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Abstract 

Taking into account the uncertainty of real data in the 

planning process is a real challenge for nowadays compa-

nies. It is suggested in this communication to take into 

account the demand uncertainty, but also the uncertainty 

on the lead times, for deciding which quantities of com-

ponents should be released, and when. In that purpose, the 

various situations that may happen are summarized in a 

graph which design is detailed here. 
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1.  Problem statement and state of art 

In an industrial context, data are often imprecise or uncer-

tain. In production management, it may for instance be the 

case for the demand, the lead times, the resources re-

quired, their capacities, the transportation times, the in-

ventory or production costs, etc. When analyzing the state 

of the art on this subject, it can be see that the uncertainty 

on the demand is a great focus of the literature, while the 

uncertainty on costs and capacities is also often consi-

dered. On the other hand, the uncertainty on the lead 

times, which is often mentioned [1] and may have an 

important impact on the performance of the Supply 

Chains, is quite seldom taken into account. 

Various approaches can be used for dealing with un-

certainty in this context. When uncertainty is modeled by 

possibility distributions, a first approach consists in using 

a function aiming at ranking fuzzy numbers in order to 

allow the decision maker to defuzzify imprecise values [2] 

[3] [4]: we will denote such approaches as "defuzzifica-

tion approaches". After the defuzzification process, the 

result is a classical linear optimization system. 

A second approach, based on the fact that a possibility 

distribution can be seen as a set of probability distribu-

tions, consists in choosing one of those probability distri-

butions, according to the attitude of the decision maker 

(e.g. pessimistic using necessities, optimistic through 

possibilities, etc.) [5]. Once this choice has been made, it 

is possible to use a stochastic optimization model. So, the 

decision maker chooses for which probability distribution 

his solution will be optimal.  

A third approach is possibilistic optimization [6], 

which tries to find the solution which minimizes the cost 

and maximizes the possibility level of a considered scena-

rio.  In other terms, this approach finds a "possibly optim-

al" solution; the level of possibility that the considered 

scenario will happen is therefore maximal.  

 

 

A fourth approach is decision support ([7], [8]) based 

on decision support tools in which the uncertainties are 

propagated within the model until a decision has to be 

made. These decisions may for instance concern produc-

tion lot sizes, capacity, sub-contracting etc. The advantage 

of this approach compared to the previous ones is that the 

user does not make an a priori decision on uncertain val-

ues, but can assess the consequences of the uncertainty on 

the system, through uncertainty propagation. 

Another approach, denoted "robust optimization" [9], is 

close to the third one: by taking into account the various 

scenarios with their respective levels of possibility, it aims 

at minimizing either the maximum cost on the whole set 

of scenarios (minmax) or, on the whole set of scenarios, 

the difference between the cost of the optimal solution and 

the one of the proposed one (minmax Regret). In spite of 

its interest and to our knowledge, this approach has not yet 

been applied on the Lot Sizing Problems (LSP) when 

uncertainties are modeled through possibility distribu-

tions. 

 

On the base of the gaps identified in the previous 

short state of the art, we suggest a method for computing 

gross requirements taking into account the uncertainty on 

the demand and on the lead times, within a decision sup-

port approach. The result of this method is a set of plans 

represented in a graph in which each level denotes a pe-

riod, a path defining a scenario. A possibility distribution 

representing the possible quantities to process during a 

period is attached to each node. Each arc is valued by the 

possibility level that the link exists. 

This graph may be used for calculating robust release 

policies or, for critical products, in a decision support 

method allowing the decision maker to choose iteratively 

the quantities to produce, on the base of several indicators 

and proposals, taking into account the levels of possibili-

ty/necessity to require these quantities. 

2. MRP and uncertainty 

2.1 Crisp MRP  

The MRP2 method (MRP standing for Manufacturing 

Requirement Planning) is a comprehensive production 

management method allowing to build a supply planning 

and a production planning on the base of forecasts, using 

the Bill of Materials (BOM) of the products. Within this 

method, the MRP step (MRP standing here for Material 

Requirement Planning) is the step where gross then net 

requirements are generated for each component of the 

BOM, on the base of the Master Production Planning [10]. 

For simplification reasons, we shall here focus on a single 
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level of the MRP calculation, i.e. on a single level of the 

BOM, but the process is the same when several levels are 

considered.  

Algorithm 1 shows how the Net Requirements can be 

calculated for a given level of the BOM. 

 

Algorithm 1: Net requirement calculation for a given 

level of the BOM 

 

Index  

 s: index of the scenario 

 t: period 

  

Input 

tGR : the Gross Requirement for each period, 

0tI : the inventory level of the period t0  

tSR : the scheduled receipt of the period t 

d : lead time 

 

Dependant variables 
It : the inventory level of the period t 

 

Output:  

tNR : Net Requirements of the period t  

tNR : Planned order release of the period t 

 

For t=1 to T do 

 tNR = 
tGR  - SRt - It 

 tR = 
dtNR +

 

End For 

 

 

2.2 Representation of imperfect MRP data 

Among the numerous data required by the MRP calcula-

tion, several may be pervaded by uncertainties. In the 

framework of this study, we shall consider more specifi-

cally uncertain lead times and an imprecise demand. The 

information about the uncertainty of the lead time and 

about the imprecision of the demand is obtained from an 

expert knowledge. To formalize this information, the 

possibility theory is used in this communication.    

 

Let us first recall some results from the possibility 

theory. 

The uncertainty of all events A from a subset S can 

be represented by two levels: 

- the possibility that the event occur (high level):  possibil-

ity П(A), 

- the necessity that the event occur (low level): necessity 

N(A), 

with 

 )()(, AASA ∏≤Ν⊆∀  (1) 

and 

 )(1)(, AASA Π−=Ν⊆∀  (2) 

 

If A is certainly true П (A)=1 and N(A)=1   

If A is certainly false: П (A)=0 and N(A)=0 

If there is no knowledge available: П (A)=1 and N(A)=0  

(the event is fully possible but not necessary at all). 

An imprecise information is Av ∈  where A is a sub-

set of S which contains more than one element. The im-

precision may be expressed by a disjunction of values 

[11]. The imprecise information v Av ∈ defines a possi-

bility distribution on S. Av ∈  means that all values from 

v out of A are supposed to be impossible [11].  

A possibility distribution πv of v is a function of S in L 

such as 1)(,,)(, =∃∈∈∀ ssandLsSs vv ππ  with v 

denoting an ill-know value in S, L being the scale of plau-

sibility (normally, [0,1]). 

When a possibility distribution is represented by a trape-

zoidal fuzzy set, an imprecise information is denoted by 

(a,b,c,d,h) with h=1, like in Figure 1. 

 

 
Fig. 1: Representation of a trapezoidal fuzzy set 

 

In the case of the fuzzy MRP, the imprecision on the 

gross requirements can thus be represented by a possibil-

ity distribution: )Q( oπ . The uncertainty on the lead time 

can be represented by a possibility level for the different 

values of the lead time: П(δ=a). 

 

In this article, we consider that this lead time has 

only two values with high degrees of possibility (the 

others are not taken into account). This is a first improve-

ment in comparison with the usual case where lead times 

are supposed to be certain. The result is that we shall have 

to work with possible scenarios, instead of situations 

supposed to be certain. 

3. Computation of the possible releases 

The objective of this communication is to suggest a me-

thod for modeling releases, in a way: 

- which integrates the calculation of the possible net re-

quirements on the base of imprecise gross requirements 

(fuzzy),  

- which models the set of possible releases through a 

graph, 

in order to generate robust solutions as a second step. 

 

We consider here that the gross requirements are 

imprecise only on the flexible horizon, i.e. after the pe-

riod on which the orders are firm. We shall as a conse-

quence consider that a crisp calculation is performed up 

to the first period of this flexible horizon. The scheduled 

receipts are crisp. 

 

We suggest to compute the requirement planning in 

three steps: 

a b c d q 

1 

π 
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- calculation of scenarios for fuzzy net requirements, 

- design of the graph of possible releases,  

- use of the graph. 

 

3.1. Computation of the net requirements 

In the case of fuzzy gross requirements, several scenarios 

of possible net requirements exist, according to the way 

the inventory or the scheduled receipts will be consumed. 

The first problem is to calculate these scenarios. 

Algorithm 2 calculates the possible net requirements 

scenarios corresponding to the different possible ways to 

use the initial inventory or the scheduled receipts. There-

fore, there exist as many possible scenarios as the number 

of periods on which this consumption by the gross re-

quirements runs.  

For each scenario (corresponding to a given number of 

periods of consumption): 

- the net requirements up to the last consumption period 

are null, 

- the net requirements are calculated on the last period 

of consumption, 

- the net requirements for the following periods are 

equal to the gross requirements (there is no more possi-

ble consumption). 

- the possibility degree of a scenario is equal to the min-

imum of the possibility degrees of the inventories and 

net requirements on all the periods. 

 

To compute the scenario of the fuzzy net require-

ments, we apply algorithm 2.  

Algorithm 2 is used iteratively to compute: 

1) the different scenarios of fuzzy net requirements 

without considering the scheduled receipt.  

2) the different scenarios of fuzzy net requirements for 

each of the previous scenarios and for each scheduled 

receipt to be consumed. 

 

Algorithm 2: Computation of the fuzzy net require-

ments 

 

Index  

 s: index of the scenario 

 t: period 

  

Input 

tGR : fuzzy gross requirements for each pe-

riod, 

tf: period of the scheduled receipt to be con-

sumed , 

1−tfI : inventory level of period tf-1  

:tfSR scheduled receipt of period tf 

 

Dependant variables 

It : inventory possibly not consumed  

 

Output:  

stNR , : fuzzy possible Net Requirements of 

the period t for scenario s 

sΠ : possibility level of scenario s. 

 

s=1 

11 =Π  

\\ For all the last possible periods of consumption of the 

possible inventory 

For t= tf to T do 

\\ If there is a scheduled receipt to be consumed 

   If t=tf Then 

\\ Scheduled receipt is integrated to the stock level 

  1−tI = tt SRI +−1  

   End If 
\\ As long as there can be inventory (including sche-

duled receipts) to be consumed 

   While { } 001 >≥Π −tI do   

\\ The inventory is calculated for the next period 

( )0;)(min 1−−−= tt
q

t IGRI  

\\ If it is possible that the inventory is not sufficient 

 If ( ){ } 000;)(max 1 >≥−Π −tt
q

IGR  then 

  \\ The requirement is calculated  

( )0;)(max 1, −−= tt
q

st IGRNR  

\\ The requirements on the following periods are equals 

to the gross requirements  

  For i=t+1 to T do 

   isi GRNR =,  

  End For 

\\ The possibility of the scenario is updated according 

to the possibility of the net requirement on this period  

  { }( )ssts NR Π≥Π=Π ;0min ,  

 

\\ If it is possible that an inventory exists 

  If { } 00 >≥Π tI  then 

\\A new scenario is created 

   s=s+1 

\\ The possibility of the scenario is updated accord-

ing to the possibility of the inventory on this period 

  { }( )sts I Π≥Π=Π ;0min  

\\For this new scenario, all the requirements up to 

the last period of consumption of the last considered 

scenario are null  

For i=0 to t do 

    0, =siNR  

   End For 

End If 

End If 

tII =  

   End While 

End For 

// If the inventory is sufficient for the whole horizon 

whatever the gross requirement is.  

If { } 00 >≥TIN Then 

For i=0 to t do 

  0, =siNR  
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 End For 

End If 

 

Example:  

Remark: The notation for the fuzzy number (a(α);b;c;d) 

represents the fuzzy number illustrated by Figure 2. 

 

 
Fig. 2: Illustration of a fuzzy number (a(α);b;c;d) 

 

Let us consider tf=3, T=6, I tf-1=15,  

GR3=(5 ;10 ;15 ; 20) GR4=(5;10 ;15 ;20) 

GR5=(5 ;10 ;15 ; 20)  GR6=(5 ;10 ;15 ; 20). 

There is no scheduled receipt after period 3. 

 

Let us apply the algorithm 2 to these data: 

We compute ( )  (0,0,0,5)0;)(max 23 =− IGR
q

and 

I3=(0;0;5;10). 

Since ( ) 00;)(max 23 >− IGR
q

,  

NR3,1=(0;0;0;5), NR4,1=(5 ;10 ;15 ;20), NR5,1=(5; 10 ; 15 ; 

20), NR6,1=(5 ; 10 ;15 ;20) and 11 =Π  

I3>0 so, we create a new scenario with NR3,2=(0;0;0;0) 

We compute the ( )   15,20)(0(0.5),5,0;)(max 34 =− IGR
q

and 

I4=(0;0;0(0.5);5) 

Since ( ) 00;)(max 34 >− IGR
q

,  

NR3,2=(0; 0; 0; 0), NR4,2=(0(0.5); 5 ; 15 ; 20), NR5,2=(5 ; 10 

; 15 ; 20), NR6,2=(5 ; 10 ; 15 ; 20) and 12 =Π  

I4>0 so we create a new scenarios with NR3,3=(0;0;0;0) 

NR4,3=(0;0;0;0) 

We compute ( )   0)(0,10,15,20;)(max 45 =− IGR
q

and 

I5=(0;0;0;0). 

Since ( ) 00;)(max 45 >− IGR
q

,  

NR3,3=(0; 0; 0; 0), NR4,3=(0; 0 ; 0 ; 0), NR5,3=(0 ; 10 ; 15 ; 

20), NR6,3=(5 ; 10 ; 15 ; 20) and 5.03 =Π  

We have three scenarios for the net requirements, 

represented on Figure 3. 

 

3.2 Computation of planned order release  

We shall consider here that the release policy is "lot for 

lot" (i.e. the released quantity is the quantity required for 

the period), since this policy is quite usual in nowadays 

companies. In any case, if another policy is used, its use 

would only result in grouping the lots expected for several 

periods.  

Since fuzzy lead times are used, a large number of possi-

ble scenarios exist for releasing orders with a lot for lot 

policy: for each net requirement on a given period, two 

scenarios of planned order release are possible, according 

to the lead time which has here two possible values (it can 

so be seen that increasing the number of possible planned 

order could lead to some combinatorial difficulties).  

As explained above, we have chosen here to represent the 

set of these possible scenarios by a graph, each level of 

the graph representing a period, and each path a possible 

scenario. 

 

 

 

 

 

 
Fig. 3: Representation of the three possible Net Requirement scenarios 

 
 

Scenario 1 

Scenario 2 

Scenario 3 

Period 3 Period 4 Period 5 Period 6 

q 

π 

5 5 10 15 20 q 

π 

5 10 15 20 

π 

5 10 15 20 

π 

5 10 15 20 

π 

5 10 15 20 

π 

0 10 15 20 

π 

5 10 15 20 

π 

0 q 

0 q 0 q 

q 
0 10 15 20 

0.5 

π 

π 

π 

π 

0.5 

a b c d 

α 

q 

1 

π 
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3.3 Computation of the nodes 

The planned order release nodes include three types of 

information: 

- characterization of the node (net requirements which 

are released within the period, expressed as a vector 

which gives, for each possible value, each of the possi-

ble lead times if the net requirement corresponding to 

this lead time is released), 

- fuzzy quantity of the planned order release, 

- possibility level of the node. 

 

The characterisation of a node (j,t,s) is expressed as a 

vector •jc of the matrix jic  of the possible combination j 

of the possible lead time { }ia  with { }0,iia δ∈ .  For 

example, if we have two possible values of iδ , the matrix 

is 





















21

1

2

,

0,

,0

0,0

δδ

δ

δ
.  

A planned order release requirement node sjtR ,,  is also 

characterized by a vector 
•jc  which , a fuzzy quantity 

(aj,t,s ; bj,t,s; cj,t,s ; d j,t,s) and a possibility level to have the 

combination j: jΠ  

For each possible lead time δi we know the possibility 

level of occurrence Π(δi) and the possibility level of non-

occurrence ( )ijj
j

i ≠Π=Π )(max)( δδ . 

From these possibility levels and from the combination 

matrix of the possible lead times, we compute (algorithm 

3) the possibility level of each combination j as follows: 

 

Algorithm 3: Computation of the possibility level of 

each combination of the possible lead time  

 

Input:  

ijc , : the matrix of the possible combination j 

of the possible lead time { }ia  with 

{ }0,iia δ∈ .  

Π(δi) the possibility level of the realisation of 

the lead time δi  

Output:   

jΠ : the possibility level of the combination j 

 
For j=1 to J do 

 For i=1 to I do 

If  cj,i=δ i then  

  Π (cj,i)= Π(δi)  

End If  

If cj,i=0 then  

  Π(cj,i)= )( iδΠ   

End If 

 End For 

( ))(min ,ij
i

j cΠ=Π   

End For 

 

 

We shall now, using algorithm 4, build the graph of the 

possible fuzzy released quantities. In order to calculate 

these fuzzy quantities, we add, for each period and each 

scenario, the net requirements corresponding to the matrix 

of the possible combinations. 

 

Algorithm 4: Computation of the possible fuzzy re-

lease quantities 

 

Input: stNR , : the set of fuzzy possible Net Require-

ments.  

ijc , : the matrix of possible combination j of 

the possible lead time { }ia with { }0,iia δ∈ .   

Output: sjtR ,, : the release fuzzy quantity of the nodes 

(j,t) of the scenario s. 

 

For s=1 to S do 

 For t=tf to T do 

\\ for each combination of the possible lead times  

  For j=1 to J do 

   )0;0;0;0(,, =sjtR  

   For i=1 to I do 

\\we compute the release quantity  

    If 0, >ijc  then 

\\ as long as the net requirements of the combination 

belong to the horizon, we calculate the released quan-

tity. Otherwise, we give the value (-1 ;-1 ;-1 ;-1) to the 

quantity. 

     While )1;1;1;1(,, −−−−≠sjtR  do 

         If ];[ Ttft
i

∈+ δ then 

          sjtstsjt RNRR
i ,,,,, )(+= +δ  

         Else  

          )1;1;1;1(,, −−−−=sjtR  

         End If 

         End While 

    End If 

   End For 

  End For 

 End For 

End For 

 

 

3.4 Computation of the arcs 

Using algorithm 5, we shall then connect the compatible 

nodes by associating to each link the possibility that the 

link exists. 

A requirement can only be released once. So, two consec-

utive releases are incompatible if the same requirement is 

concerned in the two releases. Two successive nodes will 

as a consequence be linked only if they are compatible. 

We give then to the arc the level of possibility of the 

following node. 
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Note: the beginning and the end of the graph are subject to 

a specific processing. It appears that some nodes are not 

linked to the graph, which induces modifications on the 

possibilities of the arcs (an arc of possibility 1 must al-

ways start from a given node). 

 

Algorithm 5: Computation of the arcs  

 

Input: sjtR ,,  the release fuzzy quantities of the nodes 

(j,t) of the scenario  

 ijc , : the matrix of the possible combinations j of 

the possible lead times { }ia  with { }0,iia δ∈ . 

jΠ : the possibility level of the combination j 

Output: 
s

R
Π the transition matrix of the release graph 

for scenario s. 

 

For s=1 to S do 

 0=Π s

R
 

 For t=tf to T do 

  For j=1 to J do 

 

   For k=1 to J do   

    comp=1 

    For i=2 to I do  

\\ for each lead time i, we check if the combination k is 

incompatible and if the corresponding released quantity 

of the nodes exists. 

      If 1,, −= ikij cc  then 

     comp=0 

     End If 

    End For  

\\ we check if the combination is compatible and  if the 

corresponding release quantity of the nodes exists.   

  If comp=1& )1;1;1;1()&( ,,1,, −−−−≠+ sktsjt RR  

then 

\\ give the possibility level to the arc between node (j,t) 

node (k,t+1) 

    k

s

R tkj Π=Π ),,(  

   End If 

   End For 

  End For 

\\ modifies the levels of possibility of the nodes having 

only one output arc. 

 If kktkjtkj
s

R

s

R ≠∀=Π≠Π∃ '0),',(&0),,(  then 

  1),,( =Π tkjs

R  

 End If 

 End For 
\\ an input node and an output node are added. 

 For j=1 to J do   

  If )1;1;1;1()( ,,1 −−−−≠sjR  then 

   k

s

R je Π=Π )1,,(  

  End If 

  If )1;1;1;1()( ,, −−−−≠sjTR  then 

   1)1,,( =+Π Tsjs

R  

  End If 

 End For 

End For 

 

 

Example: 

Let us consider the first scenario of the net requirements 

with П(δ=1)=0.2 and П(δ=2)=1. 

Thus, the matrix of the possible combinations is  





















2,0

0,0

2,1

0,1
 

We can compute the related graph of the planned order 

release (Figure 4). 

 

3.5 Exploitation of the graph 

The graph is a general model of the planned order release 

under fuzzy uncertainty. From this graph, different types 

of information can be extracted: 

- the planned order releases which have a given possi-

bility level, by selecting the path which has this possi-

bility [12], for instance the most possible ones; 

- the possibility to release each quantity, which can also 

be computed by merging the nodes ([13]);  

- the performances of various policies of lot sizing in 

presence of uncertainties, if a graph is created for each 

policy.  

 

Since this communication mainly concern the visualiza-

tion of several released situations through a graph, these 

methods are not developed in the present paper. Never-

theless, such graph can be a real support for decision 

making ([12], [13]). 
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Fig. 4. Example of graph of the possible fuzzy released quantities 

 

4. Conclusion and perspectives 

We have suggested in this communication to take into 

account the uncertainty on the demand, but also on the 

lead times, for defining released orders. In such case, a 

problem is often the combinatorial explosion of the situa-

tions to consider. The suggested method also suffers from 

this problem: it has been seen that considering more poss-

ible lead times could lead to very complex graphs. Never-

theless, we do think that taking into accounts two or three 

possible lead times would already be very useful in prac-

tical cases, allowing for instance to describe several alter-

natives for processing the parts.  

In the literature, the approach by defuzzification takes 

into account uncertainty on the lead time with the impreci-

sion on the demand, but this approach deffuzzifies imme-

diately: therefore, the decision maker knows only one 

scenario and does not have any information on the set of 

possible scenarios of released quantity.   

The others approaches (possibilistic optimization, ro-

bust optimization) could be used to choose a crisp released 

quantity from the graph; in other words, each approach 

can be considered as a lot sizing rule. In "crisp" MRP, 

rules for lot sizing are commonly used, like economic 

quantity, lot for lot, etc. In a fuzzy MRP which takes into 

account the uncertainty on the lead time and the impreci-

sion on the demand, the rules may be considered as opti-

mistic lot sizing (possibilistic optimization) or pessimistic 

lot-sizing (robust optimization).     

The suggested graph could also provide a real risk as-

sessment of the consequences of possible hazards on the 

lead time, considering that the possibility that the hazard 

occurs could be known on the various periods of the 

horizon. These possible applications will be considered in 

our future works.  

References 

[1] A. Dolgui and C. Prodhon, Supply planning under 

uncertainties in MRP environments: A state of the 

art, Annual Reviews in Control, 31:269--279, 2007. 

[2] D. Peidro, J. Mula, R. Poler, and J. Verdegay, Fuzzy 

optimization for supply chain planning under 

supply, demand and process uncertainties, Fuzzy 

Sets and Systems, 160:2640--2657, 2009. 

[3] T. Liang, Fuzzy multi-objective production/ distri-

bution planning decisions with multiproduct and 

multi-time period in a supply chain, Computers & 

Industrial Engineering, 55:676--694, 2008. 

[4] T. Liang and H. Cheng, Application of fuzzy sets to 

manufacturing/distribution planning decisions with 

multi-product and multi-time period in supply 

chains, Expert Systems with Applications, 36:3367--

3377, 2009. 

[5] S. Gao-Ji and L. Yan-Kui, Fuzzy Minimum-Risk 

Material Procurement Planning Problem, Proceed-

ings of Fourth International Conference on Natural 

Computation (ICNC '08), 629--633, 2008. 

[6] J. Mula, R. Poler, and J. Garcia-Sabater, Material 

Requirement Planning with fuzzy constraints and 

fuzzy coefficients, Fuzzy Sets and Systems, 158:783-

-793, 2007. 

[7] C. Thierry and H. Fargier, The Use of Possibilistic 

Decision Theory in Manufacturing Planning and 

Control: Recent Results in Fuzzy Master Production 

Scheduling, in Scheduling under fuzziness, Physica-

Verlag, 2000. 

[8] B. Grabot, L. Geneste, G. Reynoso-Castillo, and S. 

Vérot, Integration of uncertain and imprecise orders 

in the MRP method, Journal of Intelligent Manufac-

turing, 16:215--234, 2005. 

[9] B. Roy, Robustness in operational research and 

decision aiding: A multi-faceted issue, European 

Journal of Operational Research, 200:629--638, 

2010. 

[10] J. Orlicky and G. Plossl, Orlicky's Material Re-

quirement Planning, McGraw Hill Text, 2nd Edi-

tion, 1994. 

[11] D. Dubois and H. Prade, Représentations formelles 

de l’incertain et de l’imprécis. Concepts et méthodes 

pour l’aide à la décision 1, 11--165, 2006. 

[12] R. Guillaume, C. Thierry and B. Grabot, Modelling 

of ill-known requirements and integration in produc-

tion planning, Production Planning & Control, 

2010. doi: 10.1080/09537281003800900. 

[13] R. Guillaume, C. Thierry and B. Grabot, Integration 

of ill-known requirement into a plan, 39th Interna-

tional Conference on Computer and Industrial En-

gineering (CIE39), July 6-8, Troyes, France, 2009. 

(0,2) 
(0,0,0,5) 

1 

(0,0) 
(0,0,0,0) 
0,2 

(1,2) 
(5,10,15,25) 
0,2  

(0,0) 
(0,0,0,0) 

0,2  

(1,0) 
(0,0,0,5) 
1 

(0,2) 
(5,10,15,20) 

1 

(1,2) 
(10,20,30,40) 
0,2  

(0,0) 
(0,0,0,0) 

0,2  

(1,0) 
(5,10,15,20) 
1 

(0,2) 
(5,10,15,20) 

1 

(1,0) 
(5,10,15,20) 
1 

(0,0) 
(0,0,0,0) 

0,2  

(1,0) 
(-1,-1,-1,-1) 
1  

(1,2) 
(-1,-1,-1,-1) 
0,2  

(1,2) 
(-1,-1,-1,-1) 
0,2  

(0,2) 
(-1,-1,-1,-1) 

1  

1 

0,2 

0,2 

1 

1 1 

1 

0,2 

1 

0,2 

1 

0,2 

1 

1 

1 

0,2  

1 

0,2 
 

1 

1 

679




