checks whether )M(hs y*ag
!! !=  

mod p holds. Unfortunately, the forged signature must 
be verified successfully even though U is not the real 
signer. To sum up, Eve generates the valid signature 
(a′, s′) for M′ without knowing U’s private key x. 

5.3. More Discussions 
According to the above analyses shown in Subsections 
5.1 and 5.2, the secure type-3M base signature scheme 
should be modified as follows: The signer commits to 
a ← A (SK; r), randomly chooses the challenge c and 
computes s = Z(SK, r, c, a). The verifier checks if a = 
V(PK, c, s, a) to determine the validity of the signature. 

Nevertheless, the modified type-3M signature 
scheme cannot be employed to Abe et al.’s ignature 
scheme—Schnorr’s signature scheme for example. It 
is because the message cannot be retrieved if the 
signature is determined at first in the secure signature 
scheme. Thus, the real signers cannot generate the 
partial signature for other signers.  

6. Conclusions 
In 2004, Abe et al. proposed a novel threshold 

signer-ambiguous signature scheme from variety of 
keys. They claimed that their scheme allows the base 
signature schemes to be based on sigma-protocols, 
including Schnorr’s signature scheme, or claw-free 
permutations. After analyzing the above observations, 
it is observed that the base signature scheme for the 
keys of the Schnorr-like signature scheme may be 
insecure and may be designed only for Abe et al.’s 
scheme. Thus, it is ensured that the base signatures in 
Abe at al.’s scheme cannot be any one belonging to 
sigma-protocol or claw-free permutations. 
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