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Abstract 

With the rapid development of network technology, especially in the internet area, distributed computation and 
parallel processing of data are urgently needed. This paper studies the combination operation of the lattice-valued 
concept lattices to realize its distributed computation and parallel processing. The proposal of its corresponding 
combination algorithm is mainly according to the conjunction properties of incomparable attribute values. Firstly, 
we define a homotypic lattice-valued concept lattice and a combined concept lattice; secondly, we analyze some 
relations between the lattice-valued formal concepts under two conditions and prove the isomorphism of the 
combination theory; finally, we present the combination algorithm of multiple lattice-valued concept lattices and 
analyze the algorithm complexity and employ an example to show the application of this combination algorithm. 

Keywords: Concept lattice; Lattice-valued concept lattice; Homotypic formal context; Combination algorithm; 
Parallel processing 

1. Introduction 

Formal concept analysis (FCA) was proposed by Wille in 
1982, and its ideological core is to construct the binary 
relation between objects and attributes based on the 
bivalent logic [1-3]. The basic setting is well-suited for 
attributes which are crisp, i.e., each object of the domain 
of applicability of the attribute either has (1) or does not 
have (0) the attribute. However，in most cases, many 
attributes are fuzzy rather than crisp. That is to say, it is a 
matter of degree to which an object has a fuzzy attribute. 
For instance, when asking whether a man with a height of 

182 cm is tall, one probably gets an answer like “not 
absolutely tall but almost tall”. If according to the fuzzy 
logic, we can say that a man with a height of 182 cm is 
tall to a degree, say, 0.8. So, the entries of a table 
describing objects and attributes become degrees from 
[0,1]. As a conceptual clustering method, concept lattices 
and fuzzy concept lattices have been applied in many 
fields, e.g., conceptual clustering method [4,5], 
information retrieval and knowledge discovery [6]. 

However, there is another way to characterize such 
fuzzy information. The way is based on the lattice 
implication algebra considering the modifiers “almost, 
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rather, very, absolutely, etc.” as its elements. A favorite 
choice of L is the set of modifiers instead of values from 
[0,1]. Doing so, the entries of a table describing objects 
and attributes become the modifiers from L. Namely, one 
can consider a table with modifiers from L a 
lattice-valued context and the structures which result this 
way are called the lattice-valued concept lattices and its 
related theories have been studied in our previous work 
[7-10]. The key point different from the general fuzzy 
concept lattices is that the range of values achieved 
directly by the lattice-valued concept lattice is not a unit 
interval [0,1] but a complete lattice structure, on which 
both incomparability and fuzzy information can be dealt 
with very well.  

Whether the classical and fuzzy concept lattices or 
the lattice-valued concept lattices, the prerequisite for 
their applications is to construct the appropriate structures. 
In the practical construction process, it is inevitable to 
perform the complex calculations, so that the high 
requirements put forward for precision and real time. 
Especially for a large scale formal context, the present 
algorithms of constructing concept lattices can not 
effectively decrease the time complexity. Under such 
situation, more and more researchers tend to use parallel 
and distributed store techniques to build the concept 
lattice, whose idea is to firstly decompose the formal 
context into many sub-contexts and construct the 
corresponding sub-lattices, then obtain the final concept 
lattice by combining these sub-lattices, i.e., the 
decomposition and combination operations on concept 
lattices. Through the decomposition operation, the formal 
context can be transformed from the more complex into 
relatively simpler, which can reduce the computation 
steps and improve the speed of construction; and through 
the combination operation, the finally complete concept 
lattice can be easily obtained by combining these simpler 
sub-lattices. As the core content about the combination 
algorithms, many horizontal combination algorithms and 
vertical combination algorithms of classical concept 
lattices have emerged [11-13, which indeed improved the 

construction efficiency. 
However, the above on combination operations are 

not involved to the fuzzy concept lattice, the major reason 
is that, for quite a long time, people are used to 
transforming the fuzzy concept lattice into the classical 
concept lattice through the threshold values [14] designed 
for solving fuzzy problems, which limits the development 
of the fuzzy concept lattice. And due to the fact that the 
lattice-valued concept lattice has mathematical properties, 
it is inevitable to research the combination algorithms of 
multiple lattice-valued concept lattices, which is an 
effectively basic approach for researching the distributed 
computation and parallel processing of the lattice-valued 
concept lattice. 

This paper presents a combination algorithm of 
multiple lattice-valued concept lattices according to the 
conjunction properties among attribute values derived 
from the lattice implication algebra. In Section 2, an 
overview of the classical concept lattice and the lattice 
implication algebra is given. In Section 3, the related 
works of the lattice-valued concept lattice are briefly 
summarized. The definitions of homotypic lattice-valued 
context and homotypic lattice-valued concept lattice are 
proposed in Section 4. The combined context and the 
combined concept lattice are defined. In order to merge 
the needs for combining the multiple lattice-valued 
concept lattices, we discuss the relationship between the 
different formal concepts generated respectively from the 
same and the different formal contexts in detail. In 
addition, the important conclusion is obtained: the 
lattice-valued concept lattice derived from the 
combination of multiple formal sub-contexts is proved 
isomorphic to the combination of multiple lattice-valued 
sub-lattices derived from these formal sub-contexts. 
Finally, the feasibility and effectiveness of this 
combination algorithm are analyzed and further 
demonstrated through an example. Concluding remarks 
are presented in Section 5.  
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2. Concept lattice and lattice implication algebra 

In this section, we briefly review the classical concept 
lattices and the lattice implication algebra which are the 
foundations of the lattice-valued concept lattice.   

Definition 2.1 ( [15] ) A partial ordered set is a set in 
which a binary relation  is defined, which satisfies the 
following conditions: for any

≤
, ,x y z ,  

(1) x x≤ , for any x  (Reflexive), 
(2) x y≤ and y x≤ implies x y=  ( Antisymmetry ), 
(3) x y≤ and y z≤ implies x z≤  ( Transitivity ). 

Definition 2.2 ( [1] ) A formal context is defined as a set 
structure consisting of sets and( , ,G M I ) G M and a 
binary relation I G M⊆ × . The elements of andG M are 
called objects and attributes, respectively, and the 
relationship gIm is read: the object g has the attribute . 
For a set of objects

m
A G⊆ , and a set of attributes , B M⊆

A∗ is defined as the set of attributes common to the 
objects in A , is defined as the set of objects that 
posses all the attributes in , that is,  

B∗

B
{ }A m M gIm g A∗ = ∈ ∀ ∈  { }B g G gIm m B∗ = ∈ ∀ ∈ . 

Definition 2.3 ( [1] ) A formal concept of the context 
is defined as a pair( , ,G M I ) )( ,A B with A G⊆ , 

andB M⊆ A B∗ = , . The setB∗ = A A is called the 
extent and the intent of the conceptB ( ),A B . 

Example 2.1 A formal context and its Hasse diagram of 
the concept lattice are depicted as Table 1 and Fig. 1, 

Table 1．A formal context ( ), ,G M I  

1
2

a b c d e

1
1

11

13
4 1

1 1
1

1
0
0

0

0

0
0

0
0

0
0

}{ φ,1234

{ }b,13 { }c,34 { }e,124

}{ bcd,3 { }ce,4 }{ ae,12

}{ abe,1

}{ abcde,φ  
Fig. 1  Hasse diagram of concept lattice 

Definition 2.4 ( [16,17] ) Let be a bounded 

lattice with an order-reversing involution ' .
( , , , ,L O I∧ ∨ )

I and are 
the greatest and the smallest element of , respectively. 

is a mapping. If for any

O
L

: L L L→ × → , ,x y z L∈ , the 
following conditions hold: 
(1) ( ) ( )x y z y x z→ → = → → ;  
(2) x x I→ = ; 
(3) x y y x′ ′→ = → ;  
(4) x y y x I→ = → = implies x y= ; 
(5) ( ) ( )x y y y x→ → = → → x

)
;  

(6). ( ) ( ) (x y z x z y z∨ → = → ∧ → ; 
(7). ( ) ( ) ( )x y z x z y z∧ → = → ∨ → . 
Then ( , , , , , , )L O I′∧ ∨ → is called a lattice implication 
algebra. 

Example 2.2 Let { }6 , , , , ,L O a b c d I= be a partial ordered 
set depicted as Fig.2, the operations and∨ are defined 
as:  

∧

( )x y x y y∨ = → → ， 

( )( )x y x y y ′′ ′ ′∧ = → → . 

and  is defined as Table 2, and ' is defined as: →
I O′ = , O I′ = , a c′ = , , b d , c a′ = ′ = d b′ = . 

Then 6( , , , , , , )L O I′∧ ∨ → is a lattice implication algebra.  

I

b

c

a

d

O
 

Fig. 2 Hasse diagram of { }6 , , , , ,L O a b c d I=  

 
Table 2．Implication operation of { }6 , , , , ,L O a b c d I=  

→ O a b c I
O
a
b
c
d

I I I I I
c

a
b

I

I I
I

I
I
I
I

b c
b

b
I
Ia

a
d

d

I

I

b

a
a

I O a b Ic d

    BCK-algebra, MV-algebra, MTL-algebra, residuated 
lattice, -algebra, and lattice implication algebra are all 
related to logic. The following theorems are mainly 

0R
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devoted to the discussion of relations between lattice 
implication algebra and the other algebras.  

Theorem 2.1 Let ( , , , , , , )L O I′∧ ∨ → be a lattice 

implication algebra, if define ( )x y x y ′′⊗ = → , then 
is a residuated lattice. ( , , )L ⊗ →

Theorem 2.2 Let ( , , , , , , )L O I′∧ ∨ → be a lattice 
implication algebra. If define x y y x∗ = → for any 

,x y L∈ ,  
then ( , , )L θ∗ is a bounded commutative BCK-algebra 
with ,e O= Iθ = . 
if ( )x x′ ′ = and ( ) ( )x y y y x→ → = → → x

O I

O I

, then 
is a lattice implication algebra. ( , , , , , , )L ′∧ ∨ →

Theorem 2.3 Let ( , , , , , , )L ′∧ ∨ → be a lattice 

implication algebra, define operations , + and ∗ ⋅ on as 
follows: for any

L
,x y L∈ ,  

x x∗ ′= ; 
x y x y′+ = → ; 

( )x y x y′ ′⋅ = → , 
then is an( , , , , , )L O+ ⋅ ∗ I MV -algebra. 

Theorem 2.4 Let be an( , , , , , )L O+ ⋅ ∗ I MV -algebra, 
define a binary operation and a unary operation 
on as follows: for any

→
' L ,x y L∈ ,  

x y x y∗→ = + ; 
x x∗′ = , 

then is a lattice implication algebra. ( , , , , , , )L ′∧ ∨ → O I

O ITheorem 2.5 Let ( , , , , , , )L ′∧ ∨ → be a lattice 
implication algebra, for any ,x y L∈ , if define 

( )x y x y′ ′⊗ = → , then is a 

MTL-algebra. 

( , , , , , , )L ∨ ∧ ⊗ → O I

O ITheorem 2.6 Let is a MTL-algebra, 
for any

( , , , , , , )L ∨ ∧ ⊗ →

x L∈ define: 
x x O′ = → , 

if ( )x x′ ′ = and ( ) ( )x y y y x→ → = → → x
O I

O I

, then 
is a lattice implication algebra. ( , , , , , , )L ′∧ ∨ →

Theorem 2.7 Let ( , , , , , , )L ′∧ ∨ → be a lattice 
implication algebra, for any ,x y L∈ , if 

(( ) ( ) ( ))x y x y x y′→ ∨ → → ∨ = I
O I

O I

, then 
 is a a -algebra. ( , , , , , , )L ′∧ ∨ → 0R

Theorem 2.8 Let is a -algebra, for 
any

( , , , , , , )L ∨ ∧ ⊗ → 0R
,x y L∈ , if ( ) ( )x y y y x→ → = → → x

O I
, then 

( , , , , , , )L ′∧ ∨ →  is a lattice implication algebra. 

3. Lattice-valued concept lattice 

Main theorem of L-concept lattice has two versions, the 
first one deals with the ordinary partial order on formal 
concepts. The second one deals with a fuzzy order on 
formal concepts. The L-Fuzzy concept theory has 
developed in [18,19], which selects  a support set of 

some structure 

L

,L L= " as the scale of truth degrees. 

This paper selects a lattice implication algebra as the 
values range to construct the lattice-valued concept lattice. 
Based on the logical foundation, we can deal with not 
only the fuzziness and incomparability associated with 
the object itself, but also the uncertainty involved within 
the course of the object being processed as well. It is 
totally different from the fuzzy concept lattice. Its 
ideological core is to construct a lattice-valued fuzzy 
relation between objects and attributes. In this section, the 
definition of the lattice-valued concept lattice and its 
properties are presented. 

Definition 3.1 A four-tuple ( , , , )nK G M L I= � is called a 
lattice-valued formal context, where  
is the set of objects, 

1 2{ , , , }rG g g g= "

1 2{ , , , }sM m m m= "  is the set of 

attributes, is an n-ary lattice implication algebra,nL I� is a 

relation between andG M , i.e., I� : . nG M L× →

Similar to the definition of L-fuzzy set in [18], we 
have the following instructions: 

Let  be a non-empty set of object and G
( , , , , )nL ′∨ ∧ → an n-ary lattice implication algebra. 

Denote the set of all the -fuzzy subsets on as , nL G G
nL

1 2, G
nA A L∀ ∈ , 1 2 1 2( ) ( )A A A g A g⊆ ⇔ ≤ , for all g G∈ , 

then is a partial ordered set. ( , )G
nL ⊆

Let M be a non-empty set of attribute and 
( , , , , )nL ′∨ ∧ → an n-ary lattice implication algebra. 

Denote the set of all the -fuzzy subsets onnL M as M
nL , 

1 2, M
nB B L∀ ∈ , , for all m1 2 1 2( ) ( )B B B m B m⊆ ⇔ ≤ M∈ , 
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then is a partial ordered set. ( ,M
nL ⊆)

According to [20-22], we can give the following 
theorem. The form of the two mappings in Theorem 3.1 
is the same with the one in [20-22], but the operators are 
derived from the lattice implication algebra, which is not 
the same.  

Theorem 3.1 Let ( , , , )nK G M L I= � be a lattice-valued 
formal context, be an n-ary lattice implication 

algebra, , are two mappings between  and 
nL

f h G
nL M

nL  
defined as, 
                : G M

n nf L L→  

( ) ( ) ( ( ) ( , ))
g G

f A m A g I g m
∈

= ∧ → �  

                : M G
n nh L L→  

  ( ) ( ) ( ( ) ( , ))
m M

h B g B m I g m
∈

= ∧ → �

Then ( , )f h is a Galois connection based on the lattice 
implication algebra. 

Proof. For any g G∈ , 

 ( ) ( ) ( ( ) ( , ))
m M

A h B A g B m I g m
∈

⊆ ⇔ ≤ ∧ → �  

                ( ) ( ) ( , ) A g B m I g m⇔ ≤ → �  

                ( ) ( ( ) ( , ))A g B m I g m⇔ → → =� I  
                 ( ) ( ( ) ( , ))B m A g I g m I⇔ → → =�

                 ⇔ ( ) ( ) ( , )B m A g I g m≤ → �

                 ( ) ( ( ) ( , ))
g G

B m A g I g m
∈

⇔ ≤ ∧ → �

              . ( )B f A⇔ ⊆

So ( , )f h is a Galois connection based on the lattice 
implication algebra.  

Definition 3.2 A lattice-valued formal concept of 
( , , , )nK G M L I= � is defined as a pair ( , )A B  with 
G
nA L∈ , M

nB L∈ and ( )f A B= , . For any ( )h B A=

1 2, n
GA A L∈ , 1 2, M

nB B L∈ , define 

1 1 2 2 1 2 2 1( , ) ( , ) (  )A B A B A A or B B≤ ⇔ ⊆ ⊆ and the set 

{ }( ) ( , ) ( ) , ( )L K A B f A B h B A= = =

�

{ },G g g= { }, , ,

is called the 
lattice-valued concept lattice. 

Example 3.1 Let us consider the lattice-valued formal 
context depicted in Table 3, where 

,
6( , , , )G M L I

1 2 1 2 3 4m m m m= , the attribute values 

are some linguistic values, such as: best, better, 
somewhat good, worst, worse, somewhat bad.  

Table 3．A lattice-valued formal context  6( , , , )G M L I�

g1
g2

m1 m2 m3 m4 I�

somewhat bad
worst

worse
better best

somewhat good better
somewhat good

    For the linguistic values in Table 3, we denote:  
I = best, O = worst, a = somewhat bad, b = better, c = 
somewhat good, d = worse. Then Table 3 can be written 
as the following Table 4. And in these linguistic values, 
there exist some incomparable values, so they can be 
established into a lattice implication algebra , whose 

Hasse diagram is depicted in Fig 2: 
6L

Table 4．A lattice-valued formal context 

g1
g2

m1 m2 m3 m4 I�

a
O

d
b I

c b
c

 
Theorem 3.2 Let ( , , , )nK G M L I= �  be a lattice-valued 

formal context, and ( , )f h  the Galois connection, for 

any 1 2, , G
nA A A L∈ , 1 2, , M

nB B B L∈ , there are the 

following properties: 

(1) 1 2 2 1( ) ( )A A f A f A⊆ ⇒ ⊆ ,  

   ; 1 2 2 1( ) ( )B B h B h B⊆ ⇒ ⊆

(2) ( )A hf A⊆ , ; ( )B fh B⊆

(3) ( ) ( )f A fhf A= , ( ) ( )g B hfh B= ; 

Proof. (1) For any 1 2, G
nA A L∈ , g G∈ ,  m M∈

   1 2A A⊆  

1 2( ) ( )A g A g⇒ ≤  

2 1( ) ( , ) ( ) ( , )A g I g m A g I g m⇒ → ≤ →� �  

( ) (2 1( ) ( , ) ( ) ( , )
g G g G

)A g I g m A g I g m
∈ ∈

⇒ ∧ → ≤ ∧ →� �  

2 1( )( ) ( )( )f A m f A m⇒ ≤ , for any  m M∈

So, 1 2 2 1( ) ( )A A f A f A⊆ ⇒ ⊆ ; 

1 2 2 1( ) ( )B B h B h B⊆ ⇒ ⊆  can be proved similarly. 

(2) For any G
nA L∈ , and ig G∀ ∈ , 

    ( )( )ihf A g

( )( )( ) ( , )
j

j i jm M
f A m I g m

∈
= ∧ → �  M
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( )( ) ( , ) ( , )
j k

k k j im M g G
A g I g m I g m

∈ ∈

⎛ ⎞= ∧ ∧ → →⎜ ⎟
⎝ ⎠

� �
j

j

 

( )( )( ) ( , ) ( , )
j k

k k j im M g G
A g I g m I g m

∈ ∈
= ∧ ∨ → →� �  

( )iA g≥ , 
So, ( )A hf A⊆ ; 

( )B fh B⊆  can be proved similarly. 

(3) For any G
nA L∈ , firstly, by (1) and (2), 

( ) ( ) ( )A hf A fhf A f A⊆ ⇒ ⊆ , secondly, , jm M∀ ∈

( )( )jfhf A m  

( )( )( ) ( , )
i

i ig G
hf A g I g m

∈
= ∧ → �

j

j
⎞

⎝
� �

 

( )( )( ) ( , ) ( , )
i k

k i k ig G m M
f A m I g m I g m

∈ ∈

⎛= ∧ ∧ → →⎜ ⎟
⎠

 

( )( )( )( ) ( , ) ( , )
i k

k i k ig G m M
f A m I g m I g m

∈ ∈
= ∧ ∨ → →� �

j  

( )( )jf A m≥ , 

it follows that, .  ( ) ( )f A fhf A⊆

So, ; ( ) ( )f A fhf A=
( ) ( )h B hfh B=  can be proved similarly. 

4. A combination algorithm of multiple lattice-valued 
concept lattices 

Concept lattice provide a theoretical framework for the 
design and discovery of concept hierarchies from 
relational information systems and the structure of every 
concept lattice is corresponding one by one with its 
formal context, so the distributed treatment of concept 
lattices certainly relates to some operations such as the 
decomposition and combination of formal context.  

4.1 Theoretical foundation for the combination 
operation  

Definition 4.1 Let 1 1 1 1( , , , )nK G M L I= �  and 

2 2 2 2( , , , )nK G M L I= � be lattice-valued formal contexts. If 

,1 2G G= 1 2M M= , 1 2I I≠� � . Then 1K and 2K are called 
homotypic lattice-valued formal contexts and  
and are called homotypic lattice-valued concept 
lattices. 

1( )L K

2( )L K

Definition 4.2 Let ( , , , )nK G M L I= � , 1 ( , , , )n

and 2 ( , , , )n 2K G M L I= �  be homotypic lattice-valued 

formal contexts. If 1 2I I I= ∧� � � , i.e., g G∀ ∈ , m M∈ , 

1 2( , ) ( , ) ( , )I g m I g m I g m= ∧� � � . Then K is called a 
combined formal context of 1K  and 2K , denoted as 

1 2K K K= ∧ . 

Definition 4.3 Let ( , , , )nK G M L I= � be a lattice-valued 
formal context, and  be the lattice-valued concept 
lattice.

( )L K
( , )i i iC A B∀ = , ( , ) ( )j j jC A B L K= ∈ , 

(1) is said to be more than , denoted as , if iC jC i jC C>

i jA A⊃ (or equivalent j iB B⊃ ); 
(2) is said to be incomparable with , denoted 

as , if 
iC jC

i jC C≈ i j

1K G M L I= �  

A A≈ (or equivalent ). i jB B≈

Definition 4.4 Let  be a partial ordered set, for 

any

( , )G
nL ⊆

, G
i j nA A L∈ , jA is called a covering object set of iA , 

denoted by i jA A≺ , if i jA A⊆  and there no G
x nA L∈  

exists such that i x jA A A⊂ ⊂ . 

Definition 4.5 Let  be a partial ordered set, for 

any

( , )M
nL ⊆

, M
i j nB B L∈ , is called a covering attribute set of 

, denoted by , if and there no 
jB

iB iB B≺ j jiB B⊆
M

y nB L∈  exists such that . i yB B B⊂ ⊂ j

Theorem 4.1 Let ( , , , )nK G M L I= �  be a lattice-valued 
formal context, and  the lattice-valued concept 
lattice,

( )L K
( , ) ( )C A B L K∀ = ∈ , 

(1)If  iA A∃ ≺ , s.t., ( ), ( ) ( )i iA f A L K∈ , then ; ( )iB f A≺

(2)If  iA A∃ ≺ , s.t., ( ), ( ) ( )i iA f A L K∉ , then 

( )( )i iA h f A≺ . 

Proof. (1) For any ( )( , ), , ( ) ( )i iA B A f A L K∈ , 

iA A≺ iA A⇒ ⊂ ( ) ( )if A f A⇒ ⊂ , i.e., ; ( )iB f A⊂

Suppose that  M
y nB L∃ ∈ , s.t., , by 

Theorem 3.2 (1), we can get , 
i.e.,

( )yB B f A⊂ ⊂ i

( )( ) ( ) ( )i yh f A h B h B⊂ ⊂

( )i yA h B A⊂ ⊂ , this is in contradiction with iA A≺ , 

so . ( )iB f A≺
(2) By the definition of Galois connection on 

the formal context, we get 
( , )f h

         ( )( ) ( )ih f A g  

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                     886



A combination algorithm of multiple lattice-valued concept lattice 

       ( )( )( ) ( , )im M
f A m I g m

∈
= ∧ → �

      ( )( ) ( , ) ( , )im M g G
A g I g m I g m

∈ ∈

⎛ ⎞= ∧ ∧ → →⎜ ⎟
⎝

� �
⎠

 

      ( )( )( ) ( , ) ( , )im M g G
A g I g m I g m

∈ ∈
= ∧ ∨ → →� �  

      ( )( ) ( , )im M g G
A g I g m

∈ ∈
= ∧ ∨ ∨ �  

       ( )( ) ( , )ig G m M
A g I g m

∈ ∈

⎛ ⎞= ∨ ∨ ∧⎜ ⎟
⎝ ⎠

�

      ( )iA g>  
That is to say, ( )( )i iA h f A⊂ . 

Suppose that  G
x nA L∃ ∈ , s.t., ( )( )i x iA A h f A⊂ ⊂ , 

by theorem 3.2 (1), we can get 
( )( ) ( ) ( )( )i x if h f A f A f A⊆ ⊆ , and further according 

to theorem 3.2 (3), we can get  
( ) ( )( )i x if A f A f A⊆ ⊆ , i.e., (( )i )xf A f A= , then 

i xA A= , so, ( )( )i iA h f A≺ . 

Theorem 4.2 Let ( , , , )nK G M L I= �  be a lattice-valued 
formal context, and  the lattice-valued concept 
lattice, if 

( )L K

( ), ( ) ( )i iA f A L K∀ ∉ , then  ( , ) ( )A B L K∃ ∈  
and iA A≺ , s.t., ( )if A B= . 

Proof. ( ), ( ) ( )i iA f A L K∉ ⇒ ( )( )( ) , ( ) ( )i ih f A f A L K∈  

by Theorem 4.1, and ( )( )i iA h f A≺ , so ( ) ( )iA h f A∃ = , 

s.t., ( ), ( ) ( )iA f A L K∈ , i.e., ( )if A B= . 

Definition 4.6 Let 1 1( , , , )nK G M L I= �  and 

2 ( , , , )n 2K G M L I= �  be lattice-valued homotypic formal 
contexts, , , 1( , ) ( )i i iC A B L K∀ = ∈ 2( , ) ( )j j jC A B L K= ∈

(1)  is said to be homotypicly equal toiC jC , denoted as 

, if i jC C=� i jA A= ; 

(2)  is said to be homotypicly more thaniC jC , denoted 

as , if i jC C>� i jA A⊃ ; 

(3)  is said to be homotypicly coveringiC jC , denoted 

as j iC C�≺ , if j iA A≺ ; 

(4)  is said to be homotypicly incomparable withiC jC , 

denoted as , if i jC C≈� i jA A≈� ; 

(5) is said to be ( , )C A B= combined formal concept 
of andiC jC , denoted as iC C C

Remark. By (1) and (2) of Definition 4.6, we will get the  
conclusion: , if i jC C≥� i jA A⊇ . 

Definition 4.7 Let ( , , , )nK G M L I= � , 

1 1( , , , )nK G M L I= �  and 2 2( , , , )nK G M L I= � be 
lattice-valued homotypic formal contexts. , 

, are the lattice-valued homotypic concept 
lattices. is said to be a combined concept lattice of 

 and , denoted by , 
if

( )L K

1( )L K 2( )L K
( )L K

1( )L K 2( )L K 1 2( ) ( ) ( )L K L K L K= ∧
( )C L K∀ ∈ , 1 ( )C L K1∃ ∈  and , s.t., 2 ( )C L K∈ 2

21C C C= ∧� , and satisfies  or , iC C�; iC C=� 1, 2i = . 

Definition 4.8 Let 1( , , , )nK G M L I= �  and 

2 ( , , , )n 2K G M L I= �  be lattice-valued homotypic formal 

contexts. ( , , , )nK G M L I= � is the combined formal 
context of 1K and 2K . Let , , be the 
lattice-valued homotypic concept lattices and 

( )L K 1( )L K 2( )L K

1 2( ) ( ) ( )L K L K L K= ∧ , , ( , ) ( )C A B L K∀ = ∈

1 1 1 1( , ) ( )C A B L K∃ = ∈  and , 
s.t.,

2 2 2 2( , ) ( )C A B L K= ∈

1 2C C C= ∧� . 
(1) is said to be the intent updating fuzzy concept of 

and , if
C

1C 2C 1C C=� or 2C C=� or ; 1 2C C C= =� �
(2) is said to be the newly added fuzzy concept of 

and , if and . 
C

1C 2C 1C C�≺ 2C C�≺

Theorem 4.3 Let 1 1( , , , )nK G M L I= �  and 

2 ( , , , )n 2K G M L I= �  be lattice-valued homotypic formal 
contexts. , are the lattice-valued homotypic 
concept lattices. Then . 

1( )L K 2( )L K

1 2 1( ) ( ) ( )L K L K L K K∧ = ∧ 2

Proof. Suppose that 1 1( , )f h , 2 2( , )f h and ( , )f h are the 
Galois connections on 1K , 2K and 1 2K K∧ , 
respectively. 1 2( , ) ( ) ( )C A B L K L K∀ = ∈ ∧ ,

1 1 1 1( , ) ( )C A B L K∃ = ∈ , , s.t., 2 2 2 2( , ) ( )C A B L K= ∈

1C C C2= ∧� , it follows that 1 2A A A= ∧ , 1 2B B B= ∧ , 
then 1A A�≺ and 2A A�≺ , since 1 2( , ) ( ) ( )A B L K L K∈ ∧ , 
we can get 1( , ) ( )A B L K∉ and 2( , ) ( )A B L K∉ . So 

1( ) 1f A B=  in the fuzzy context 1K and 2 ( ) 2f A B= in the 
fuzzy context 2K can be get by Theorem 4.2. In addition, 

( )B m ( )1 2 ( )B B m= ∧  

( )1 2( ) ( ) ( )f A f A m= ∧  

( )1( ) ( , )
g G

A g I g m
∈

= ∧ → � ( )2( ) ( , )
g G

A g I g m
∈

∧ ∧ → �  j= ∧� , if i jA A A= ∧ , 

.  i jB B B= ∧
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( 1 2( ) ( , ) ( , )
g G

)A g I g m I g m
∈

= ∧ → ∧� �  

( )( ) ( , )
g G

A g I g m
∈

= ∧ → �  

( )( )f A m=  
Therefore, . 1 2( , ) ( )C A B L K K= ∈ ∧

Conversely, suppose that 1 2( , ) ( )C A B L K K∀ = ∈ ∧ , 
then we can get 1 1 1 1( , ) ( )C A B L K∃ = ∈ , 

and satisfying  or 
, or . It follows that, if  and 
, since and

2 2 2 2( , ) ( )C A B L K= ∈ 1C C�≺

1C C=� 2C C�≺ 2C C=� 1C C�≺

2C C�≺ 1( )C L K∉ 2(C L K )∉ , by Theorem 4.2, 
we get 1( ) 1f A B=  in fuzzy context 1K and 2 2( )f A B= in 
fuzzy context 2K . In fuzzy context 1 2K K∧ , for m M∈ ,  

( )B m ( )( )f A m=  

( )( ) ( , )
g G

A g I g m
∈

= ∧ → �   

( )( )1 2( ) ( , ) ( , )
g G

A g I g m I g m
∈

= ∧ → ∧� �  

( ) ( )1 2( ) ( , ) ( ) ( , )
g G g G

A g I g m A g I g m
∈ ∈

= ∧ → ∧ ∧ →� �  

1 2( )( ) ( )( )f A m f A m= ∧  

1 2( ) ( )B m B m= ∧  
Therefore, . 1 2B B B= ∧

For , 

and
1 1 1( , )C A B= ( )( )1 1 1( ) , ( )h f A f A=

2 2 2( , )C A B= ( )( )2 2 2( ) , ( )h f A f A= g G∈ , 

( ) ( )( )1 1 2 2( ) ( ) ( )h f A h f A g∧  

( ) (1 1 2 2( )( ) ( , ) ( )( ) ( , )
m M m M

)f A m I g m f A m I g m
∈ ∈

= ∧ → ∧ ∧ →�

( ) ( )1 2( ) ( , ) ( ) ( , )
m M g G g G

A g I g m A g I g m
∈ ∈ ∈

⎛ ⎞= ∧ ∨ ∨ ∧ ∨ ∨⎜ ⎟
⎝

� �

�

⎠
 

( ) ( )( )1 2( ) ( , ) ( ) ( , )
m M g G

A g I g m A g I g m
∈ ∈

= ∧ ∨ ∨ ∧ ∨� �  

( )( )1 2( ) ( , ) ( , )
m M g G

A g I g m I g m
∈ ∈

= ∧ ∨ ∨ ∧� �  

( )( ) ( , )
m M g G

A g I g m
∈ ∈

= ∧ ∨ ∨ �  

( )( ) ( , ) ( , )
m M g G

A g I g m I g m
∈ ∈

⎛ ⎞= ∧ ∧ → →⎜
⎝

� � ⎟
⎠

 

( )( )( ) ( , )
m M

f A m I g m
∈

= ∧ → �  

( )( ) ( )h f A g=  
( )A g=  

Therefore, 1 2A A A= ∧ . 
On the other hand, if and1C C=� 2C C=� , 

then 1

Corollary 4.1 Let 1 1 1 1( , , , )nK G M L I= � , 

2 2 2 2( , , , )nK G M L I= � ," , ( , , , )m m m n mK G M L I= � ( ) 
be lattice-valued homotypic formal contexts. , 

, , are the lattice-valued homotypic 
concept lattices. Then 

2m ≥

1( )L K

2( )L K " ( )mL K

1 2 1 2( ) ( ) ( ) ( )m mL K L K L K L K K K∧ ∧ ∧ = ∧ ∧ ∧" " . 

4.2 Algorithm description and analysis 

The basic idea of this combination algorithm is to 
construct the formal concepts of every simple 
lattice-valued concept lattice and combine them 
according to the combination operation definition.  

Algorithm: A combination algorithm of lattice-valued 
concept lattice 
Calculate the formal concepts  of ( , )ij ij ijC A B= iK , 

1,2, ,i m" ; 1, 2, , ( )ij L K

2A A A= = . It is obvious that . Hence 
. 

1C C C= ∧ 2

1 2( , ) ( ) ( )C A B L K L K= ∈ ∧

= = " ; ( )iL K is the number 
of formal concepts of .  ( )iL K
Input: the formal concepts of 1K , 2K ,…, mK ( ). 2m ≥

Output: the formal concepts of 1 2 mK K K∧ ∧ ∧" � K  
Begin 

while ( 1K , 2K ,…, mK ≠ Φ ) do  
for i ←1 to m do  

for j ←1 to ( )iL K do 
:ij ijC C=  

for p ←1 to m do 
if p ≠ i then 

for q ←1 to ( )pL K do 

if then pq ijC C=�
:ij ij pqC C C= ∧  

endif; 
if then ij pqC C�≺

:ij ij pqC C C= ∧  

endif; 
endfor; 

else 
endfor; 

else 
endfor; 

endfor; 
endfor; 

end; 
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The time complexity of creating concept lattices is 

the major factor in analyzing the complexity of the 

algorithm, and computing the formal concepts plays the 

key role in the whole process of constructing concept 

lattices. Suppose the lattice-valued formal 

context ( , , , )nK G M L I= � , where , { 1 2, , , rG g g g= " }
}{ 1 2, , , sM m m m= " , , r s  and  are the positive 

integers, the time complexity of computing the formal 

concepts is 

n

(2 )sO r n× .  

If we let 1 2{ , , , }sM m m m= "  

1 1 1

1 1

1 1

1

{ , , } { , , }

   { , , }
p p p

2s s s

s s s

m m m m

m m
− −

+ +

+ +

= " ∪ "

∪"∪ "
s

, 

where 1 2 ps s s s= + + +" , 1 2, , , ps s s"  are also the 
positive integers, and the combination algorithm is 
executed on them, then the time complexity of 
calculating the formal concepts is 

. Because of ( 1 22 ( )pss sO r n n n× + + +" )
1 2, , , ps s s <" s , we can get 1 2 pss s sn n n n+ + + <<" , 

then ( )1 22 ( ) (2pss s )sO r n n n O r n× + + + << ×" , that is 

to say, the complexity of this algorithm is significantly 
decreased.  

Example 4.1 Let us consider the lattice-valued concept 
lattice 6( , , , )K G M L I= � depicted in Table 4, which can be 
looked as the combined formal context of 

1 6 1( , , , )K G M L I= �
2 6 2( , , , )and K G M L I= �

1

 depicted in 
Table 5 and Table 6:    

Table 5．A lattice-valued formal context 1 6( , , , )K G M L I= �  

g1

g2

m1 m2 m3 m4 I�

a
O

d
b I

I I
I

 
Table 6．A lattice-valued formal context 2 6( , , , )2K G M L I= �  

g1

g2

m1 m2 m3 m4 I�

I
I

I
I I

c b
c

    About Table 4, Table 5 and Table 6, we can get the 
following relations: 

{ }1 2 1 2,G G G g g= = = ,

{ }1 2 1 2 3 4, , ,M M M m m m m= = = , 

1 2( , ) ( , ) ( , )I m g I m g I m g≠ ≠� � � , so ,K 1K and 2K are 
lattice-valued homotypic formal contexts and 

1 2K K K= ∧ . Hence, the formal concepts of Table 4 can 
be computed by Table 5 and Table 6. 

The formal concepts of Table 5 and the Hasse 
diagram of are as Fig 3，in which, 1( )L K

( )0 { , },{ , , , }C I I O d I I= ( )1 { , },{ , , , }C a I O b I I=

( )2 { , },{ , , , }C a a c b I I= ( )3 { , },{ , , , }C I b d d I I=

( )4 { , },{ , , , }C a b d b I I= ( )5 { , },{ , , , }C b b d a I I=

( )6 { , },{ , , , }C d b d I I I= ( )7 { , },{ , , , }C I c a d I I=

( )8 { , },{ , , , }C a c a b I I=     ( )9 { , },{ , , , }C b c a a I I=

( )10 { , },{ , , , }C d c a I I I=      ( )11 { , },{ , , , }C a d b b I I=

( )12 { , },{ . , , }C d d b I I I=     ( )13 { , },{ , , , }C a O I b I I=

( )14 { , },{ , , , }C d O I I I I=  

0C

1C

2C

3C

4C 5C 7C

11C 6C 9C 8C

12C 10C 13C

14C
 

Fig. 3 Hasse diagram of 1( )L K  
The formal concepts of Table 6 and the Hasse 

diagram of are as Fig 4:  2( )L K

15C

16C

17C

18C

19C

20C 21C

22C
 

Fig. 4 Hasse diagram of 2( )L K  

( )15 { , },{ , , , }C I I I I c c= ( )16 { , },{ , , , }C b I I I b c=
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( )17 { , },{ , , , }C c I I I I c= ( )18 { , },{ , , , }C I b I I c b=

( )19 { , },{ , , , }C b b I I b b=     

        
( )20 { , },{ , , , }C c b I I I b=

( )21 { , },{ , , , }C b c I I b I= ( )22 { , },{ , , , }C c c I I I I=

For convenient computation, we combine the Fig. 3 
with Fig. 4 as Fig. 5 according to the relations of formal 
concepts derived from the lattice-valued homotypic fuzzy 
contexts: 

0C

1C

2C
4C 7C

11C 6C 8C

12C 10C 13C

14C

15C

16C 18C3C

17C
19C
5C

21C 9C

22C

20C

 
Fig. 5 Hasse diagram of the combination of 1( )L K and 2( )L K  

Through Fig. 5, we can compute the intent updating 
formal concepts and the newly added formal concepts 
according to the Definition 4.8. The formal concepts and 
its Hasse diagram of are shown in Fig. 6: ( )L K

0Ĉ

1Ĉ 2Ĉ

3Ĉ
4Ĉ

5Ĉ

6Ĉ

7Ĉ

8Ĉ

9Ĉ

10Ĉ 11Ĉ

12Ĉ
13Ĉ

14Ĉ

15Ĉ

16Ĉ
17Ĉ

18Ĉ19Ĉ

20Ĉ

21Ĉ

22Ĉ

23Ĉ
25Ĉ

26Ĉ

24Ĉ

 
Fig. 6 Hasse diagram of 1 2( ) ( ) ( )L K L K L K= ∧  

( )0 0 15
ˆ { , },{ , , , }C C C I I O d c c= ∧ =  

( )1 1 15
ˆ { , },{ , , , }C C C a I O b c c= ∧ =  

( )2 16 0
ˆ { , },{ , , , }C C C b I O d b c= ∧ =  

( )3 17 0
ˆ { , },{ , , , }C C C c I O d I c= ∧ =  

( )4 1 16
ˆ { , },{ , , , }C C C d I O b b c= ∧ =  

( )5 1 17
ˆ { , },{ , , , }C C C O I O b I c= ∧ =  

( )6 2 15
ˆ { , },{ , , , }C C C a a c b c c= ∧ =  

( )7 2 16
ˆ { , },{ , , , }C C C d a c b b c= ∧ =  

( )8 2 17
ˆ { , },{ , , , }C C C O a c b I c= ∧ =  

( )9 3 18
ˆ { , },{ , , , }C C C I b d d c b= ∧ =  

( )10 4 18
ˆ { , },{ , , , }C C C a b d b c b= ∧ =

( )11 5 19
ˆ { , },{ , , , }C C C b b d a b b= ∧ =  

( )12 20 5
ˆ { , },{ , , , }C C C c b d a I b= ∧ =

( )13 6 19
ˆ { , },{ , , , }C C C d b d I b b= ∧ =

( )14 6 20
ˆ { , },{ , , , }C C C O b d I I b= ∧ =

( )15 7 18
ˆ { , },{ , , , }C C C I c a d c b= ∧ =

( )16 8 18
ˆ { , },{ , , , }C C C a c a b c b= ∧ =

( )17 9 21
ˆ { , },{ , , , }C C C b c a a b I= ∧ =

( )18 22 9
ˆ { , },{ , , , }C C C c c a a I I= ∧ =

( )19 10 21
ˆ { , },{ , , , }C C C d c a I b I= ∧ =

( )20 10 22
ˆ { , },{ , , , }C C C O c a I I I= ∧ =

( )21 11 18
ˆ { , },{ , , , }C C C a d b b c b= ∧ =

( )22 12 19
ˆ { , },{ . , , }C C C d d b I b b= ∧ =

( )23 12 20
ˆ { , },{ , , , }C C C O d b I I b= ∧ =

( )24 13 18
ˆ { , },{ , , , }C C C a O I b c b= ∧ =

( )25 14 21
ˆ { , },{ , , , }C C C d O I I b I= ∧ =

( )26 14 22
ˆ { , },{ , , , }C C C O O I I I I= ∧ =  

5. Conclusions 

For realizing the distributed computation and parallel 
processing of the lattice-valued fuzzy concept lattice, it is 
inevitable to research its combination algorithms. As the 
one of combination algorithms, this paper proposed a 
conjunction algorithm of multiple lattice-valued fuzzy 
concept lattices, which not only provides an effective 
method for constructing lattice-valued fuzzy concept 
lattice but also makes an important progress toward 
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practical applications in decision-making. Concretely, we 
defined the homotypic lattice-valued fuzzy concept lattice 
and the conjunction fuzzy concept lattice as the 
preconditions and analyzed some relations between fuzzy 
concepts; successively, we gave some theorems to prove 
the isomorphism of conjunction theory and presented the 
conjunction algorithm of the lattice-valued fuzzy concept 
lattice. Obviously, before combining these simple 
lattice-valued fuzzy concept lattices, we should provide 
an appropriate decomposition method of the complex one, 
which will be our future research work. 
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