
† Özlem Coşgun, ozlem_ince@hotmail.com, Fatih University, Department of Industrial Engineering, Istanbul,
34500, Turkey

Markdown Optimization via Approximate Dynamic Programming

Özlem COŞGUN†
Fatih University, Department of Industrial Engineering,

Istanbul, 34500, Turkey

Ufuk KULA
Sakarya University, Department of Industrial Engineering,

Sakarya, Turkey

Cengiz KAHRAMAN
Istanbul Technical University, Department of Industrial Engineering,

Istanbul, Turkey

Abstract

We consider the markdown optimization problem faced by the leading
apparel retail chain. Because of substitution among products the markdown
policy of one product affects the sales of other products. Therefore,
markdown policies for product groups having a significant crossprice
elasticity among each other should be jointly determined. Since the state
space of the problem is very huge, we use Approximate Dynamic
Programming. Finally, we provide insights on the behavior of how each
product price affects the markdown policy.

Keywords: Approximate Dynamic Programming, Multinomial logit model,
Cross-price elasticity, Markdown optimization, Pricing

1. Introduction

Textile industry is an important part of Turkish
economy. One of the factors that will have an
impact on competitiveness of our textile industry in
global markets is its ability to use information
technology based decision support and management
systems.
Apparel industry is one of the main driver of
Turkish textile industry. Given the fact that apparel
manufacturers tend to become retailers at the same
time, (e.g. L.C. Waikiki, Mavi Jeans etc.) the
performance of our apparel industry will depend
also on how well these companies are competing
against the global retailers. Success of national
apparel retailers will depend on whether they can
make good use of the data generated by information
technologies in their decision making processes.
Retail systems cover two main areas of
management, namely supply chain and revenue
management, where critical decisions are made.
Determining the most appropriate prices over time
to maximize profits is one essential component of
revenue management, whereas capacity control is
the other. In retail revenue management, the pricing
control is the main tool to manage the demand.
The ever increasingly shortening selling seasons for
fashion (apparel) products pressure the firms to
eliminate or minimize distressed inventories to
maximize revenues. One of the frequently used

mechanisms to achieve this goal is markdowns.
Markdowns are permanent price reductions used to
clear inventory before products become obsolete.
To the best of our knowledge, prior work on
markdown optimization has focused only on single-
product markdowns assuming that each product has
an independent demand process. However, we
believe that it is crucially important to consider the
correlations and the interactions among products in
markdown optimization. Thus, the main focus of
our study is to develop methodologies for multi-
product markdowns. Since products typically
exhibit substitution, complementarity effects, and
cross price elasticity, markdown policies for these
products should be jointly determined.
Markdowns in apparel retailing industry were
started to use firstly in 1950s in USA but then they
weren’t used broadly. After 1960s, their frequencies
and discount rates increased. 6% average discount
rate in 1967 increased to 28% in 1997 in apparel
stores1. It is expected to increase for the coming
years since 1) consumers can reach the stores in
different places easily 2) the outlet store number
increases 3) consumers want large product
assortment. Parallel to this increase, interest in
markdown optimization problems was accelerated.
These prior studies on markdown optimization have
focused only on single product markdowns.
However, consideration of multi-product
optimization may lead to significant revenue

International Journal of Computational Intelligence Systems, Vol. 6, No. 1 (January, 2013), 64-78

 Copyright: the authors
 64

Co-published by Atlantis Press and Routledge

Co-published by Atlantis Press and Routledge

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine
Received 10 March 2012; accepted 4 September 2012

Ö.Cosgun et al.

increase since there may be significant crossprice
elasticities among products. Cross-price elasticity
measures the percent change in one product’s
demand when the price of an other products is
increased. It may be either positive or negative
depending on whether the demand of a product
increases or decreases when the price of an other
product goes up. If the cross-price elasticity
between products A and B is positive, it means that
product A is a substitute of product B, since an
increase in product B’s price causes a demand
increase in product A’s demand. On the other hand,
if the cross-price elasticity between products A and
B is negative, then products A and B complement
each other since a decrease in product A demand
occurs due to an increase in product B price.
According to a study made in USA, 12% of the
retailers use markdown optimization and 53% of
the retailers plan to use such a system in 2 years2.
The properties of the products such a markdown
application applied are unrenewable orders in the
same season because of long manufacturing lead
times and decreasing product value. Because of this
property we select end of season apparel products
that are unrenewable. This problem is more
rampant in the fashion and electronic retail industry
where products get outdated quickly. The aim in
markdown optimization is to minimize the
inventory levels at the end of the season to
maximize the revenue by decreasing prices.
The first studies about dynamic pricing are in
marketing area in the literature. They aimed which
dynamic pricing strategies are used in which
conditions but they didn’t consider operational
dynamic pricing policies that will be applied in
practice. In retail industry, Lazear studied dynamic
pricing problem firstly3. In this study, N
customers come to the store according to a known
distribution and reservation price is known, and
they appraise the product a low price with p

probability. Lazear shows the effects of reservation
price on price3. Pashigian adapts the model in
Lazear and offers analytical and experimental
results about the reason of markdowns is increasing
product assortment4. Since the aim of these studies
is understanding pricing strategies briefly, they are
far away from being a decision tool used in pricing.
All models in the literature focus on the single
product markdowns and they didn’t consider the
correlations and substitution effects between the
products. Rajan et al. analyse the optimal inventory
levels and policies under deterministic demand
while product value decreases by the time5. Another
study observes the markdown under deterministic
demand is Smith and Achabal’s study6. They
determine the optimal inventory levels and optimal
prices by developing a nonlinear mathematical
model. Demand depends on price, inventory levels
and seasonal variations. Gallego and Van Ryzin
develop a continous time optimal pricing model in

which demand is described by a Poisson process or
is deterministic and they determine the optimal
prices, moreover they develop a heuristic for
discrete prices7. Feng and Gallego develop a
continous time Markov Process formulation with
stochastic demand that determines the optimal
timing and duration of a single price reduction8.
Feng and Xiao adapt the problem in Feng and
Gallego to the more than two prices9. Bitran et al.
consider the one product markdown problem in
more than one store and model it by using dynamic
programming, but in practice, since the state space
is large, the solutions of these problems are
impossible by using classical dynamic
programming. Because of this, they develop a
heuristic and test with the retailing sector real
data10. Mantrala and Rao developed a stochastic
dynamic-programming model-based decision-
support system, specifically to help retail-store
buyers of fashion goods decide on optimal
merchandise order quantities and markdown prices.
This decision support system uses point of sales
data to determine optimal initial inventory levels
and prices11. However they didn’t consider the
correlations and substitution effects among the
products, they only handle one product case and
determine its initial inventory level. Su develops a
model of dynamic pricing but their model captures
both markups and markdowns for a single product.
Since the customer population is heterogenous,
time to buy for the customers is important. So he
finds different policies for each cosumer group12.
Reiner and Natter develop markdown pricing
strategies on Austrian mobile phone market. They
consider different markdown strategies on two
different consumer groups13. Elmaghraby and
Keskinocak analyze the optimal design of a
markdown pricing mechanism with preannounced
prices and their suitability in the presence of
strategic buyers with multiunit demands14. All these
studies don’t involve the substitution effects among
the products. The studies involve more than one
product in revenue management literature consider
the products that share the same resource in
production or delivery of the products. However,
we know that it is crucially important to consider
the correlations and substitution effects between the
products in markdown optimization. The
substitution possibilities in retailing can be
classified into three groups15. We consider the
fourth one, price-based substitution: Consumer
comes to the store to buy a certain product that she
needs but she sees a substitute product that is
cheaper than that product and decides to purchase
the cheaper one. To the best of our knowledge, such
a price-based substitution has not been studied.
Therefore the contribution of this paper is to
consider the price-based substitution for a given
substitution product group for multiple periods.

 Copyright: the authors
 65

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

In this study we use point of sales data gathered
from 250 stores in apparel retailing industry and
analyse data by using SAS software package to
determine the product groups that have substitution
effects. Then the cross price elasticities of the
products are observed for the same product group.
Consumers face trade-offs in their purchase
decisions, since their income is limited and choices
are numerous. In order to make choices, consumers
must combine budget constraints (what they can
afford), and preferences (what they would like to
consume). A budget contraint, means what a
consumer can purchase is constrained by income.
The slope of the budget constraint measures the rate
at which one consumer can trade off one good for
another, and the relative prices of the two goods.
Budget constraints are determined by both the
income of the consumers, and the relative prices. If
a consumer equally prefers two product bundles,
then the consumer is indifferent between the two
bundles. The consumer will get the same level of
satisfaction (utility) from either bundles. Therefore
consumer behaviors are important to analyse the
substitution effects and they should be considered
in the model. Customer behavior modeling has been
gaining increasing attention in the operations
management community16. We use Multinomial
Logit Model which is one of the discrete choice
models and used mostly in marketing literatures to
estimate the substitute demand.
In the apparel industry since we can have many
products that may substitute each other, the
markdown policy of one product affects the sales of
other products. Therefore, markdown policies for
product groups should be jointly determined. But
this makes the markdown optimization problem
hard. Since the states will be multidimensional,
state space will be large and as a result solving such
a problem by classical dynamic programming
methods will be impossible. To overcome this
problem, Approximate Dynamic Programming is
used. We use Sarsa Algorithm which is a policy
iteration method.
In the next section, consumer choice model and
demand estimation take place. Then we mention
about the Approximate Dynamic Programming
(ADP) model. In section 4, numerical examples
follow this section and finally conclusion part is
considered.

2. Model

In this section, we will first discuss the assumptions
of the consumer choice model considered in this
paper. Then, the consumer choice process will be
considered in detail and the purchase probabilities
will be derived for the MNL model. We assume
that we have a homogenous consumer group that
the characteristics (such as income level, age, etc.)
are thought as similar. Their purchase behaviour
can change only with respect to the different price

levels. The data typically available for estimating
the parameters of a demand model include the sales
for each product-week, prices for related weeks and
the inventory of the products are obtained from an
apparel company. Since we observe point of sales
data, we only know the consumers that made
transactions and don’t know their characteristics.
Hence, we think that the target consumer group is
homogenous.

2.1. Demand Estimation

We analyse the sales data by using data mining
algorithms to form the multi-product groups that
are substitutable. Firstly, 14,558 units of different
models are observed from the sales data.
Association Mining Algorithm is used to form the
multi-product groups, but before that basic products
whose sales aren’t affected from the seasonality are
extracted from the observation. Because we can not
apply markdown to these products. After filtering
the products, the products that markdown will be
applied are decided by talking with the company
officials. In this approximation, we perform the
following steps:
(a) Products are ordered in descending order
according to the number of sales and started from
the highest number to form the groups.
(b) One product that has the highest positive
relations with the other products in the same
product group is chosen.
(c) For the same product, negative relations are
chosen from the remaining products. Therefore, the
product has both positive (complementarity) and
negative (substitution) relations.
(d) The (b) and (c) steps are repeated until all rules
are extracted.
Firstly, we find a subset of 55 products from 600
products that markdown can be applied and we
decide on the products which are in the same group
by the replication of the steps. The demand of each
product in the selected product groups is estimated
by using the regression model. At last, we solve
both the deterministic model and stochastic model
to compare the results by using the same demand
estimation. The deterministic solution is found by
using GAMS software and the obtained optimal
demand is used as a sample path in stochastic
model to make comparison.
Demand function itD for each product i at time t

depends on the price of the observed product, the
other products’ prices in the same group and the
time.

0 1 2 3Price Priceit i i it k kt i i t
k i

D tβ β β β ε
≠

= + + + +∑

 (1)

β is the coefficient of the attributes (prices, time)

of product i . Error term ε is normally distributed

 Copyright: the authors
 66

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

with mean µ and standard deviation σ . Very

often, a change in the price of one product leads to
a change in the demand of another, is called cross-
price elasticity. Cross price elasticity of demand
estimation is modelled by using discrete choice
models. We use Multinomial Logit Model (MNL)
which is very widely used in practical
applications17.

2.1.1. Multinomial Logit Model

The Multinomial Logit (MNL) model is a utility-
based model that is commonly used in economics
and marketing literatures. Each customer visiting
the store associates a utility ju with each option

j J∈ . The utility is decomposed into two parts, the

deterministic component of the utility jv also

known as representative utility and a random
component jε .

j j ju v ε= + (2)

The random component is modeled as a Gumbel
random variable. Also known as Double
Exponential or Extreme value Type-I, it is
characterized by the distribution

{ } ()Pr exp exp (/))X ε ε µ γ≤ = − − + where γ is

Euler’s constant (0.57722). Its mean is zero, and

variance is 2 2 / 6µ π . A higher µ implies a higher

degree of heterogeneity among the customers. The
realizations of jε are independent across

consumers. Therefore, while each consumer has the
same expected utility for each product, realized
utility may be different. This can be due to the
heterogeneity of preferences across customers or
unobservable factors in the utility of the product to
the individual. An individual chooses the product
with the highest utility among the set of available
choices. Hence, the probability that an individual
chooses product j J∈ at time t is

Vjt

jt Vit

i J

e
P

e
∈

=
∑

. (3)

where the deterministic part of utility jtv is

0 1 2 3jt j j jt i it j j
i j

v Price Price tβ β β β
≠

= + + +∑ (4)

We assumed that the utility of a product is
expressed by its price, the others’ prices and time.
Generally, when the price of the product increases,
its utility decreases and while the others’ prices
decrease, its utility increases since it is thought that
the purchase probabilities increase according to the
MNL Model. Then the logit probability becomes

0 1 2 3

Pr0 1 2 3

Price Price tj j jt n nt j j
n j

jt Price ice ti i it n nt i i
n i

i J

e
P

e

β β β β

β β β β

+ + +
≠

+ + +
≠

∈

∑

=
∑

∑
 (5)

One of our key objectives here is to test the
sensitivities of “price” and “time” to observe the
elasticities of the products. We can calculate the
utility jtv from sales data. Firstly, we compute jtpr

from the sales data which is the ratio of number of
customers that bought product j to the number of

the customers that bought any product in that multi-
product group on week t . This can be considered
as the demand share of product j over all products

jt
jt

it
i

D
pr

D
=
∑

 (6)

The utility of a product (7) is expressed as the
difference between the market share of that product

and the average of all market tpr 18. That is if

market share of a product is higher than the average
market share of all products, that product will have
more utility.

0 1

2

()

()

β β

β β
≠

− = = + − +

− +∑
jt jt j j jtt

i it timej
i j

pr pr v prc prc

prc prc
 (7)

where prc denotes the price of the product in the

sales data and prc denotes the average price of the

multi-product group.

2.1.2. Substitution Effect

When we develop an attribute of a product, its
choice probability usually increases if it satisfies
the consumers. Because of this, we consider the
consumer choice behaviors. It is also important to
consider their characteristics such as their income
level, real necessity or the product characteristics
such as their color, type, etc. But it will more
complex to determine them when we consider the
correlations between the products and it is very
hard to collect data individually. To provide the
simplicity, we assume that the consumers are
homogenous and demands are affected only from
the prices and the time. Moreover, we observe the
price-based and time-based substitution.
Since choice probabilities are a function of
observed variables, it is often useful to know the
extent to which these probabilities change in
response to a change in some observed factor. The
change in the probability of purchasing alternative
i given a change in an observed factor, price or
time, entering the representative utility of that
alternative (and holding the representative utility of
other alternatives constant) is

 Copyright: the authors
 67

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

2

2

,

(/)

Price Price

Price Price()

()
Price

(1) (1)
Price

vv jtit

jit

it it

v vit it
vit itit

v vjt jt
it it

it
it it

it

it
it it p it it it it

it

e e
P

v ve e
e

e e

u
P P

v
P P P P Oβ

∂
∂

=
∂ ∂

∂ ∂
= −

∂ ∂

∂
= −

∂
∂

= − = − =
∂

∑

∑ ∑

 (8)

where itP shows the logit probability of product i at

time t and ,p itβ shows the price coeffcient of

product i. This is known as own-elasticity. If one
product has a price reduction, its choice probability
increases with this probability. Then the final
demand itd becomes max(0,)it it it itd D O D= +

where itD shows the original demand of product i

at time t. This can be applied for the time parameter
in the same manner which we called time-elasticity.
Furthermore, one can also determine the extent to
which the probability of choosing a particular
alternative changes when an observed variable
relating to another alternative changes. The
probability of choosing alternative i changes as
price of the product j increases as in (9)

2

,

(/)

Price Price

Price()

Price

v vit kt

it k

jt jt

vit
v jt it

v jt
jt

it
it jt p jt it jt it

jt

e e
P

ve
e

e

v
P P P P Cβ

∂
∂

=
∂ ∂

∂
= −

∂

∂
= − = − =

∂

∑

∑
 (9)

This is known as cross-elasticity. Then the final
demand itd becomes max(0,)it it it itd D C D= + . We

call the cross elasticity as the substitution effect.
Substitution is the demand increment in one
product when the other’s price decreases or the
demand decrement when the other’s price
increases19.

2.2. Mathematical model

To analyse and observe the results, we develop a
deterministic model called posterior solution that
we assume all demands are known. We model this
problem by GAMS software package and solve it
by using Dicopt non-lineer solver. Initial inventory
levels, initial prices and demands are known. We
construct a model that optimize the prices during
the periods under the markdown constraint.
According to the markdown constraint, the price of
one period cannot be larger than the price of the

previous period. We apply 3 discount rates (10%,
30% and 50%) to the product prices for each period
or the price may not change. The aim is to decide
on an optimal policy for each product.

The parameters of the model is as follows:

i =

product index,

t =

time index,

T =

planning horizon,

iβ = coefficients of demand function for product i,

iIS = the initial inventory of the product i,

iIP = the initial price of product i ,

itWIS = the inventory of product i at the beginning

of week t,

ith = unit holding cost of product i at week t,

isv = salvage value of product i,

()disc k = kth discount rate.

M = very big number.

Furthermore, the decision variables of the model
are;

z = objective function value,

itp = the price of the product i at week t,

itS = sales of product i at week t,

itWFS = the on-hand inventory of product i at the

end of week t,

iFS = the on-hand inventory of product i at the end

of the period T,

itWD = the demand of product i at week t,

itD = the positive demand of product i at week t,

itr = binary variable that if the demand at week t is

positive, it takes a value of 1, otherwise 0,
(, ,)f i t k = if kth discount is applied for product i at

week t, it takes a value of 1, otherwise 0,

The mathematical model of the problem is as
follows:

(10)

subject to

0 1 2 3 ,β β β β
≠

= + + + ∀∑it i i it i jt i
i j

WD p p t i (11)

, ,= − ∀it it itWFS WIS S i t (12)

1 ,i iWIS IS i= ∀ (13)

* , ,≤ ∀it itD M r i t (14)

()* 1 , ,− ≤ − ∀it it itD WD M r i t (15)

1 1 1 1 1

max
= = = = =

  + − 
  
∑∑ ∑ ∑∑

it

n T n n T

it it i i it it
p i t i i t

p S sv FS h WFS

 Copyright: the authors
 68

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

, ,≤ ∀it itS D i t (16)

, ,≥ ∀it itWIS S i t (17)

1

,
T

i i i t
t

FS IS S i
=

= − ∀∑ (18)

1 , ,+ = − ∀it it itWIS WIS S i t (19)

, , 1 *(1 (, ,)), ,i t i tp p M f i t k i t−≤ + − ∀ (20)

, 1 * () *(1 (, 1,)),

, ,

+ ≤ + − +

∀
i t itp p disc k M f i t k

i t k
 (21)

(, ,) 1, ,
k

f i t k i t= ∀∑ (22)

,iT ip sv i≥ ∀ (23)

1 ,i ip IP i≤ ∀ (24)

(10) shows the objective function that maximizes
the total profit obtained by the difference between
the revenue got from the sales and salvage revenue
and the holding cost of the products. (11) shows the
demand function where β values are known. (12)

provides that weekly final stock is equal to initial
stock of that period minus the sales of that period.
(13) shows that weekly initial stock of the first
period equals to the given initial stock of each
product. (14) and (15) constraints provide the
demand of each product are positive. (16) provides
that the sales of the product for each week cannot
be greater than the demand of that period. (17-19)
constraints are related to stock constraints. (20)
shows the markdown constraint. It provides that the
price action of one period cannot be greater than the
previous period and the prices should be one of the
discounted prices (21). This is supported by the
constraint (22) that shows we can do only one
discount for each period. The price of the final
period should not be less than the salvage value
(23) and the price of the first period should not be
greater than the initial prices of each product that
are given (24).

2.3. Approximate Dynamic Programming Model

Multi-stage decision problems under uncertainty
are abundant in process industries. Markov
Decision Process (MDP) is a general mathematical
formulation of such problems. Whereas stochastic
programming and dynamic programming are the
standard methods to solve MDPs, their unwieldy
computational requirements limit their usefulness in
real applications. Approximate dynamic
programming (ADP) combines simulation and
function approximation to alleviate the ‘curse-of-
dimensionality’ associated with the traditional
dynamic programming approach. The most
important concept in ADP is path generation.
Through the iterations, a lot of path is generated
and the approximate values of the states are
expected to be estimated by visiting them. This is

important in terms of the convergence of the value
function20,21,22,23.

In our problem, we consider a class of multistage
problems called the markdown optimization
problem faced by the retailing industry. This
apparel company provides many products for men,
women and children so that it has a wide range of
products. It is important to know which product is
substitute of another in a multi-product group. The
aim is to find optimal prices of these substitutable
products under markdown constraints for all
inventory levels. We observe the product groups
that have more than one product. Since they have
correlations among them, the markdown policy of
one product affects the other product. We try to
determine the optimal markdown policy for each
state. System state tS is defined with inventory

level of each product which is denoted by jts for

product j at time t and the decision given in the
previous period which is denoted by jta because of

the markdown constraint. The action or decision is
the discounted prices applied to the products.
According to the markdown constraint, the action
given at time t cannot be higher than action given in
the previous period.

1 2 1, 1 2, 1 , 1(, ,..., , , ,...,)t t t kt t t k tS s s s a a a− − −= (25)

Since the ADP algorithm runs iteratively and the
demand is random, the system can be in the same or
different inventory levels in one period. If the same
state is visited in one iteration, it is important to
know the action given at time t-1 in the previous
iterations due to the markdown constraint. That is,
the decision at time t will be given according to the
action given at time 1t − . In this case the possible

action set ()tA S of the tS state is,

1 2 1 1, 1

2 2, 1 , 1

() { , ,..., : ,

,..., }
t t t kt t t

t t k t

A S a a a a a

a a a

−

− −

= ≤

≤
 (26)

if the product group has k products. If the product
group has 4 products and each has 5000 units and
we have 5 actions, the number of states will be

4 4 4 75000 5 25 10× = × units. When the number of
products and their inventory levels increase, this
size becomes larger. This is the reason of why we
cannot use classical dynamic programming.

2.3.1. Solution Methodology: Sarsa Algorithm

We use Sarsa algorithm which is an on-policy
method. For an on-policy method we must estimate

action-value function (,)Q s aπ for the current

behavior policy π and for all states s and actions
a . We consider transitions from state-action pair to
state-action pair and learn the value of state-action
pairs. During the estimation of value function Vπ

 Copyright: the authors
 69

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

under policy π , the state values are learned from
transitions between states, but in Sarsa these values
are learned from transitions between state-action
pairs. As in all on-policy methods, we continually

estimate Qπ for the behavior policy π , and at the

same time π changes toward greediness with

respect to Qπ . Sarsa converges with probability 1

to an optimal policy when action-value function as
long as all state-action pairs are visited infinitely
and the policy converges in the limit to the greedy
policy20,24.

The *
ta optimal price decision of state tS is the

price that maximizes the action-value function
(,)t tQ S a over all iterations (27).

* arg max((,))t t t

ta
a Q S a= (27)

Then π policy is defined as * * *
1 2() [, ,...,]t t t ktS a a aπ =

for each state tS . Let consider the system is in state

tS . When a new action ta is taken and demand tD

is appeared, system state tS transites to the 1tS+

state. This transition function is defined as in (28).

1 (, , ())t t t t tS S a D a+ = (28)

As stated before, demand is a function of price
action and time. In this model, any unsatisfied
demand from one week is not allowed to be passed
on to the next period. Demand is simply ”lost” if
not fulfilled in the same time period. As a result, the
total demand for each week is simply the new
demand in that week, which is exogenous
information. When demand comes, the inventory
level of product j, jts , changes into

, 1 max(0,)j t jt jts s D+ = − . If the optimal action given

at time t is *
ta , the system state is then defined as

* * *
1 1, 1 2, 1 , 1 1 2(, ,..., , , ,...,)t t t k t t t ktS s s s a a a+ + + += . The aim

of this stochastic optimization problem is to
determine the optimal policy given in (29)

1

max (,)
T

t t
t

E Q S aπ π
π =

 
 
  
∑ (29)

The action value function (,)t tQ S a is formed from

two parts: immediate reward (,)t t tr S a and

discounted cost-to-go value based on policy defined
as in (30).

1 1(,) (,) (,)t t t t t t tQ S a r S a Q S aπγ + += + (30)

The action value function (,)t tQ S a is then updated

(31) when the same states are visited through the
iterations.

1 1(,) (,) (,) (,)t t t t t t t t tQ S a Q S a r Q S a Q S aπα γ + + ← + + − 

 (31)

where [0,1]nα ∈ is the stepsize at iteration n

under the standard assumptions n
n
α = ∞∑ and

2()n
n

α < ∞∑ . The reward function (,)t t tr S a is

the amount obtained from the difference of the sales
and the inventory holding cost.

(,) max(0,)* max(0,)*t t t it it it it it
i J

r S a D a s D h
∈

= − −∑

 (32)

where ith denotes the holding cost of product i at

time t.
Steps of the Sarsa algorithm is given in Fig. 120.
The problem here is we should perform too many
iterations to visit all states sufficiently, but it takes
too long time. In practice, the computational burden
of looping over all states in backward dynamic
programming has been replaced with the statistical
problem of estimating the value of many states. It is
not enough to know the value of being in states that
we actually visit. If we are making good decisions,
we have to have good estimates of the value of
states that we might visit. This may be far smaller
than the entire set of states, but it can still be an
extremely large number. There is a vast array of
statistical techniques that can be used to
approximate the value function. We use aggregation
technique which is one of the most popular
techniques used in the literature.

2.3.2. Aggregation

We consider aggregation as a process that we
combine some states which have closer inventory
levels. Let take the same example that product
group has 4 products and each has 5000 units and
we have 5 actions. If we aggregate the states by 100
units, the number of states decreases to

4 4 4(5000 /100) .5 250= units from 4 725 10× . This

means that we cluster the states whose inventory
levels have 1-100 units put in one group, 101-200
units put in other group, etc. Therefore the
probability of visiting the same states increases and
we get more truely results. However, aggregating
the states by 50 units instead of 100 units will
generate different results. Because the visiting
number of the same states in aggregation by 50
units can be less than the other and this will affect
all results. To decrease the coefficient of variation
and get more reliable results we apply ‘mixed
aggregation’ that combines the different
aggregation levels.
Let (g) shows the aggregation set index. Then the

mixed aggregation value of state ()g
tS becomes as

 Copyright: the authors
 70

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

in (33) if we have two aggregation levels such as
(g1) and (g2)

1 21 2() ()() ()()() () ()= +g gg gg
t t tQ S w Q S w Q S (33)

where w denotes the weight applied to the estimate
the value of being in state tS at the gth level of

aggregation that are proportional to the mean square
error (MSE) of (g)th aggregation sets that are
calculated below25. Then the MSE of the single
aggregation sets are updated.

()
()

2
()

1

()
()

()

ω

=

=

∑

j
j

y

g
g t

t
g

t
y

MSE S
S

MSE S

 (34)

We measure our performance using MSE statistical
measure. If we have an initial estimate of state tS

which is 1()−n
tQ S , and the new value of the state

ˆ ()n tv S , we use a standard stochastic gradient

(smoothing) expression of the form (35)

1
1

1 2
1

() (1) ()

ˆ(() ())

α

α

−
−

−
−

= − +

−

n n
t n t

n
n t n t

MSE S MSE S

Q S v S
 (35)

1nα − is a stepsize parameter at iteration n-1. We

use McClain’s formula to get the stepsize α given
by

1

11

αα
α α

−

−
=

+ −
n

n
n

 (36)

where α is a specified parameter.

Step 0: Determine π policy arbitrarily
Step 1: Initialize (,)Q s a for each s and a
Step 2: Determine iteration number n and period size T
Step 3: Do for 1,2,...,i m=
 Step 3a: determine initial state s
 Step 3b: choose an action a (ε -greedy)
 Step 3c: do for 1, 2 , . . . ,t T=
 Step 3c_1: for the chosen action a , observe the reward r and the following
 state s′
 Step 3c_2: choose actions a′ come from policy π for each state s′
 Step 3c_3: calculate [](,) (,) (,) (,)Q s a Q s a r Q s a Q s aα γ ′ ′← + + −

 Step 3c_4: ;s s a a′ ′← ←

 Step 3c_5: []() arg max (,)
a

s Q s aπ =

 Step 3d: if i m≤ , go to step 3. Otherwise go to step 4.
Step 4: Return policy π .

Fig. 1. On-policy TD algorithm : Sarsa

3. Numerical Study

We consider two cases that have 2 and 3 products
that have correlations among them in the multi-
product group. One of the main goal is to observe
the effect of elasticity on optimal policies, therefore
we discuss and analyse the cross price elasticity and
then time elasticity of the products. Time is
important for the end of season products since the
purchasing behavior may change in that period.
Then we get insights how these observed effects
affect the optimal policy26.
We first analyse the convergence of the algorithm
with the different number of iterations and decide
on the iteration number for the analysis. For each
case, we consider three subcases: First is the basic
case with substitution and time effect are included,
second is the case only time effect is included and
finally the case is with only the substitution effect is
included.

3.1. Two product case

In this case, we have 2 products with inventory
levels of 4500 and 1700 units respectively. Initial
prices of the products are 30 TL/unit and 20
TL/unit. Demands are obtained by the regression
model that are as follows and the average demand
functions used in numerical study are as below.

1 1 2 1 2

2 1 2 1 2

(,) 950 19 15 25

(,) 700 10 10 15
t t t t t

t t t t t

D p p p p t

D p p p p t

= − + −
= + − −

where itD shows the demand of product i and itp

shows the price of product i at time t. Demand is a
function of its price and the other product price and
time. (-) price coefficients show the magnitude of
own price elasticity of each product, and (+) price
coefficients measure the magnitude of cross-price

 Copyright: the authors
 71

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

elasticity of each product. For example, the (-)
coefficients are -19 and -10 for products 1 and 2,
respectively. This means that one unit increase in
product 1 price decreases average demand by 19
units whereas the decrease in product B average
demand is just 10 units when its price is increased
by a unit. On the other hand, the (+) coefficients are
15 for product 1 and 10 for product 2. This means
that when product 2 price is decreased by one unit,
average decrease in product 1 demand is 15 units
and when product 1 price is decreased by one unit,
the demand of product 2 is decreased by 10 unit.
In each period, four prices can be applied for each
product, so totally we have 4 4 16× = actions that
will be observed. We apply 3 discount rates such as
10%, 30% and 50% or we may not apply any
discount, that is, the price of the product remains
same. Therefore, if we observe all levels of the
inventory, we will have

74500 1700 16 12.24 10× × = × different states.
Due to the very big number of states, sufficient
number of iterations should be done to visit each
state and get accurate results. Since it takes a long
time, we aggregate the states according to its
inventory levels such as by 50 units or 100 units.
Therefore, our state number reduces to

390 34 16 48.96 10× × = × if we aggregate by 50

units and 345 17 16 12.24 10× × = × if we aggregate
by 100 units. The number of iterations are
important for the convergence of the algorithm. In
Fig. 2-5, we see the convergence of the Sarsa
algorithm for 1000, 2000, 3000 and 4000 iterations
respectively.

Fig. 2. Convergence for 1000 iterations

The system starts to converge after approximately
500 iterations for the four figures above. But when
we compare the initial state’s expected values and
standard deviations in Table 1, although the
expected values are approximately same, standard
deviation coefficients get smaller due to the visiting
number for the states increases by the iteration

number. So we apply 3000 iterations for the
following experiments.

Fig. 3. Convergence for 2000 iterations

Fig. 4. Convergence for 3000 iterations

Fig. 5. Convergence for 4000 iterations

To see the differences between single aggregation
and mixed aggregation, we perform the following
analysis given in Table 2. Although the expected
values are approximately same, the standard
deviations decrease in mixed aggregation. Thereore
we use mixed aggregation for the two-products
numerical cases.

 Copyright: the authors
 72

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

3.1.1. Deterministic Model Analysis and Results

The results of the deterministic model which is
named as posterior solution is given in Table 3 for
three cases that will be analysed by ADP. When we
ignore the substitution effect (without susbtitution
effect case) the policy is differ from the basic case
(substitution and time effect included). The prices
of product 2 firstly increased and then decreased
more than the base case. The price of product 2
started to the week with 20 TL and stayed same

until the sixth week, then decreased to 14 TL.
Because when the substitution effect is ignored,
demands of the products decrease. Since demand
decreases, prices decrease. Then the revenue
decreases to 97,030 TL from 104,877 TL which is
the revenue of the basic case. Moreover, when the
time effect (without time effect case) is ignored,
demand increases since time has a negative effect
on demand functions. Therefore the prices and
demand increase, then the revenue also increases to
106,255 TL.

Table 1. Results for Convergence Analysis

95% confidence

interval

Number of
iterations

Standard
deviation

Expected
value
(TL)

Cv
Lower
bound
(TL)

Upper
bound
(TL)

1000 10,218 106,502 0,0959 105,868 107,136
2000 8820 115,809 0,0762 115,422 116,196
3000 8671 117,345 0,0738 117,034 117,655
4000 7889 121,345 0,0650 121,100 121,590

Table 2. The analysis results for each aggregation level in two product case

Expect
value
(TL)

95% confidence
interval

Agg
level

Agg
level
by

(units)
Standard
deviation

Lower
bound
(TL)

Upper
bound
(TL)

single
50 8671 114,345 114,035 114,655

100 9275 117,970 117,638 118,302

mixed
50 5718 127,660 127,455 127,865

100 6220 117,258 117,035 117,481

Table 3. Optimal policies obtained by the posterior solution

 Week

 1 2 3 4 5 6-10 Revenue

Basic case

Optimal
policy

Prod1 30 15 15 15 15 15
104,877 TL Prod2 20 20 18 18 18 18

Without
substitution

effect

Optimal
policy

Prod1 30 15 15 15 15 15
97,030 TL Prod2 20 20 20 20 20 14

Without
time effect

Optimal
policy

Prod1 30 15 15 15 15 15
106,255 TL Prod2 20 20 20 20 20 20

 Copyright: the authors
 73

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

3.1.2. Stochastic Model Analysis and Results

When we compare the posterior solution with
stochastic model which is solved by Sarsa
Algorithm, the following results are obtained.
Again 3 subcases are examined. When demands are
independent from each other, that is the substitution
effect is ignored, average demand functions change
as below.

1 1 1

2 1 2

() 950 19 25

() 700 10 15
t t t

t t t

D p p t

D p p t

= − −
= − −

Since the substitution affects the demands
positively, when it is ignored, demand decrease.
Moreover when we ignore the time effect, average
demand functions change as follows.

1 1 2 1 2

2 1 2 1 2

(,) 950 19 15

(,) 700 10 10
t t t t t

t t t t t

D p p p p

D p p p p

= − +
= + −

Time affects the demand of the products negatively.
Because consumers usually want to purchase
products at the beginning of the season and this
purchase behavior decreases to the end of the
season. This is proved by the results of regression
analysis as seen in demand functions. When we
ignore the time effect, demands increase, then the
system doesn’t decrease the price to make more
profit. The algorithms results are given in Table 4.
According to the results in Table 4, similar results
are obtained. In the basic case, there is no
markdown for the product 1. For product 2, system

starts with 18 TL and after week 2 10% discount is
made. In case 2 (without substitution effect), since
the sales of the products decrease, prices decrease.
For the first product, 10% discount is made in week
2, 10% discount is made in week 4 and finally
again 10% discount is made in week 5. Moroever
the price of the second product decreases to 5.10
TL. Therefore the revenue decreases to 124,210 TL
from 155,953 TL. In case without time effect,
system starts to season with the highest prices, 30
TL and 20 TL, and makes only one discount during
the season because it is not necessary to discount
the prices due to the high demands since we have
substitution effect and no time effect. Then, the
revenue is the highest as in posterior solution.

3.2. Three product case

Similar analysis are done for the 3 product case but
the run time of the algorithm increases very much.
While the runtime for 2 product case takes about 30
minutes for 5000 iterations, runtime for 3 product
case with the aggregation level of 50 units takes
about 2.5 hours although the inventory level of each
product decrease to 3000 units. Since the state
space increases, we should perform many iterations
to visit most of the states sufficiently.
When we run the algorithm for 5000 iterations, we
get the convergence after about 500 iterations as
seen in Fig. 6. Hence we apply 5000 iterations for
the following analysis.

Table 4. Optimal policies obtained by Sarsa algorithm

 Week

Revenue

Revenue
of the

posterior
solution

 1 2 3 4 5 6 7-10

Basic Case
Optimal
Policy

Prod1 30 30 30 30 30 30 30

155,953TL

104,877TL Prod2 18 18 16.2 16.2 16.2 16.2 16.2

Without
Substitution

Effect

Optimal
Policy

Prod1 30 27 27 24.3 21.87 21.87 21.87

124,210TL

97,030TL Prod2 20 20 14 12.6 11.34 10.20 5.10

Without Time
Effect

Optimal
Policy

Prod1 30 30 27 27 27 27 27
161,800TL

106,255TL Prod2 20 20 20 20 18 18 18

Each of the products have inventory levels of 3000
units. Initial prices of the products are 31 TL, 31 TL
and 36 TL respectively. Expected demand functions
are obtained by the regression model that are as
follows:

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

(, ,) 400 10 5 11 20

(, ,) 950 20 8 17 15

(, ,) 800 12 12 9 10

t t t t t t t

t t t t t t t

t t t t t t t

D p p p p p p t

D p p p p p p t

D p p p p p p t

= − + + −
= − − + −
= − + − −

Product 2 and 3 are substitute of product 1, product
3 is substitute of product 2 and product 2 is
subtitute of product 3. In each period, again 4 prices
can be applied for each product, so totally we have
4 4 4 64× × = actions that will be observed. We
apply 3 discount rates such as 10%, 30% and 50%
or we may not apply any discount, that is, the price
of the product remains same. If we observe all
levels of the inventory, we will have

113000 3000 3000 64 17.28 10× × × = × different
states.

 Copyright: the authors
 74

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

Fig. 6. Convergence for the three product case

Therefore, we apply the mixed aggregation level to
take the advantage of visiting states sufficiently and
get more reliable states.. The results show that
when we apply the mixed aggregation level, the
visiting number of states increase and the cv values
decrease like in the 2 product case. Although the
expected values of these aggregated levels are
approximately same given in Table 5, the standard
error value decreases to 6492 from 7357 for
aggregation level by 100 units and this error value
reduces to 7356 from 7422 for 50 units

Table 5. The analysis results for each aggregation
level in three product case

 95% confidence interval

Agg
level

Agg
level
by

(units)
Standard
deviation

Expected
value (TL)

Lower
bound
(TL)

Upper
bound
(TL)

Single
50 7422 230,907 230,701 231,113

100 7357 224,319 224,115 224,523

Mixed
50 7356 230,391 230,187 230,595

100 6492 218,227 218,047 218,407

aggregation. Furthermore, the 95% confidence
interval is very reliable for these states. The optimal
policy for mixed aggregation level with substitution
case is obtained as in Table 6. The system starts
with the initial prices of 27.9 TL, 31 TL and 36 TL
respectively. In period 2, 10% discount decision is
taken for each product, in period 3, 10% discount
decision is taken for only product 2 and 3 and
finally 10% discount is made in week 5. When the
substitution effect is disapperared, the profit
decreases to 112,890 TL from 230,200 TL since
demands and also the prices decrease. Moreover,
the discount decisions are given many times more
than the previous case, because the system tries to
clear on-hand inventories by decreasing the prices.

Table 6. Optimal policies obtained by Sarsa Algorithm

 Week

Revenue
 1 2 3 4 5 6 7-10

Basic Case
Optimal
policy

Prod1 27.9 25.11 25.11 22.59 22.59 22.59 22.59
230,200 TL Prod2 31 27.9 25.11 25.11 25.11 25.11 25.11

Prod3 36 32.4 29.16 29.16 26.24 26.24 26.24
Without

Substitution
Effect

Optimal
policy

Prod1 21.7 21.7 15.19 15.19 10.63 5.31 5.31
112,890 TL Prod2 21.7 21.7 21.7 21.7 19.53 13.67 13.67

Prod3 36 18 18 18 18 9 9

Without
Time Effect

Optimal
policy

Prod1 27.9 27.9 25.11 25.11 25.11 25.11 25.11
250,081 TL Prod2 31 27.9 27.9 27.9 27.9 27.9 27.9

Prod3 36 32.4 32.4 32.4 32.4 32.4 32.4

When time is not considered, the number of
discounts decreases because we do not need to
discount the prices when we have sufficient
demands. The revenue levels increase to 250,081
TL from 230,200 TL.

4. Validation

To evaluate the algorithm results, we apply the
algorithm to real data. One of the example data set
is given in Table 7. These products are observed by
linear regression models. The values of the
parameters related to this linear regression model
are given in Table 8 and their relations are shown in
Fig. 7.

Table 7. Example multiproduct group

Product name_1 Product name_2 relation Product code_1 Product code_2
PNT,CESTA PNT,RELATE - 393415 393440
PNT,CESTA KK.TSH,B.Y.DUBAR + 393415 400479

 Copyright: the authors
 75

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

Table 8. Regression model of the example mutiproduct group

Model Constant
term

393415_price 393440_price 400479_price Sales period
(week)

393415 400 -10 5 11 -20

393440 950 -20 -8 17 -15

400479 800 -12 12 -9 -10

Fig. 7. Relationship between the products

The approximate optimal markdown policy of this
multiproduct group is estimated by using ADP
algorithm. The comparison of the policies are
shown in Fig. 8-10. Retailer prices are higher than
the estimated prices obtained from the ADP
algorithm. Since demand changes with respect to

the price, the revenue of the retailer is 440,960 TL
while the estimated revenue by ADP is 516,925 TL.
Therefore, ADP algorithm gives better solution
than the other manually decided policies by the
retailer.

Fig. 8. Comparison between the retailer and estimated prices

Fig. 9. Comparison between the retailer and estimated prices

markdown policy for the product_393415

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12

week

p
ri

ce
 (

T
L

) retailer price

estimated price

markdown policy of the product_393440

20

25

30

35

0 2 4 6 8 10 12

week

p
ri

ce
 (

T
L

) retailer price

estimated price

 Copyright: the authors
 76

Co-published by Atlantis Press and Routledge

Ö.Cosgun et al.

Fig. 10. Comparison between the retailer and estimated prices

5. Conclusion

We consider a markdown optimization problem
faced by a retailing industry. There is no paper that
investigate the substitution effects on optimal
policies and timing of the markdowns if the
products are correlated. This paper has
demonstrated that the correlations between the
products are very important to determine the
optimal policy. We use a real sales data obtained
from a retailing company. Since our state space is
very large and multidimensional, we use
Approximate Dynamic Programming. To encounter
all states sufficiently, we apply aggregation
technique.

We showed that substitution has positive effects on
optimal policy of the products. When we consider
the correlations between products, some demand of
the products pass to the other products according to
the changes in some attributes of the products. Then
since demand increases, system decides to increase
the prices of the product, therefore the profit
increases too.
Another observed effect is time effect. We assume
that demands decrease to the end of the season, so
time has a negative effect on demands. When we
don’t consider the time effect, demands increase
according to the basic case which has the time
effect. When demands increase, again system
decides to increase the prices of the product and
then the profit increases. Therefore time has a
negative effect on profits.

As a result, correlation between products is an
important subject that should be taken into
consideration. Because of substitution among
products, the markdown policy of one product
affects the sales of other products. Therefore,
markdown policies for product groups having a
significant crossprice elasticity among each other
should be jointly determined. Otherwise, we can
decide on wrong price policies and get smaller
profits.

In this paper, we analyse only the substitution effect
on markdown policies. In future research, we can
observe the substitution and complementary effects
together and get insights about how optimal
policies will change. Moreover, another function
approximation techniques such as Neural Network,
SHAPE algorithm can be used and compared with
the aggregation technique used in this paper.

Acknowledgement

The authors would like to thank the Turkish
Scientific & Technological Research Council
(TUBITAK), for supporting this research under
Project No. 107M257.

References

1. Phillips, R. L., Pricing and Revenue
Optimization, (Stanford Business Books,
2005).

2. Reda, S., Despite Early Positive Results,
Retailers Haven’t Jumped on Analytics
Bandwagon, Stores (KhiMetrics, Inc.)
85(3),(2003), 203-238.

3. Lazear, E,P., Retail pricing and clearance sales,
The American Economic Review 76 (1), (1986),
14-32.

4. Pashigian, B.P., Demand uncertainty and sales;
A stıdy of markdown pricing, American
Economy Review 78 (5), (1988), 936-953.

5. Rajan, A. and Rakesh, R. S., Dynamic pricing
and ordering decisions by a monopolist,
Management Sci. 38, (1992), 240–262.

6. Smith, S.A. and Achabal, D.D., Clearance
Pricing and Inventory Policies for Retail
Chains, Management Sci. 44 (3), (1998), 285-
300.

7. Gallego, G. and van Ryzin, G., Optimal
dynamic pricing of inventories with stochastic
demand over finite horizons, Management Sci.
40, (1994), 999-1020.

8. Feng, Y. and G. Gallego, Optimal starting
times for end-of-season sales and optimal
stopping times for promotional fares,
Management Sci. 41, (1995), 1371–1391.

9. Feng, Y. and Xiao, B., Integration of pricing
and capacity allocation for perishable products,

markdown policy of the product_400479

20

25

30

35

40

0 2 4 6 8 10 12

week

p
ri

ce
 (

T
L

)

retailer price

estimated price

 Copyright: the authors
 77

Co-published by Atlantis Press and Routledge

 Markdown Optimization via Approximate

European Journal of Operational Research
168, (2006), 17-34.

10. Bitran, G., Caldentey, R. and Mondschein,
S.V., Coordinating Clearance Markdown Sales
of Seasonal Products in Retail Chains,
Operations Research 46, (1998), 609–624.

11. Mantrala, M. K. and Rao, S., A Decision-
Support System that Helps Retailers Decide
Order Quantities and Markdowns for Fashion
Goods, Interfaces 31, (2001), 146-165.

12. Su, X., Intertemporal pricing with strategic
customer behavior, Management Sci. 53 (5),
(2007), 726-741.

13. Reiner, G. and Natter, M., An encompassing
view on markdown pricing strategies: an
analysis of the Austrian mobile phone market,
OR Spectrum 29, (2007), 173- 192.

14. Elmaghraby, W. and Keskinocak, P., Dynamic
Pricing in the Presence of Inventory
Considerations: Research Overview, Current
Practices, and Future Directions, Management
Sci. 49 (10), (2003), 1287-1309.

15. Kök, A.G. and Fischer, M.L., Demand
Estimation and Assortment Optimization Under
Substitution: Methodology and Application,
Operations Research 55 (6), (2007), 1001-
1021.

16. Shen, Z.M. and, Su, X., Customer Behavior
Modeling in Revenue Management and
Auctions: A review and new research
oppurtunities, Production and Operations
Management 16 (6), (2007), 713-728.

17. Jain, D. C., Vilcassim, N. J. and Chintagunta,
P. K., A Random Coefficients Logit Brand

Choice Model Applied to Panel Data”, Journal
of Business and Economic Statistics 12, (1994),
317-328.

18. Cooper, L.G. and Nakanishi, M., Market-share
analysis: Evaluating competitive marketing
effectiveness, (Kluwer Academic Publishers,
1988).

19. Train, K, Discrete Choice Methods, (MIT
Press, London, 2002).

20. Powell, W.B., Approximate Dynamic
Programming: Solving the curses of
dimensionality, (John Wiley & Sons, Inc.
2007).

21. Kaelbling, L.P., Littman M.L. and Moore,
A.W., Reinforcement Learning: A review,
Journal of Artificial Intelligence Research 4,
(1996), 237-285.

22. Moriarty, D.E., Schultz, A.C. and Grefenstette,
J.J., Evolutionary algorithms for reinforcement
learning, Journal of Artificial Intelligence
Research 11, (1999), 241-276.

23. Whatkins, C.J.C.H., Learning from Delayed
Rewards, PhD Thesis, (1989).

24. Sutton, R.S. and Barto, A.G., Reinforcement
Learning: An introduction, (The MIT Press,
1998).

25. Powell, W.B., Merging AI and OR to Solve
High Dimensional Stochastic Optimization
Problems Using Approximate Dynamic
Programming, Informs Journal on Computing
22 (1), (2010), 2-17.

26. Coşgun, Ö., Kahraman, C. and Kula, U.,
Markdown Optimization Under Stochastic
Demand, PhD Thesis, (2011).

 Copyright: the authors
 78

Co-published by Atlantis Press and Routledge

