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Abstract 
 

We consider the markdown optimization problem faced by the leading 
apparel retail chain. Because of substitution among products the markdown 
policy of one product affects the sales of other products. Therefore, 
markdown policies for product groups having a significant crossprice 
elasticity among each other should be jointly determined. Since the state 
space of the problem is very huge, we use Approximate Dynamic 
Programming. Finally, we provide insights on the behavior of how each 
product price affects the markdown policy.  
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1. Introduction 

Textile industry is an important part of Turkish 
economy. One of the factors that will have an 
impact on competitiveness of our textile industry in 
global markets is its ability to use information 
technology based decision support and management 
systems.  
Apparel industry is one of the main driver of 
Turkish textile industry. Given the fact that apparel 
manufacturers tend to become retailers at the same 
time, (e.g. L.C. Waikiki, Mavi Jeans etc.) the 
performance of our apparel industry will depend 
also on how well these companies are competing 
against the global retailers. Success of national 
apparel retailers will depend on whether they can 
make good use of the data generated by information 
technologies in their decision making processes. 
Retail systems cover two main areas of 
management, namely supply chain and revenue 
management, where critical decisions are made. 
Determining the most appropriate prices over time 
to maximize profits is one essential component of 
revenue management, whereas capacity control is 
the other. In retail revenue management, the pricing 
control is the main tool to manage the demand. 
The ever increasingly shortening selling seasons for 
fashion (apparel) products pressure the firms to 
eliminate or minimize distressed inventories to 
maximize revenues. One of the frequently used 

mechanisms to achieve this goal is markdowns. 
Markdowns are permanent price reductions used to 
clear inventory before products become obsolete. 
To the best of our knowledge, prior work on 
markdown optimization has focused only on single-
product markdowns assuming that each product has 
an independent demand process. However, we 
believe that it is crucially important to consider the 
correlations and the interactions among products in 
markdown optimization. Thus, the main focus of 
our study is to develop methodologies for multi-
product markdowns. Since products typically 
exhibit substitution, complementarity effects, and 
cross price elasticity, markdown policies for these 
products should be jointly determined.  
Markdowns in apparel retailing industry were 
started to use firstly in 1950s in USA but then they 
weren’t used broadly. After 1960s, their frequencies 
and discount rates increased. 6% average discount 
rate in 1967 increased to 28% in 1997 in apparel 
stores1. It is expected to increase for the coming 
years since 1) consumers can reach the stores in 
different places easily 2) the outlet store number 
increases 3) consumers want large product 
assortment. Parallel to this increase, interest in 
markdown optimization problems was accelerated. 
These prior studies on markdown optimization have 
focused only on single product markdowns. 
However, consideration of multi-product 
optimization may lead to significant revenue 
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increase since there may be significant crossprice 
elasticities among products. Cross-price elasticity 
measures the percent change in one product’s 
demand when the price of an other products is 
increased. It may be either positive or negative 
depending on whether the demand of a product 
increases or decreases when the price of an other 
product goes up. If the cross-price elasticity 
between products A and B is positive, it means that 
product A is a substitute of product B, since an 
increase in product B’s price causes a demand 
increase in product A’s demand. On the other hand, 
if the cross-price elasticity between products A and 
B is negative, then products A and B complement 
each other since a decrease in product A demand 
occurs due to an increase in product B price. 
According to a study made in USA, 12% of the 
retailers use markdown optimization and 53% of 
the retailers plan to use such a system in 2 years2. 
The properties of the products such a markdown 
application applied are unrenewable orders in the 
same season because of long manufacturing lead 
times and decreasing product value. Because of this 
property we select end of season apparel products 
that are unrenewable. This problem is more 
rampant in the fashion and electronic retail industry 
where products get outdated quickly. The aim in 
markdown optimization is to minimize the 
inventory levels at the end of the season to 
maximize the revenue by decreasing prices.   
The first studies about dynamic pricing are in 
marketing area in the literature. They aimed which 
dynamic pricing strategies are used in which 
conditions but they didn’t consider operational 
dynamic pricing policies that will be applied in 
practice. In retail industry, Lazear studied dynamic 
pricing problem firstly3. In this study, N  
customers come to the store according to a known 
distribution and reservation price is known, and 
they appraise the product a low price with p  

probability. Lazear shows the effects of reservation 
price on price3. Pashigian adapts the model in 
Lazear and offers analytical and experimental 
results about the reason of markdowns is increasing 
product assortment4. Since the aim of these studies 
is understanding pricing strategies briefly, they are 
far away from being a decision tool used in pricing. 
All models in the literature focus on the single 
product markdowns and they didn’t consider the 
correlations and substitution effects between the 
products.  Rajan et al. analyse the optimal inventory 
levels and policies under deterministic demand 
while product value decreases by the time5. Another 
study observes the markdown under deterministic 
demand is Smith and Achabal’s study6. They 
determine the optimal inventory levels and optimal 
prices by developing a nonlinear mathematical 
model. Demand depends on price, inventory levels 
and seasonal variations. Gallego and Van Ryzin 
develop a continous time optimal pricing model in 

which demand is described by a Poisson process or 
is deterministic and they determine the optimal 
prices, moreover they develop a heuristic for 
discrete prices7. Feng and Gallego develop a 
continous time Markov Process formulation with 
stochastic demand that determines the optimal 
timing and duration of a single price reduction8. 
Feng and Xiao adapt the problem in Feng and 
Gallego to the more than two prices9. Bitran et al. 
consider the one product markdown problem in 
more than one store and model it by using dynamic 
programming, but in practice, since the state space 
is large, the solutions of these problems are 
impossible by using classical dynamic 
programming. Because of this, they develop a 
heuristic and test with the retailing sector real 
data10. Mantrala and Rao developed a stochastic 
dynamic-programming model-based decision-
support system, specifically to help retail-store 
buyers of fashion goods decide on optimal 
merchandise order quantities and markdown prices. 
This decision support system uses point of sales 
data to determine optimal initial inventory levels 
and prices11. However they didn’t consider the 
correlations and substitution effects among the 
products, they only handle one product case and 
determine its initial inventory level. Su develops a 
model of dynamic pricing but their model captures 
both markups and markdowns for a single product. 
Since the customer population is heterogenous, 
time to buy for the customers is important. So he 
finds different policies for each cosumer group12. 
Reiner and Natter develop markdown pricing 
strategies on Austrian mobile phone market. They 
consider different markdown strategies on two 
different consumer groups13. Elmaghraby and 
Keskinocak analyze the optimal design of a 
markdown pricing mechanism with preannounced 
prices and their suitability in the presence of 
strategic buyers with multiunit demands14. All these 
studies don’t involve the substitution effects among 
the products. The studies involve more than one 
product in revenue management literature consider 
the products that share the same resource in 
production or delivery of the products. However, 
we know that it is crucially important to consider 
the correlations and substitution effects between the 
products in markdown optimization. The 
substitution possibilities in retailing can be 
classified into three groups15. We consider the 
fourth one, price-based substitution: Consumer 
comes to the store to buy a certain product that she 
needs but she sees a substitute product that is 
cheaper than that product and decides to purchase 
the cheaper one. To the best of our knowledge, such 
a price-based substitution has not been studied. 
Therefore the contribution of this paper is to 
consider the price-based substitution for a given 
substitution product group for multiple periods.  
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In this study we use point of sales data gathered 
from 250 stores in apparel retailing industry and 
analyse data by using SAS software package to 
determine the product groups that have substitution 
effects. Then the cross price elasticities of the 
products are observed for the same product group.  
Consumers face trade-offs in their purchase 
decisions, since their income is limited and choices 
are numerous. In order to make choices, consumers 
must combine budget constraints (what they can 
afford), and preferences (what they would like to 
consume). A budget contraint, means what a 
consumer can purchase is constrained by income. 
The slope of the budget constraint measures the rate 
at which one consumer can trade off one good for 
another, and the relative prices of the two goods. 
Budget constraints are determined by both the 
income of the consumers, and the relative prices. If 
a consumer equally prefers two product bundles, 
then the consumer is indifferent between the two 
bundles. The consumer will get the same level of 
satisfaction (utility) from either bundles. Therefore 
consumer behaviors are important to analyse the 
substitution effects and they should be considered 
in the model. Customer behavior modeling has been 
gaining increasing attention in the operations 
management community16. We use Multinomial 
Logit Model which is one of the discrete choice 
models and used mostly in marketing literatures to 
estimate the substitute demand. 
In the apparel industry since we can have many 
products that may substitute each other,  the 
markdown policy of one product affects the sales of 
other products. Therefore, markdown policies for 
product groups should be jointly determined. But 
this makes the markdown optimization problem 
hard. Since the states will be multidimensional, 
state space will be large and as a result solving such 
a problem by classical dynamic programming 
methods will be impossible. To overcome this 
problem, Approximate Dynamic Programming is 
used. We use Sarsa Algorithm which is a policy 
iteration method.  
In the next section, consumer choice model and 
demand estimation take place. Then we mention 
about the Approximate Dynamic Programming 
(ADP) model. In section 4, numerical examples 
follow this section and finally conclusion part is 
considered. 

2. Model 

In this section, we will first discuss the assumptions 
of the consumer choice model considered in this 
paper. Then, the consumer choice process will be 
considered in detail and the purchase probabilities 
will be derived for the MNL model. We assume 
that we have a homogenous consumer group that 
the characteristics (such as income level, age, etc.) 
are thought as similar. Their purchase behaviour 
can change only with respect to the different price 

levels. The data typically available for estimating 
the parameters of a demand model include the sales 
for each product-week, prices for related weeks and 
the inventory of the products are obtained from an 
apparel company. Since we observe point of sales 
data, we only know the consumers that made 
transactions and don’t know their characteristics. 
Hence, we think that the target consumer group is 
homogenous.  

2.1. Demand Estimation 

We analyse the sales data by using data mining 
algorithms to form the multi-product groups that 
are substitutable. Firstly, 14,558 units of different 
models are observed from the sales data. 
Association Mining Algorithm is used to form the 
multi-product groups, but before that basic products 
whose sales aren’t affected from the seasonality are 
extracted from the observation. Because we can not 
apply markdown to these products. After filtering 
the products, the products that markdown will be 
applied are decided by talking with the company 
officials. In this approximation, we perform the 
following steps: 
(a) Products are ordered in descending order 
according to the number of sales and started from 
the highest number to form the groups.  
(b) One product that has the highest positive 
relations with the other products in the same 
product group is chosen.  
(c) For the same product, negative relations are 
chosen from the remaining products. Therefore, the 
product has both positive (complementarity) and 
negative (substitution) relations.  
(d) The (b) and (c) steps are repeated until all rules 
are extracted.  
Firstly, we find a subset of 55 products from 600 
products that markdown can be applied and we 
decide on the products which are in the same group 
by the replication of the steps. The demand of each 
product in the selected product groups is estimated 
by using the regression model. At last, we solve 
both the deterministic model and stochastic model 
to compare the results by using the same demand 
estimation. The deterministic solution is found by 
using GAMS software and the obtained optimal 
demand is used as a sample path in stochastic 
model to make comparison. 
Demand function itD  for each product i  at time t 

depends on the price of the observed product, the 
other products’ prices in the same group and the 
time.  

0 1 2 3Price Priceit i i it k kt i i t
k i

D tβ β β β ε
≠

= + + + +∑       

                                                                             (1) 

β  is the coefficient of the attributes (prices, time) 

of product i . Error term ε  is normally distributed 
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with mean µ  and standard deviation σ . Very 

often, a change in the price of one product leads to 
a change in the demand of another, is called cross-
price elasticity. Cross price elasticity of demand 
estimation is modelled by using discrete choice 
models. We use Multinomial Logit Model (MNL) 
which is very widely used in practical 
applications17.  

2.1.1. Multinomial Logit Model 

The Multinomial Logit (MNL) model is a utility-
based model that is commonly used in economics 
and marketing literatures. Each customer visiting 
the store associates a utility ju  with each option 

j J∈ . The utility is decomposed into two parts, the 

deterministic component of the utility jv also 

known as representative utility and a random 
component jε  . 

j j ju v ε= +                                                    (2)                                    

The random component is modeled as a Gumbel 
random variable. Also known as Double 
Exponential or Extreme value Type-I, it is 
characterized by the distribution  

{ } ( )Pr exp exp ( / ))X ε ε µ γ≤ = − − + where γ  is 

Euler’s constant (0.57722). Its mean is zero, and 

variance is 2 2 / 6µ π . A higher µ  implies a higher 

degree of heterogeneity among the customers. The 
realizations of jε  are independent across 

consumers. Therefore, while each consumer has the 
same expected utility for each product, realized 
utility may be different. This can be due to the 
heterogeneity of preferences across customers or 
unobservable factors in the utility of the product to 
the individual. An individual chooses the product 
with the highest utility among the set of available 
choices. Hence, the probability that an individual 
chooses product j J∈ at time t  is 

Vjt

jt Vit

i J

e
P

e
∈

=
∑

.                                                         (3) 

where the deterministic part of utility jtv is 

0 1 2 3jt j j jt i it j j
i j

v Price Price tβ β β β
≠

= + + +∑           (4) 

We assumed that the utility of a product is 
expressed by its price, the others’ prices and time. 
Generally, when the price of the product increases, 
its utility decreases and while the others’ prices 
decrease, its utility increases since it is thought that 
the purchase probabilities increase according to the 
MNL Model. Then the logit probability becomes 

0 1 2 3

Pr0 1 2 3

Price Price tj j jt n nt j j
n j

jt Price ice ti i it n nt i i
n i

i J

e
P

e

β β β β

β β β β

+ + +
≠

+ + +
≠

∈

∑

=
∑

∑
                      (5) 

One of our key objectives here is to test the 
sensitivities of  “price” and “time” to observe the 
elasticities of the products. We can calculate the 
utility jtv from sales data. Firstly, we compute jtpr  

from the sales data which is the ratio of number of 
customers that bought product j  to the number of 

the customers that bought any product in that multi-
product group on week t . This can be considered 
as the demand share of product j  over all products 

jt
jt

it
i

D
pr

D
=
∑

              (6) 

The utility of a product (7) is expressed as the 
difference between the market share of that product 

and the average of all market tpr 18. That is if 

market share of a product is higher than the average 
market share of all products, that product will have 
more utility.  

0 1

2

( )

( )

β β

β β
≠

− = = + − +

− +∑
jt jt j j jtt

i it timej
i j

pr pr v prc prc

prc prc
           (7) 

where prc  denotes the price of the product in the 

sales data and prc  denotes the average price of the 

multi-product group.  

2.1.2. Substitution Effect 

When we develop an attribute of a product, its 
choice probability usually increases if it satisfies 
the consumers. Because of this, we consider the 
consumer choice behaviors. It is also important to 
consider their characteristics such as their income 
level, real necessity or the product characteristics 
such as their color, type, etc. But it will more 
complex to determine them when we consider the 
correlations between the products and it is very 
hard to collect data individually. To provide the 
simplicity, we assume that the consumers are 
homogenous and demands are affected only from 
the prices and the time. Moreover, we observe the 
price-based and time-based substitution.  
Since choice probabilities are a function of 
observed variables, it is often useful to know the 
extent to which these probabilities change in 
response to a change in some observed factor. The 
change in the probability of purchasing alternative 
i  given a change in an observed factor, price or 
time, entering the representative utility of that 
alternative (and holding the representative utility of 
other alternatives constant) is 
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2

2

,

( / )

Price Price

Price Price( )

( )
Price

(1 ) (1 )
Price

vv jtit

jit

it it

v vit it
vit itit

v vjt jt
it it

it
it it

it

it
it it p it it it it

it

e e
P

v ve e
e

e e

u
P P

v
P P P P Oβ

∂
∂

=
∂ ∂

∂ ∂
= −

∂ ∂

∂
= −

∂
∂

= − = − =
∂

∑

∑ ∑                  

                                                                              (8) 
 
where itP  shows the logit probability of product i at 

time t and ,p itβ  shows the price coeffcient of 

product i. This is known as own-elasticity. If one 
product has a price reduction, its choice probability 
increases with this probability. Then the final 
demand itd becomes max(0, )it it it itd D O D= +  

where itD  shows the original demand of product i 

at time t. This can be applied for the time parameter 
in the same manner which we called time-elasticity.  
Furthermore, one can also determine the extent to 
which the probability of choosing a particular 
alternative changes when an observed variable 
relating to another alternative changes. The 
probability of choosing alternative i changes as 
price of the product j  increases as in (9) 

2

,

( / )

Price Price

Price( )

Price

v vit kt

it k

jt jt

vit
v jt it

v jt
jt

it
it jt p jt it jt it

jt

e e
P

ve
e

e

v
P P P P Cβ

∂
∂

=
∂ ∂

∂
= −

∂

∂
= − = − =

∂

∑

∑
            (9) 

This is known as cross-elasticity. Then the final 
demand itd becomes max(0, )it it it itd D C D= + . We 

call the cross elasticity as the substitution effect. 
Substitution is the demand increment in one 
product when the other’s price decreases or the 
demand decrement when the other’s price 
increases19. 

2.2. Mathematical model 

To analyse and observe the results, we develop a 
deterministic model called posterior solution that 
we assume all demands are known. We model this 
problem by GAMS software package and solve it 
by using Dicopt non-lineer solver. Initial inventory 
levels, initial prices and demands are known. We 
construct a model that optimize the prices during 
the periods under the markdown constraint. 
According to the markdown constraint, the price of 
one period cannot be larger than the price of the 

previous period. We apply 3 discount rates (10%, 
30% and 50%) to the product prices for each period 
or the price may not change. The aim is to decide 
on an optimal policy for each product. 
 
The parameters of the model is as follows: 
 
i =

 
product index, 

t =
 
time index, 

T =
 
planning horizon,

 
iβ = coefficients of demand function for product i, 

iIS = the initial inventory of the product i, 

iIP = the initial price of product i , 

itWIS = the inventory of product i at the beginning 

of week t, 

ith = unit holding cost of product i at week t, 

isv = salvage value of product i, 

( )disc k = kth discount rate. 

M = very big number.
   

Furthermore, the decision variables of the model 
are; 
 
z = objective function value, 

itp = the price of the product i at week t, 

itS = sales of product i at week t, 

itWFS = the on-hand inventory of product i at the 

end of week t, 

iFS = the on-hand inventory of product i at the end 

of the period T, 

itWD = the demand of product i at week t, 

itD = the positive demand of product i at week t, 

itr = binary variable that if the demand at week t is 

positive, it takes a value of 1, otherwise 0, 
( , , )f i t k = if kth discount is applied for product i at 

week t, it takes a value of 1, otherwise 0,  
 
The mathematical model of the problem is as 
follows: 
 

                                                                            
(10) 
 

subject to 

 

0 1 2 3 ,β β β β
≠

= + + + ∀∑it i i it i jt i
i j

WD p p t i          (11) 

, ,= − ∀it it itWFS WIS S i t                            (12) 

1 ,i iWIS IS i= ∀                                     (13) 

* , ,≤ ∀it itD M r i t                                         (14) 

( )* 1 , ,− ≤ − ∀it it itD WD M r i t           (15) 

1 1 1 1 1

max
= = = = =

  + − 
  
∑∑ ∑ ∑∑

it

n T n n T

it it i i it it
p i t i i t

p S sv FS h WFS
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, ,≤ ∀it itS D i t                                    (16) 

, ,≥ ∀it itWIS S i t                                    (17)                           

1

,
T

i i i t
t

FS IS S i
=

= − ∀∑                       (18) 

1 , ,+ = − ∀it it itWIS WIS S i t                      (19) 

, , 1 *(1 ( , , )), ,i t i tp p M f i t k i t−≤ + − ∀           (20) 

, 1 * ( ) *(1 ( , 1, )),

, ,

+ ≤ + − +

∀
i t itp p disc k M f i t k

i t k
       (21) 

( , , ) 1, ,
k

f i t k i t= ∀∑                       (22) 

,iT ip sv i≥ ∀                                    (23) 

1 ,i ip IP i≤ ∀                                                  (24) 

 
(10) shows the objective function that maximizes 
the total profit obtained by the difference between 
the revenue got from the sales and salvage revenue 
and the holding cost of the products. (11) shows the 
demand function where β  values are known. (12) 

provides that weekly final stock is equal to initial 
stock of that period minus the sales of that period. 
(13) shows that weekly initial stock of the first 
period equals to the given initial stock of each 
product. (14) and (15) constraints provide the 
demand of each product are positive. (16) provides 
that the sales of the product for each week cannot 
be greater than the demand of that period. (17-19) 
constraints are related to stock constraints. (20) 
shows the markdown constraint. It provides that the 
price action of one period cannot be greater than the 
previous period and the prices should be one of the 
discounted prices (21). This is supported by the 
constraint (22) that shows we can do only one 
discount for each period. The price of the final 
period should not be less than the salvage value 
(23) and the price of the first period should not be 
greater than the initial prices of each product that 
are given (24). 

2.3. Approximate Dynamic Programming Model 

Multi-stage decision problems under uncertainty 
are abundant in process industries. Markov 
Decision Process (MDP) is a general mathematical 
formulation of such problems. Whereas stochastic 
programming and dynamic programming are the 
standard methods to solve MDPs, their unwieldy 
computational requirements limit their usefulness in 
real applications. Approximate dynamic 
programming (ADP) combines simulation and 
function approximation to alleviate the ‘curse-of-
dimensionality’ associated with the traditional 
dynamic programming approach. The most 
important concept in ADP is path generation. 
Through the iterations, a lot of path is generated 
and the approximate values of the states are 
expected to be estimated by visiting them. This is 

important in terms of the convergence of the value 
function20,21,22,23. 

In our problem, we consider a class of multistage 
problems called the markdown optimization 
problem faced by the retailing industry. This 
apparel company provides many products for men, 
women and children so that it has a wide range of 
products. It is important to know which product is 
substitute of another in a multi-product group. The 
aim is to find optimal prices of these substitutable 
products under markdown constraints for all 
inventory levels. We observe the product groups 
that have more than one product. Since they have 
correlations among them, the markdown policy of 
one product affects the other product. We try to 
determine the optimal markdown policy for each 
state. System state tS  is defined with inventory 

level of each product which is denoted by jts  for 

product j at time t and the decision given in the 
previous period which is denoted by jta  because of 

the markdown constraint. The action or decision is 
the discounted prices applied to the products. 
According to the markdown constraint, the action 
given at time t cannot be higher than action given in 
the previous period. 

1 2 1, 1 2, 1 , 1( , ,..., , , ,..., )t t t kt t t k tS s s s a a a− − −=           (25) 

Since the ADP algorithm runs iteratively and the 
demand is random, the system can be in the same or 
different inventory levels in one period. If the same 
state is visited in one iteration, it is important to 
know the action given at time t-1 in the previous 
iterations due to the markdown constraint. That is, 
the decision at time t will be given according to the 
action given at time 1t − . In this case the possible 

action set ( )tA S of the tS  state is, 

1 2 1 1, 1

2 2, 1 , 1

( ) { , ,..., : ,

,..., }
t t t kt t t

t t k t

A S a a a a a

a a a

−

− −

= ≤

≤
                   (26) 

if the product group has k products. If the product 
group has 4 products and each has 5000 units and 
we have 5 actions, the number of states will be 

4 4 4 75000 5 25 10× = ×  units. When the number of 
products and their inventory levels increase, this 
size becomes larger. This is the reason of why we 
cannot use classical dynamic programming.  

2.3.1. Solution Methodology: Sarsa Algorithm 

We use Sarsa algorithm which is an on-policy 
method. For an on-policy method we must estimate 

action-value function ( , )Q s aπ  for the current 

behavior policy π  and for all states s and actions 
a . We consider transitions from state-action pair to 
state-action pair and learn the value of state-action 
pairs. During the estimation of value function Vπ  
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under policy π , the state values are learned from 
transitions between states, but in Sarsa these values 
are learned from transitions between state-action 
pairs. As in all on-policy methods, we continually 

estimate Qπ  for the behavior policy π , and at the 

same time π  changes toward greediness with 

respect to Qπ . Sarsa converges with probability 1 

to an optimal policy when action-value function as 
long as all state-action pairs are visited  infinitely 
and the policy converges in the limit to the greedy 
policy20,24. 

The *
ta  optimal price decision of state tS  is the 

price that maximizes the action-value function 
( , )t tQ S a over all iterations (27). 

* arg max( ( , ))t t t

ta
a Q S a=                                       (27) 

Then π  policy is defined as * * *
1 2( ) [ , ,..., ]t t t ktS a a aπ =  

for each state tS . Let consider the system is in state 

tS . When a new action ta  is taken and demand tD  

is appeared, system state tS  transites to the 1tS+  

state. This transition function is defined as in (28). 

1 ( , , ( ))t t t t tS S a D a+ =                                           (28) 

As stated before, demand is a function of price 
action and time. In this model, any unsatisfied 
demand from one week is not allowed to be passed 
on to the next period. Demand is simply ”lost” if 
not fulfilled in the same time period. As a result, the 
total demand for each week is simply the new 
demand in that week, which is exogenous 
information. When demand comes, the inventory 
level of product j, jts , changes into 

, 1 max(0, )j t jt jts s D+ = − . If the optimal action given 

at time t is *
ta , the system state is then defined as 

* * *
1 1, 1 2, 1 , 1 1 2( , ,..., , , ,..., )t t t k t t t ktS s s s a a a+ + + += . The aim 

of this stochastic optimization problem is to 
determine the optimal policy given in (29) 

1

max ( , )
T

t t
t

E Q S aπ π
π =

 
 
  
∑                     (29) 

The action value function ( , )t tQ S a  is formed from 

two parts: immediate reward ( , )t t tr S a  and 

discounted cost-to-go value based on policy defined 
as in (30). 

1 1( , ) ( , ) ( , )t t t t t t tQ S a r S a Q S aπγ + += +                    (30) 

The action value function ( , )t tQ S a  is then updated 

(31) when the same states are visited through the 
iterations. 

1 1( , ) ( , ) ( , ) ( , )t t t t t t t t tQ S a Q S a r Q S a Q S aπα γ + + ← + + −                                         

                                                                            (31) 

where [0,1]nα ∈  is the stepsize at iteration n  

under the standard assumptions n
n
α = ∞∑  and 

2( )n
n

α < ∞∑ . The reward function ( , )t t tr S a is 

the amount obtained from the difference of the sales 
and the inventory holding cost.  

( , ) max(0, )* max(0, )*t t t it it it it it
i J

r S a D a s D h
∈

= − −∑

                                              (32) 

where ith  denotes the holding cost of product i at 

time t.  
Steps of the Sarsa algorithm is given in Fig. 120. 
The problem here is we should perform too many 
iterations to visit all states sufficiently, but it takes 
too long time. In practice, the computational burden 
of looping over all states in backward dynamic 
programming has been replaced with the statistical 
problem of estimating the value of many states. It is 
not enough to know the value of being in states that 
we actually visit. If we are making good decisions, 
we have to have good estimates of the value of 
states that we might visit. This may be far smaller 
than the entire set of states, but it can still be an 
extremely large number. There is a vast array of 
statistical techniques that can be used to 
approximate the value function. We use aggregation 
technique which is one of the most popular 
techniques used in the literature. 
 
2.3.2. Aggregation 
 
We consider aggregation as a process that we 
combine some states which have closer inventory 
levels. Let take the same example that product 
group has 4 products and each has 5000 units and 
we have 5 actions. If we aggregate the states by 100 
units, the number of states decreases to 

4 4 4(5000 /100) .5 250=  units from 4 725 10× . This 

means that we cluster the states whose inventory 
levels have 1-100 units put in one group, 101-200 
units put in other group, etc. Therefore the 
probability of visiting the same states increases and 
we get more truely results. However, aggregating 
the states by 50 units instead of 100 units will 
generate different results. Because the visiting 
number of the same states in aggregation by 50 
units can be less than the other and this will affect 
all results. To decrease the coefficient of variation 
and get more reliable results we apply ‘mixed 
aggregation’ that combines the different 
aggregation levels.  
Let (g) shows the aggregation set index. Then the 

mixed aggregation value of state ( )g
tS  becomes as 
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in (33) if we have two aggregation levels such as 
(g1) and (g2) 
 

1 21 2( ) ( )( ) ( )( )( ) ( ) ( )= +g gg gg
t t tQ S w Q S w Q S           (33) 

 
where w  denotes the weight applied to the estimate 
the value of being in state tS  at the gth level of 

aggregation that are proportional to the mean square 
error (MSE) of (g)th aggregation sets that are 
calculated below25. Then the MSE of the single 
aggregation sets are updated.  
 

( )
( )

2
( )

1

( )
( )

( )

ω

=

=

∑

j
j

y

g
g t

t
g

t
y

MSE S
S

MSE S

                            (34) 

      
We measure our performance using MSE statistical 
measure. If we have an initial estimate of state tS

which is 1( )−n
tQ S , and the new value of the state 

ˆ ( )n tv S , we use a standard stochastic gradient 

(smoothing) expression of the form (35) 
 

1
1

1 2
1

( ) (1 ) ( )

ˆ( ( ) ( ))

α

α

−
−

−
−

= − +

−

n n
t n t

n
n t n t

MSE S MSE S

Q S v S
              (35) 

 

1nα −  is a stepsize parameter at iteration n-1. We 

use McClain’s formula to get the stepsize α  given 
by  
 

1

11

αα
α α

−

−
=

+ −
n

n
n

                                               (36) 

 
where α  is a specified parameter.  
 

Step 0: Determine π  policy arbitrarily 
Step 1: Initialize ( , )Q s a for each s  and a  
Step 2: Determine iteration number n and period size T  
Step 3: Do for 1,2,...,i m=   
 Step 3a: determine initial state s 
 Step 3b: choose an action a  (ε -greedy) 
 Step 3c: do for 1, 2 , . . . ,t T=   
  Step 3c_1: for the chosen action a , observe the reward r and the following    
                                 state s′  
  Step 3c_2: choose actions a′  come from policy π  for each state s′   
  Step 3c_3: calculate [ ]( , ) ( , ) ( , ) ( , )Q s a Q s a r Q s a Q s aα γ ′ ′← + + −  

  Step 3c_4: ;s s a a′ ′← ←  

  Step 3c_5: [ ]( ) arg max ( , )
a

s Q s aπ =  

 Step 3d: if i m≤ , go to step 3. Otherwise go to step 4. 
Step 4: Return policy π . 

Fig. 1. On-policy TD algorithm : Sarsa 

3. Numerical Study 

We consider two cases that have 2 and 3 products 
that have correlations among them in the multi-
product group. One of the main goal is to observe 
the effect of elasticity on optimal policies, therefore 
we discuss and analyse the cross price elasticity and 
then time elasticity of the products. Time is 
important for the end of season products since the 
purchasing behavior may change in that period. 
Then we get insights how these observed effects 
affect the optimal policy26. 
We first analyse the convergence of the algorithm 
with the different number of iterations and decide 
on the iteration number for the analysis. For each 
case, we consider three subcases: First is the basic 
case with substitution and time effect are included, 
second is the case only time effect is included and 
finally the case is with only the substitution effect is 
included.  

 

3.1. Two product case 

In this case, we have 2 products with inventory 
levels of 4500 and 1700 units respectively. Initial 
prices of the products are 30 TL/unit and 20 
TL/unit. Demands are obtained by the regression 
model that are as follows and the average demand 
functions used in numerical study are as below.  

1 1 2 1 2

2 1 2 1 2

( , ) 950 19 15 25

( , ) 700 10 10 15
t t t t t

t t t t t

D p p p p t

D p p p p t

= − + −
= + − −

 

where itD  shows the demand of product i and itp  

shows the price of product i at time t. Demand is a 
function of its price and the other product price and 
time. (-) price coefficients show the magnitude of 
own price elasticity of each product, and (+) price 
coefficients measure the magnitude of cross-price 
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elasticity of each product. For example, the (-) 
coefficients are -19 and -10 for products 1 and 2, 
respectively. This means that one unit increase in 
product 1 price decreases average demand by 19 
units whereas the decrease in product B average 
demand is just 10 units when its price is increased 
by a unit. On the other hand, the (+) coefficients are 
15 for product 1 and 10 for product 2. This means 
that when product 2 price is decreased by one unit, 
average decrease in product 1 demand is 15 units 
and when product 1 price is decreased by one unit, 
the demand of product 2 is decreased by 10 unit.  
In each period, four prices can be applied for each 
product, so totally we have 4 4 16× = actions that 
will be observed. We apply 3 discount rates such as 
10%, 30% and 50% or we may not apply any 
discount, that is, the price of the product remains 
same.  Therefore, if we observe all levels of the 
inventory, we will have 

74500 1700 16 12.24 10× × = × different states.   
Due to the very big number of states, sufficient 
number of iterations should be done to visit each  
state and get accurate results. Since it takes a long 
time, we aggregate the states according to its 
inventory levels such as by 50 units or 100 units. 
Therefore, our state number reduces to 

390 34 16 48.96 10× × = ×  if we aggregate by 50 

units and 345 17 16 12.24 10× × = ×  if we aggregate 
by 100 units. The number of iterations are 
important for the convergence of the algorithm. In 
Fig. 2-5, we see the convergence of the Sarsa 
algorithm for 1000, 2000, 3000 and 4000 iterations 
respectively. 
 
 

 
Fig. 2. Convergence for 1000 iterations 

The system starts to converge after approximately 
500 iterations for the four figures above. But when 
we compare the initial state’s expected values and 
standard deviations in Table 1, although the 
expected values are approximately same, standard 
deviation coefficients get smaller due to the visiting 
number for the states increases by the iteration 

number. So we apply 3000 iterations for the 
following experiments. 
 

 
Fig. 3. Convergence for 2000 iterations 

 
Fig. 4. Convergence for 3000 iterations 

 
Fig. 5. Convergence for 4000 iterations 

 
To see the differences between single aggregation 
and mixed aggregation, we perform the following 
analysis given in Table 2. Although the expected 
values are approximately same, the standard 
deviations decrease in mixed aggregation. Thereore 
we use mixed aggregation for the two-products 
numerical cases. 
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3.1.1. Deterministic Model Analysis and Results 

The results of the deterministic model which is 
named as posterior solution is given in Table 3 for 
three cases that will be analysed by ADP. When we 
ignore the substitution effect (without susbtitution 
effect case) the policy is differ from the basic case 
(substitution and time effect included). The prices 
of product 2 firstly increased and then decreased 
more than the base case. The price of product 2 
started to the week with 20 TL and stayed same 

until the sixth week, then decreased to 14 TL. 
Because when the substitution effect is ignored, 
demands of the products decrease. Since demand 
decreases, prices decrease. Then the revenue 
decreases to 97,030 TL from 104,877 TL which is 
the revenue of the basic case. Moreover, when the 
time effect (without time effect case) is ignored, 
demand increases since time has a negative effect 
on demand functions. Therefore the prices and 
demand increase, then the revenue also increases to 
106,255 TL. 

 
 

Table 1. Results for Convergence Analysis 

    
95% confidence 

interval 

Number of 
iterations 

Standard 
deviation 

 
 

Expected 
value 
(TL) 

Cv 
Lower 
bound 
(TL) 

Upper 
bound 
(TL) 

1000 10,218 106,502 0,0959 105,868 107,136 
2000 8820 115,809 0,0762 115,422 116,196 
3000 8671 117,345 0,0738 117,034 117,655 
4000 7889 121,345 0,0650 121,100 121,590 

      
 

Table 2.  The analysis results for each aggregation level in two product case 

   

Expect 
value 
(TL) 

95% confidence 
interval 

Agg 
level 

Agg 
level 
by 

(units) 
Standard 
deviation 

Lower 
bound 
(TL) 

Upper 
bound  
(TL) 

single 
50 8671 114,345 114,035 114,655 

100 9275 117,970 117,638 118,302 

mixed 
50 5718 127,660 127,455 127,865 

100 6220 117,258 117,035 117,481 
 

Table 3.  Optimal policies obtained by the posterior solution 

  Week  

   1 2 3 4 5 6-10 Revenue 

Basic case 
 

Optimal 
policy 

Prod1 30 15 15 15 15 15  
104,877 TL Prod2 20 20 18 18 18 18 

Without 
substitution 

effect 

Optimal 
policy 

Prod1 30 15 15 15 15 15  
97,030 TL Prod2 20 20 20 20 20 14 

Without 
time effect 

Optimal 
policy 

Prod1 30 15 15 15 15 15  
106,255 TL Prod2 20 20 20 20 20 20 

 

 

 

 

 

 

      Copyright: the authors 
                   73

Co-published by Atlantis Press and Routledge



  Markdown Optimization via Approximate 

 
 

3.1.2. Stochastic Model Analysis and Results 

When we compare the posterior solution with 
stochastic model which is solved by Sarsa 
Algorithm, the following results are obtained. 
Again 3 subcases are examined. When demands are 
independent from each other, that is the substitution 
effect is ignored, average demand functions change 
as below.  

1 1 1

2 1 2

( ) 950 19 25

( ) 700 10 15
t t t

t t t

D p p t

D p p t

= − −
= − −

 

Since the substitution affects the demands 
positively, when it is ignored, demand decrease. 
Moreover when we ignore the time effect, average 
demand functions change as follows. 

1 1 2 1 2

2 1 2 1 2

( , ) 950 19 15

( , ) 700 10 10
t t t t t

t t t t t

D p p p p

D p p p p

= − +
= + −

 

Time affects the demand of the products negatively. 
Because consumers usually want to purchase 
products at the beginning of the season and this 
purchase behavior decreases to the end of the 
season. This is proved by the results of regression 
analysis as seen in demand functions. When we 
ignore the time effect, demands increase, then the 
system doesn’t decrease the price to make more 
profit. The algorithms results are given in Table 4. 
According to the results in Table 4, similar results 
are obtained. In the basic case, there is no 
markdown for the product 1. For product 2, system 

starts with 18 TL and after week 2 10% discount is 
made. In case 2 (without substitution effect), since 
the sales of the products decrease, prices decrease. 
For the first product, 10% discount is made in week 
2, 10% discount is made in week 4 and finally 
again 10% discount is made in week 5. Moroever 
the price of the second product decreases to 5.10 
TL. Therefore the revenue decreases to 124,210 TL 
from 155,953 TL. In case without time effect, 
system starts to season with the highest prices, 30 
TL and 20 TL, and makes only one discount during 
the season because it is not necessary to discount 
the prices due to the high demands since we have 
substitution effect and no time effect. Then, the 
revenue is the highest as in posterior solution. 
 

3.2. Three product case 

Similar analysis are done for the 3 product case but 
the run time of the algorithm increases very much. 
While the runtime for 2 product case takes about 30 
minutes for 5000 iterations, runtime for 3 product 
case with the aggregation level of 50 units takes 
about 2.5 hours although the inventory level of each 
product decrease to 3000 units. Since the state 
space increases, we should perform many iterations 
to visit most of the states sufficiently. 
When we run the algorithm for 5000 iterations, we 
get the convergence after about 500 iterations as 
seen in Fig. 6. Hence we apply 5000 iterations for 
the following analysis. 

Table 4. Optimal policies obtained by Sarsa algorithm 

   Week 

Revenue 

Revenue 
of the 

posterior 
solution 

   1 2 3 4 5 6 7-10 

Basic Case 
Optimal 
Policy 

Prod1 30 30 30 30 30 30 30 
 

155,953TL 
 

104,877TL Prod2 18 18 16.2 16.2 16.2 16.2 16.2 

Without 
Substitution 

Effect 

Optimal 
Policy 

Prod1 30 27 27 24.3 21.87 21.87 21.87 
 

124,210TL 
 

97,030TL Prod2 20 20 14 12.6 11.34 10.20 5.10 

Without Time 
Effect 

Optimal 
Policy 

Prod1 30 30 27 27 27 27 27  
161,800TL 

 
106,255TL Prod2 20 20 20 20 18 18 18 

 
 
Each of the products have inventory levels of 3000 
units. Initial prices of the products are 31 TL, 31 TL 
and 36 TL respectively. Expected demand functions 
are obtained by the regression model that are as 
follows: 

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

( , , ) 400 10 5 11 20

( , , ) 950 20 8 17 15

( , , ) 800 12 12 9 10

t t t t t t t

t t t t t t t

t t t t t t t

D p p p p p p t

D p p p p p p t

D p p p p p p t

= − + + −
= − − + −
= − + − −

 

 

Product 2 and 3 are substitute of product 1, product 
3 is substitute of product 2 and product 2 is 
subtitute of product 3. In each period, again 4 prices 
can be applied for each product, so totally we have 
4 4 4 64× × =  actions that will be observed. We 
apply 3 discount rates such as 10%, 30% and 50% 
or we may not apply any discount, that is, the price 
of the product remains same. If we observe all 
levels of the inventory, we will have  

113000 3000 3000 64 17.28 10× × × = ×  different 
states.   
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Fig. 6. Convergence for the three product case 

Therefore, we apply the mixed aggregation level to 
take the advantage of visiting states sufficiently and 
get more reliable states.. The results show that 
when we apply the mixed aggregation level, the 
visiting number of states increase and the cv values 
decrease like in the 2 product case. Although the 
expected values of these aggregated levels are 
approximately same given in Table 5, the standard 
error value decreases to 6492 from 7357 for 
aggregation level by 100 units and this error value 
reduces to 7356 from 7422 for 50 units  

Table 5.  The analysis results for each aggregation 
level in three product case 

    95% confidence interval 

Agg 
level 

Agg 
level 
by 

(units) 
Standard 
deviation 

Expected 
value (TL) 

Lower 
bound 
(TL) 

Upper 
bound 
(TL) 

Single 
50 7422 230,907 230,701 231,113 

100 7357 224,319 224,115 224,523 

Mixed 
50 7356 230,391 230,187 230,595 

100 6492 218,227 218,047 218,407 

 
aggregation. Furthermore, the 95% confidence 
interval is very reliable for these states. The optimal 
policy for mixed aggregation level with substitution 
case is obtained as in Table 6. The system starts 
with the initial prices of 27.9 TL, 31 TL and 36 TL 
respectively. In period 2, 10% discount decision is 
taken for each product, in period 3, 10% discount 
decision is taken for only product 2 and 3 and 
finally 10% discount is made in week 5. When the 
substitution effect is disapperared, the profit 
decreases to 112,890 TL from 230,200 TL since 
demands and also the prices decrease. Moreover, 
the discount decisions are given many times more 
than the previous case, because the system tries to 
clear on-hand inventories by decreasing the prices.

  
Table 6.  Optimal policies obtained by Sarsa Algorithm 

   Week  
 
 

Revenue 
   1 2 3 4 5 6 7-10 

Basic Case 
Optimal 
policy 

Prod1 27.9 25.11 25.11 22.59 22.59 22.59 22.59 
230,200 TL Prod2 31 27.9 25.11 25.11 25.11 25.11 25.11 

Prod3 36 32.4 29.16 29.16 26.24 26.24 26.24 
Without 

Substitution 
Effect 

Optimal 
policy 

Prod1 21.7 21.7 15.19 15.19 10.63 5.31 5.31 
112,890 TL Prod2 21.7 21.7 21.7 21.7 19.53 13.67 13.67 

Prod3 36 18 18 18 18 9 9 

Without 
Time Effect 

Optimal 
policy 

Prod1 27.9 27.9 25.11 25.11 25.11 25.11 25.11 
250,081 TL Prod2 31 27.9 27.9 27.9 27.9 27.9 27.9 

Prod3 36 32.4 32.4 32.4 32.4 32.4 32.4 
 
 
When time is not considered, the number of 
discounts decreases because we do not need to 
discount the prices when we have sufficient 
demands. The revenue levels increase to 250,081 
TL from 230,200 TL. 
 
 
 
 
 

 
4. Validation 
 
To evaluate the algorithm results, we apply the 
algorithm to real data. One of the example data set 
is given in Table 7. These products are  observed by 
linear regression models. The values of the 
parameters related to this linear regression model 
are given in Table 8 and their relations are shown in 
Fig. 7. 
 

Table 7. Example multiproduct group 
 

Product name_1 Product name_2 relation Product code_1 Product code_2 
PNT,CESTA PNT,RELATE - 393415 393440 
PNT,CESTA KK.TSH,B.Y.DUBAR + 393415 400479 
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Table 8. Regression model of the example mutiproduct group 
 

Model Constant 
term 

393415_price 393440_price 400479_price Sales period 
(week) 

393415 400 -10 5 11 -20 

393440 950 -20 -8 17 -15 

400479 800 -12 12 -9 -10 

 
 

 
Fig. 7. Relationship between the products

  
The approximate optimal markdown policy of this 
multiproduct group is estimated by using ADP 
algorithm. The comparison of the policies are 
shown in Fig. 8-10. Retailer prices are higher than 
the estimated prices obtained from the ADP 
algorithm. Since demand changes with respect to 

the price, the revenue of the retailer is 440,960 TL 
while the estimated revenue by ADP is 516,925 TL. 
Therefore, ADP algorithm gives better solution 
than the other manually decided policies by the 
retailer.  

 

 
Fig. 8. Comparison between the retailer and estimated prices 

 

 
Fig. 9. Comparison between the retailer and estimated prices 
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Fig. 10. Comparison between the retailer and estimated prices 

 
 
5. Conclusion 
 
We consider a markdown optimization problem 
faced by a retailing industry. There is no paper that 
investigate the substitution effects on optimal 
policies and timing of the markdowns if the 
products are correlated. This paper has 
demonstrated that the correlations between the 
products are very important to determine the 
optimal policy. We use a real sales data obtained 
from a retailing company. Since our state space is 
very large and multidimensional, we use 
Approximate Dynamic Programming. To encounter 
all states sufficiently, we apply aggregation 
technique. 

We showed that substitution has positive effects on 
optimal policy of the products. When we consider 
the correlations between products, some demand of 
the products pass to the other products according to 
the changes in some attributes of the products. Then 
since demand increases, system decides to increase 
the prices of the product, therefore the profit 
increases too.  
Another observed effect is time effect. We assume 
that demands decrease to the end of the season, so 
time has a negative effect on demands. When we 
don’t consider the time effect, demands increase 
according to the basic case which has the time 
effect. When demands increase, again system 
decides to increase the prices of the product and 
then the profit increases. Therefore time has a 
negative effect on profits.  

As a result, correlation between products is an 
important subject that should be taken into 
consideration. Because of substitution among 
products, the markdown policy of one product 
affects the sales of other products. Therefore, 
markdown policies for product groups having a 
significant crossprice elasticity among each other 
should be jointly determined. Otherwise, we can 
decide on wrong price policies and get smaller 
profits.  

In this paper, we analyse only the substitution effect 
on markdown policies. In future research, we can 
observe the substitution and complementary effects 
together and get insights about how optimal 
policies will change. Moreover, another function 
approximation techniques such as Neural Network, 
SHAPE algorithm can be used and compared with 
the aggregation technique used in this paper.  
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