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Abstract  

In current literature, the degrading performances of iris 

recognition systems is put in user’s responsibility 

(Biometric Menagerie -BM), or exp lained through a va-

gue mix of t ime-related changes in biometric pattern, its 

presentation and the acquisition sensor (Template Age-

ing-TA). Actually, BM and TA are annoying symptoms 

illustrating intrinsic limitations of the statistical model 

of iris recognition. In order to avoid such limitations, a 

decisional model with 4/5 fuzzy sets is defined and 

tested here. The novelty is that among these fuzzy sets, 

two (the imposter and genuine score sets) are mutually 

exclusive and therefore, the confusion between impos-

ter and genuine scores is no longer statistical. 

Keywords : Iris recognition, b iometrics, fuzzy b iometric 

menagerie, template ageing, cointension, Turing test in 

iris recognition. 

 

1. Introduction 

For a long time before [28], one very common belief 

regarding  the fuzzy membership  and  the probability 

of membership was that they are  not  or  they  cannot 

be clearly related to each  other. However, it is illu-

strated in [28] that they came in pairs each time when 

the so called possibility/probability consistency prin-

ciple introduced by Zadeh in [34] is instantiated as 

σ−additivity axiom within the definit ion of probability. 

This is because accepting σ−additivity axiom is a way 

of  achieving a logically consistent (and  computational) 

translation between possibility, probability and fuzzy 

membership. What bounds us to this view  is the need 

to describe the reality of iris   recognition  by a unitary 

and non-self-contradictory model: an imposter compari-

son pair should never qualify as a genuine one (i.e. im-

personation should be  impossible), a genuine compari-

son pair could have a  corresponding degraded recogni-

tion score from a cause (i.e. non-self-matching is possi-

ble  from  a  cause), an  impossible  recognition event is 

0-probable  while  a  1-probable event is  certain and at 

last but not the least probability distributions of (impos-

ter and genuine) recognition scores can be translated 

easily [28] to fuzzy membership functions illustrating 

the degree of membership of each comparison pair to 

the fuzzy sets of genuine and imposter pairs. Hence, 

debating if fuzzy logic is needed or not  in  iris  recogni- 

 

tion is far less important than realizing that fuzziness is 

intrinsic in this problem at least for the fact that, so far, 

iris recognition used only partial knowledge about 

matched irides and this is the main cause for which the 

imposter and genuine scores are sometimes ambiguous-

ly confused. Increasing and refining the knowledge 

stored in the system is the right solution for avoiding 

recognition errors in fact and in principle.  
 

On the contrary, in the majority of the current litera-

ture on iris recognition, when someone puts the degrad-

ing performances of an iris recognition system in the 

responsibility of some users, we are dealing with Bio-

metric Menagerie ([5], [32], [33]), whereas when rec-

ognition failures are exp lained through a vague mix of 

time-related changes in the biometric pattern, its pres-

entation and the acquisition sensor, we are dealing with 

Template Ageing ([2]). 
 

The truth is that the users have no fault when an iris 

recognition system is not enough adapted to face the 

variability of probe acquisition. On the other hand, the 

fact that a biometric system acquires instances of a giv-

en biometric source with a certain degree of variability 

does not allow us to talk about ageing. Variability oc-

curs, in general, even in the absence of a considerable 

time-lapse, hence in the absence of any ageing process 

that would hypothetically exist. 

When a biometric recognition system is not enough 

adapted to face the variability of probe acquisition dur-

ing exp loitation, its design is to blame. Regard less what 

name we choose for the increase in recognition error 

rates (BM or TA or both), this increase is a symptom 

showing that a certain biometric system came close to 

its design limitations, a symptom that points out to the 

necessity of improving iris recognition theory and prac-

tice – a process that makes more sense than inventing 

excuses (outside logic and common sense), preserving 

design limitations and reenrolling the users over and 

over again along the time. 

Actually, the fact is both BM and TA ([2], [6]-[9], 

[13], [14], [32], [33]) are two annoying symptoms illu-

strating intrinsic limitations of the statistical model of 

iris recognition [4], [5]. When it happens, the increase 

in the recognition error rates does not need new names 

like BM or TA nor naive justifications (some users are 

somehow special – in case of BM; or biometric tem-

plates are “ageing”– in case of TA). Only the actions 

undertaken in response are important. Nothing else. Is 

the system improvable? Are the users well enrolled in-

deed? Is the false reject (FR) so unnatural when the va-
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riability that a system can handle is certainly limited? 

Isn’t the increase of the recognition error rates the right 

reason for answering these questions? We think it is, 

indeed. 

Another wrong assumption in the current literature of 

the domain is that iris recognition (IR) will progress in 

the absence of the Turing test [31], i.e. without mea-

ningful corrections brought to the iris recognition theo-

ries and practice by qualified human agents after expe-

riencing iris recognition with their own eyes and minds, 

after analyzing the differences  between how iris recog-

nition is achieved by humans and by nowadays artificial 

agents, respectively. 

On the contrary, here in this paper, as a consequence 

of analyzing a huge amount of experimental data ga-

thered during a seven years period (2008-2014) of 

working on iris recognition ([3], [12], [15]-[27]), the 

Turing test is considered of crit ical importance because 

it draws a realistic expectation regarding the level of 

performances maximally achievable by art ificial agents 

when performing iris recognition. We saw a direct con-

nection between what the logical positivist A.J. Ayer 

[1] defined as being verifiable in principle and empir i-

cally verifiable [1], respectively, and the fact that Tur-

ing [31] qualified the intelligence (of art ificial agents) 

as being both verifiable in princip le (through the proce-

dure that we now refer as the Turing test) and also em-

pirically verifiable (when and if the artificial agent 

passes the Turing test successfully). In short, the artifi-

cial intelligence is verifiable and so should be the intel-

ligence incorporated in any state of the art biometric iris 

recognition system. The main coordinates used for 

making here an objective comparative analysis on the 

performance of different art ificial agents in achieving a 

given goal in relation to the performance of a qualified 

human agent in achieving the same goal are the follow-

ing ones: logic, intelligence (both incorporated in Tur-

ing Test), relevance maximization and error minimiza-

tion by cointension.  

 

2. Comparison to the related works 

There are 4 necessary prerequisite lectures to the 

present paper, each of them related up to a certain level 

to the new approach proposed here: [25] and [26] de-

scribe the formal logic underlying the current develop-

ment, [23] introduced the concepts of evolutionary iris 

recognition systems and evolutionary digital identities 

and illustrated their use toward improving iris recogni-

tion performances, whereas [28] clarified the relation 

between possibility, probability and fuzzy membership. 

Fig.3-5 from [23] present our previous performances in 

training an Intelligent Iris Verifier System. The key 

points there are the artificial network (ANN) structure 

used in the process and the ANN Based Evolutionary 

Intelligent Iris Verifier (Section 3.8 in [23]). The same 

basic design is used here with the only difference that, 

in what fo llows here, the goal is to achieve a partit ion-

ing of the comparisons in four classes. Three of them 

are illustrated from left to right in Fig.1.a through rec-

ognition score histograms, as follows:  

 Strong (and True) Imposter Pairs and Scores, ab-

breviated SIP/SIS (illustrated as the leftmost his-

togram in Fig.1.a) are those generated by honest 

users when they post a true claim in the system, 

regardless if it is a positive (or negative) positive 

claim - I’m (or I’m not) X. 

 Weak (Degenerated) Imposter pairs and scores, 

denoted WIP/WIS (and illustrated by the histo-

gram marked with gray disks in Fig.1.a) are those 

generated by dishonest users when they post false 

positive claims on each of the other identities 

within the system. Due to their source these pairs 

and scores are also Fake Genuine ones. 

 Strong Genuine pairs and scores (see the 

rightmost histogram in Fg.1.a) are those corres-

ponding to all honest positive claims made by the 

users enrolled in  the system.  

 

These three classes of comparison pairs and matching 

scores described above are defined and taken in consid-

eration during the training stage of the IIV (Intelligent 

Iris Verifier system, [23]) while the fourth one – which 

is that identifying Weak Genuine Pairs/Scores and fur-

ther denoted WGP/W GS (see the left  tail of the 

rightmost histogram in Fig.1.b) – comes into existence 

and into view only during the testing phase, as a con-

firmation of the fact that the learning converged to a 

memory configuration which is able to have an accurate 

artificial perception fo r the distinction between the s i-

milarity produced by chance (this is the matching inside 

the category of Fake Genuine Pairs) and the dissimilar i-

ty produced by a cause (this is the matching corres-

ponding to genuine comparisons when they are affected 

by recognition noises such as the changes in posture, 

orientation, illumination, occlusion and pupil extent). 

WGS is witnessing that non-matching between the 

members of pair that otherwise is a genuine one is al-

ways happening for a specific cause and is weaker than 

the non-matching between the members of fake genuine 

pairs corresponding to (dishonest and) actively assumed 

impersonation attempts. 

As an objective point of view on the matter of TA, 

the authors of IREX VI [10] said that, accordingly to 

the correct definition of ageing, while using two large 

operational datasets, they found “no evidence of a 

widespread iris ageing effect. Specifically, the popula-

tion statistics (mean and variance) are constant over pe-

riods of up to nine years”. A lot of factors, other than 

some hypothetical big enough and irreversible anatomi-

cal changes in the iris texture, are known to be causal 

for the increase in recognition error rates during the ex-

ploitation of an iris recognition system. Therefore, the 

attempt to define “ageing” as the “increase in recogni-

tion error rate with increased time since enrollment” [9] 

is not appropriate. We subscribe in support of this opi-

nion which is consistent with our experience. Moreover, 

we point out to the fact that for an iris recognit ion 

theory (and practice), the moment when Template Age-

ing or Biometric Menagerie phenomenon is valid and 

consistently supported by experimental data is the mo-

ment from which that theory is certified as being self-

contradictory. 
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3. Formal fuzzy logic framework for fuzzy model-

ing of iris recognition 

The vocabulary of the formal fuzzy logic framework 

that underlies this paper consists in: 

 

a) the set of fuzzy values of truth (i.e. scores), 

 

},255,0|255/{1:255/1:0  kkS  (1) 

 

used to quantify the degree of truth associated to an 

identity claim posted by the users in the biometric sys-

tem;  

b) the set of 50 users (each unique eye within the da-

tabase [35] is considered an unique user of an iris 

recognition system), 

 

},50,1|{  kuU k  (2) 

 

c) the set of 1000 images available in [35] for each 

user (20 per user, where an unique user means an 

unique eye), 
 

},1000,1|{  kimgIMG k  (3) 

 

d) the set of 512x32 unwrapped normalized uint8 iris 

segments extracted through segmentation proce-

dure for the users in (2), 

 

},1000,1|{  kuiUI k  (4) 

 

e) the set of occlusion masks computed for all norma-

lized iris segments from (4): 
 

},1000,1|{  komOM k  (5) 

 

f) the set of 512x32 binary iris codes extracted for the 

users in (2) using a Log-Gabor encoder, 
 

},1000,1;})1,0({{ 32512   kMicIC k  (6) 

 

g) the comparison pairs, i.e. the pairs of iris codes cor-

responding to the comparisons that can be made us-

ing all 1000 images within the database [35], 
 

},1000,1,|),({  jkiciccpCP jkp  (7) 

 

h) the partitioning of CP in  genuine and imposter 

comparison pairs: 
 

,ICPGCPCP   (8) 
 

i) the set of digital identities corresponding to and 

trained for the enrolled users mentioned in (2),  
 

},50,1);(|{ 32512   kRMdidiDI kk  (9) 

 

j) the iris codes used to train the digital identities (for 

each user, the first five iris codes extracted for its 

first five images within the database [35] are used 

for training the digital identities) i.e. the learning 

(data)set of iris codes, further denoted 

 

},50,1;5,1|{ )1(20   kpicLDS pk  (10) 

 

k) the test (data)set of iris codes used to deliver expe-

rimental ev idence for the quality of trained digital 

identities, further denoted 

 

},50,1;20,6|{ )1(20   kpicTDS pk  (11) 

 

l) the set of recognition function candidates (RFC) 

and the set of processing methods candidates 

(PMC), the possible recognition functions and a 

processing methods being all considered legal fi-

nite assemblies of strings found within a given dic-

tionary of functions D, i.e. elements of the free 

monoid on D (further referred to as D*): 

 

,, ** DPMCDRFC   (12) 

 

m) a dictionary of functions denoted D, from which all 

processing procedures involved in the system can 

pick their (sub-)components during their adaptation 

toward better performing their tasks;  

n) the CCBL theory – a sound, complete, Computa-

tional and Cognitive formalizat ion of Binary Logic 

introduced in [25] as a way of reasoning with bi-

nary valued propositional variables describing the 

process of iris recognition; 

o) the Cognitive Dialect – an extension of CCBL in -

troduced in [26], which supports translating opti-

mization criteria common in iris recognition back 

and forth to SQL and natural language, on the one 

hand, and endows iris recognition system with the 

sound conversational capacities of a cognitive in -

telligent agent (CIA, [26]) Build ing a formal model 

of iris recognition as an extension of a CIA ensures 

that the system will inherit two critical properties 

of CIA model: firstly, it will be able to accept all 

well-formed recognition queries and secondly, it 

will be able to deliver only true assertions in re-

sponse. If the second condition would not be satis-

fied, the system could fail very often during a Tur-

ing test and consequently its degree of (art ificial) 

intelligence would be proven as being very limited, 

indeed. By design, such a system cannot formulate 

false assertions and specifically, affirmations that 

contradicts the mass of experimental data.  

p) a set of well-defined state attributes of the system 

(WDSA). It contains, for example, the definition of 

the “consistency” (ability to deliver only true an-

swers) and “responsiveness” (capability of receiv -

ing, parsing and understanding queries and formu-

lating answers) attributes of the system. 

 

Def. 1: The system is recognizing its users consistently 

if and only if, it can prove on its data a consistent un-

derstanding of iris  recognition, i.e. among the data 

stored in the system there is no counterexample to cor-

1440



rect recognition (there is no example of impersonation), 

i.e. if and only if: 

 

)),(min())(max( GCPScoreICPScore   (13) 

 

Usually, it is believed that the membership to GCP of 

a given comparison pair is guaranteed when the pair is 

formed with codes generated for the same eye. This is 

far for being true: extended occlusions, different illumi-

nation and different pupil dilation are regular causes for 

disqualifying a pair that, otherwise, should be expected 

to belong in GCP. As a source of FR this mechanism is 

totally distinct from accidental matching of two iris 

templates expected to belong in ICP.  

If consistency is a required attribute of the system, it 

follows that the entire comparison space is partitioned 

into two distinct sub-parts: assertion set (AS, that part 

of CP allowing the system to formulate only true asser-

tions) and query set (QS, that part of CP allowing the 

system to be responsive). 

 

Def. 2: A strong theory of iris recognition is a consistent 

one that also admits a large safety band [timp, tgen] be-

tween the fuzzy sets of imposter and genuine simila rity 

scores, i.e.: 

 

)),(min())(max( GCPSttICPS genimp   (14) 

 

In such cases (14), the two d istributions of imposter and 

genuine scores are situated at a comfortable distance 

from each other. 

On the one hand, the consistency of the system can 

be proved only on the AS, and, on the other, the consis-

tent enrolment is the only guarantee for system consis-

tency. Therefore, the assertion set AS is the sub-part of 

CP formed with data provided by correctly enrolled us-

ers. Hence, the formulae (13) and (14) should be cons i-

dered on the assertion set only. 

 

Def. 3: The system is logically inconsistent if and only 

if, there are similarity scores for the data stored in the 

system that supports (that can be used in giving exa m-

ples of) impersonation: 
 

)),(min())(max( GCPScoreICPScore   (15) 

 

In such a case, the two distributions of imposter and ge-

nuine scores are overlapped and so are the fuzzy sets D 

and I (corresponding to the fuzzy linguistic labels 

“f-Different” and “f-Identical”) that have their member-

ship functions defined by these two distributions, re-

spectively (the fact that probability distribution func-

tions came in pairs with fuzzy membership functions is 

illustrated in [28]). 

This vocabulary defined above, in the previous sec-

tion, from (a) to (p), allows us to express a given func-

tionality of the system computationally, i.e. with formal 

correctness, in a manner that a computer could parse 

and understand. For example, a prototype recognition 

function that illustrates the statistical paradigm of iris 

recognition (proposed by Daugman, [4]) is the follow-

ing: 

),),,((),( ticicScoreDecisionicicR pkpk   (16) 

 

where R is the recognition function expressed as a bio-

metric decision taken accordingly to the relative pos i-

tion of the Hamming score (or other type of score) 

computed for the two binary iris codes ick and icp in re-

lation with a recognition threshold t. 

A surprising aspect is that the formula (16) is not 

quite an exp licit one. In fact, it contains a priori know-

ledge encoded as values (t, for example) and argument 

position (in the case of the two iris codes). Knowing / 

choosing the threshold t, iris codes dimension and their 

encoding procedure is a matter of analyzing what hap-

pens with the scores for a given dataset of images for 

which iris codes of different dimensions are extracted 

and compared. 

 

),,,( CMPCRFLDSholdInferThrest   (17) 

 
where LDS, CRF and CPM are the learning dataset, the 

set of candidate recognition functions and the set of 

candidate processing methods - possibly those specified 

in (10) and (12), or other ones, if required.  

Hence, a learning dataset and a training stage is 

needed even in the statistical paradigm of iris recogni-

tion in order to design and calibrate the system, only 

that it is a human agent who train himself in order to 

establish that a priori knowledge which is implicitly 

present in the formula (16). Therefore, it is logica l to 

assume that an artificial agent whose goal is to recog-

nize irides has the right to be trained or to train itself.  

As said above, another piece of a priori knowledge 

present in (16) is the fact that the position of binary iris 

codes as arguments of score function really matters, i.e . 

the arguments of score function do not commute. One 

of them, let us say the first one, is there as a candidate 

iris code extracted for a current user that interacts with 

the system at a g iven time, 

 

),))(

(

(

rCurrentUsegeAcquireIma

omsSegmentFrExtractIri

omEncodeIcFrick 

 (18) 

 
whereas the other one is an enrolled iris code: 

 

),)))(

(Im

(

(

UseredWellEnroll

ageFromdGetEnrolle

omsSegmentFrExtractIri

omEncodeIcFric p 

 (19) 

 

In the worst case scenario, the two iris codes corres-

pond to eye images taken in very different conditions 

(position, distance, focus, illumination, sensor, pupil 

dilation, iris scale, occlusions, etc.) and segmented us-

ing different segmentation tools. Of course that a good 

strategy is to have good quality images stored at 

enrollment, not otherwise (it is eas ier and more accurate 

for matching to produce altered images starting from 

good quality source images and it is harder and often 
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inefficient trying to reconstruct a good quality image 

from an altered one). In our experience, when each user 

is enrolled with a single eye image, a pupil dilation of 

around 25%-30%, good lightening, focus, distance and 

posture conditions, as well as the lack of occlusions are 

all advisable in order to ensure that the users are well 

enrolled, or else, adverse effects should be expected in 

terms of rapid ly increasing error rates during explo ita-

tion. For example, enrolling users with images having 

hardly occluded irides and dilated pupils could lead at 

least to subsequent radial and angular alignment errors, 

which are known to affect recognition performance 

dramat ically. 
 

The enrolled iris codes icp from (16) and (19) cannot 

“age” simply because they are constants. The iris tex-

ture itself is documented to be (enough) stable in time 

(at least for periods of 9 years, [10]), hence an increase 

in recognition error rates could not originate elsewhere 

than in the difference between the data springs (18) and 

(19) that throw iris codes (data) in the recognition func-

tion (16). Among these differences, the occlusions 

(hair, lights, eyelids, eyelashes) could play an important 

role if their extent onto the iris is notable, of course, 

case in which the recognition function should take them 

into account: 

 

),),,,,((),( tomicomicSDicicR ppkkpk   (20) 

 
Still, masking the iris segments will not avoid the 

variations induced on the unoccluded part of iris by the 

differences between the data springs (18) and (19). 

Hence, the inherent variability of probe acquisition is 

not solved by default, regardless the fact that the irides 

could be occluded or not. 

Since the variability of probe acquisition proved to 

be inherent during exp loitation, the logical thing to do 

is an attempt to include some degree of variability in 

the enrollment data, case in which some iris codes are 

extracted for different enrolled images of the same iris  

and stored in the system as a part of an enrolled digital 

identity [17], which follows to be taken into account by 

the recognition function: 

 

),),,((),( tdiicScoreDecisionicicR pkpk   (21) 

 
The matching score in this case could be the mean-

deviation similarity score [17] or a different and suita-

ble one, where a suitable matching score function is one 

that makes iris recognition possible either in a statistical 

[4] or in a logically consistent approach of iris recogni-

tion [20], [21]. 

 

4. Organizing the experimental dataset 

All the images within the database [35] are segmented 

using the second variant of Circu lar Fuzzy Iris Segmen-

tation (CFIS2) previously introduced in [19] and en-

coded as 512×32 binary iris codes using the single-

scale, 1D (angular) Log-Gabor iris texture binary en-

coder that may be downloaded from [18] - if the repli-

cation in Matlab-32 is intended. Generic algorithms 

“RLE-FKMQ Based Pupil Finder” - [15], “Circular 

Fuzzy Iris Segmentation” - [15], “Fast Limbic Boun-

dary Detector” - [19], and the classical formula (1) from 

[19] may be used for implementing the two utilities in 

other programming languages.  

The data collection (1000 eye images for 50 eyes, 20 

images for each eye) is split into two parts: from each 

set of 20 images representing an eye, 5 are reserved for 

and included in the training dataset, whereas the other 

15 are assigned to the test dataset. Hence, there are 250 

eye images and the corresponding 250 iris codes in the 

learning dataset and 750 in the test dataset. 

 

5. Experimental results 

The comparison between the binary iris codes is made 

by using trained digital identities [23] evolved for en-

suring simultaneously ternary classification of all co m-

parison pairs. In this scenario (see Fig. 1), during the 

training stage, a comparison pair could  not pass (could 

not be accepted by the system) as a tru ly genuine one if:  
 

 it is not scored in the interval [0.9, 1];  

 the attempts of impersonating all the other identi-

ties enrolled in the system are not simulated or 

the similarity scores corresponding to these simu-

lated attempts are found outside the interval [0.1, 

0.45]. 

 the honest denials (I’m not X) o f all the other 

identities enrolled in the system are not simulated 

or the corresponding similarity scores are found 

outside the interval [0.02, 0.14].  
 

The same restrictions are imposed during testing with 

the exception of the genuine scores, which are allowed 

to slightly decay in quality (toward 0.5, - see Fig.1.b). 

The experimental results synthetized in Fig.1 i llu-

strate a mature stage of an iris recognition theory and 

practice that by its quality is situated very far beyond 

and ahead from whatever is considered these days to be 

a state of the art (statistical) iris recognition approach 

simply because in our result there is no statistically ex-

pressed confusion (overlap / battle) between the true 

imposter scores (the leftmost histogram in Fig.1.a-c) 

and true genuine scores (the rightmost histogram in 

Fig.1.a-c). Train ing and hosting digital identities within 

the recognition system ensure a critical increase in the 

knowledge that the system has and therefore it becomes 

able to perceive better the distinction between the ge-

nuine and imposter comparison pairs (and scores). 

Due to this improved artificial perception of the sepa-

ration between the two main classes of comparison 

pairs and scores, the system is able to support 2-valued, 

3-valued and 4-valued models of iris recognition (see 

Fig.1.b).  

A 5-valued model of iris recognition can be easily 

derived and proposed by naming the comparison pairs 

and the corresponding claims illustrated in Fig.1.b, 

from left to right, as follows: 
 

 Strong/true imposters (Fig.1.b, square markers),  
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Fig. 1 Testing the trained IIV system: (a) on learning dataset; 

(b) on test dataset; (c) on the entire dataset 

 

 Offenders (weak imposters that actively post dis-

honest identity claims in the system - Fig.1.b, the 

round markers situated in the left-side of 0.4), 

 Undecided / uncertain cases (Fig.1.b, round and 

diamond markers situated inside (0.4 , 0.6) inter-

val), 

 Weak / degenerated genuine comparison pairs 

and scores (Fig.1.b, d iamond markers situated in-

side [0.6 – 0.88] interval),  

 Strong genuine comparison pairs and scores 

(Fig.1.b, diamond markers situated on the right 

side of 0.88 

 

The exp licit expressions of recognition function and 

the detailed numerical procedure for training the digital 

identities used to generate the results illustrated in 

Fig.1.a cannot be published prior to their exploitation in 

industry. Still, the existence of such objects possessing 

such good properties can be eas ily exemplified starting 

with one of the most basic and simple neural model, 

namely that of the Perceptron - initially proposed by 

Rosenblatt ([29], [30]) and slightly adapted by us for 

enabling it to achieve not just binary crisp classification 

but multiclass fuzzy classification. On this matter the 

main question for us was why the perceptron is able to 

encode the separation in (only) two classes? The answer 

was proven to be surprisingly simple, namely because it 

has only two output values, hence it is able to support 

only the artificial perception of the separation between 

two half-hyperspaces in which the space is divided by 

the hyperplane corresponding to the augmented Percep-

tron memory (the ensemble formed with the synaptic 

weights and the threshold). Endowing the Perceptron to 

have multip le output values allows it to encode the 

fuzzy membership to more than two classes (as illu-

strated below for a 3-D example) with the only restric-

tion that the chunks of space between which the Percep-

tron is able to discern are defined by hyperplanes paral-

lel to that defined by its augmented memory. The num-

ber of classes that can be perceived by a Perceptron 

equals the number of possible distinct output values 

configured by the programmer. Art ificial perception of 

the fuzzy membership to n disjoint classes is done by 

mapping the classes into a 2
n
-valued Boolean algebra 

generated by the corresponding disjoint activation in-

tervals found on the direction of the normal to the 

hyperplane defined by its augmented memory.  
 

In order to illustrate that, the first step was to take 

distance from those classical neural models in which a 

neuron is unable to have a nuanced fire function (such 

as the model proposed in [11]). For example, if for the 

Perceptron basic neuron it is assumed that the output 

values are integer values obtained by rounding its inter-

nal activation, then the perceptron is able to count and 

encode the membership to as many classes as desired. 

In order to keep the graphical representations as simple 

as possible, the following model can be cons idered: 

 

 The space of examples X is R
3;

 

 Synaptic memory is W = (1, 0, 0)
T
;  

 The threshold θ is zero;  

 The fire function is: 

 

),()( XWroundXF T  (22) 
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Fig. 2 A perceptron with a nuanced 3-valued firing function 
able to recognize three slices of R3 space and to fire with the 

class label (-1, 0 or 1) and also with the membership degree 

indicated by the triangular membership functions plotted in 

gradient color.  

 

In these conditions the neuron encodes the separation 

between slices of R
3
 delimited by planes having the ab-

scise as normal direction and sectioning the abscise at 

points k+0.5, with k in Z;  

For simplicity, the space of example points is further 

restricted to the space slice delimited between the 

planes intersecting abscissa axis at -1.5 and 1.5, respec-

tively, whereas the fire function is no longer a scalar 

function but a vector-valued function: 

 

),)),((),(()(2 XWXFTXFXF T  (23) 

 

where T is the triangular fuzzy membership function of 

the fuzzy interval of unitary length centered in F(X) and 

situated on the abscissa axis, as illustrated in Fig.2. 

Such a Perceptron model is not only able to encode the 

separation between the slices of spaces corresponding 

to 3 fuzzy intervals within R
3
 but it is also able to ex-

press the degree of fuzzy membership of examples X to 

the three classes (see Fig.2). The color gradient applied 

when drawing the triangular membership functions 

shows the transition of the degree of membership be-

tween two neighbor classes. Therefore, closer the acti-

vation value of an example vector to the activation val-

ues corresponding to the classes labeled numerically as 

(-1, 0, 1) and visually (Red, Green Blue), stronger the 

degree of membership to those classes is.  

The mechanism described in this example is the same 

by which the digital identities are able to recognize 

multiclass fuzzy classification with the only important 

difference that the membership functions that are map-

ping comparison pairs to the classes of strong impos-

ters, weak imposters, undecided, weak genuine and 

strong genuine are imposed by experimental data, not 

otherwise. 

 

6. Conclusion 

Proposed fuzzy 5-valued decisional model of iris rec-

ognition (Fig. 1. b) illustrates that exceptional unprece-

dented recognition results can be obtained when using 

carefully and properly acquired eye image databases 

such as [35], the quality being a requirement for consis-

tent enrolment. As it is expected, the variability is 

present at the genuine comparisons with iris codes ob-

tained from iris images that are different enough than 

those stored in system for each enro lled eye / identity. 
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