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P. González , H. Idais ∗, M. Pasadas , M. Yasin

Dept. of Applied Mathematics, University of Granada
Granada, 18071, Spain

E-mail: {prodelas,mpasadas@ugr.es}(P. González, M. Pasadas)
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Abstract

Curve and surface fitting are important and attractive problems in many applied domains, from CAD
techniques to geological prospections. Different methodologies have been developed to find a curve
or a surface that best describes some 2D or 3D data, or just to approximate some function of one or
several variables. In this paper, a new methodology is presented for optimal knots’ placement when
approximating functions of one or two variables. When approximating, or fitting, a surface to a given
data set inside a rectangle using B-splines, the main idea is to use an appropriate multi-objective genetic
algorithm to optimize both the number of random knots and their optimal placement both in the x and y
intervals, defining the corresponding rectangle. In any case, we will use cubic B-splines in one variable
and a tensor product procedure to construct the corresponding bicubic B-spline basis functions in two
variables. The proposed methodology has been tested both for functions of one or two independent
variables, in order to evaluate the performance and possible issues of the procedure.

Keywords: Approximation, Smoothing, Knots allocation, Bi-cubic splines.

1. Introduction

Function approximation, and curve/surface fitting to
data, are major and important problems in many ap-
plied technical and scientific fields: as in CAD de-
sign, virtual reality and computer animation, data
visualization of geological and medical imaging,
artificial vision or scientific computing in gen-
eral 10, 16. On the other hand, there are sev-
eral different methodologies that have been used
for selecting knots for best approximating or fit-
ting curves/surfaces to data using B-splines. For in-
stance, the methodology in 3 uses a least squares fit-
ting method with B-spline surfaces, depending on a

sensitive parametrization, in connection with a uni-
form distribution of knots. In the last decades, an
increasing number of works and algorithms have
been developed for this problem of approximating
or fitting a surface to data using splines. For exam-
ple, the authors in 14 developed a genetic algorithm
to optimize both the number and the allocation of
knots, in spline approximation of bio-medical data.
Later, a new approach was introduced to improve
the knot adjustment for B-spline curves, by using an
appropriate elitist clonal selection algorithm 4. The
methodology in 18 describe an iterative algorithm,
that can also use heuristic criteria, for the optimal
knots distribution in B-spline surface fitting. Koz-
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era et al. in 8 gave a new method for choosing un-
known knots that minimize the cost function, by us-
ing a special scale. Also, the development of surface
fitting include several types of splines, for exam-
ple some techniques without grids for medical im-
age registration, by modification of several selected
knots in P-splines 11. The method in 17 describes
the unified averaging technique, for both approxima-
tion and interpolation problems, concerning knots
placement for B-spline curves. In 5 is presented a
method to solve the curve fitting problem, using a
hierarchical genetic algorithm (HGA). A computa-
tional methodology, based on the so called Artificial
Immune Systems (AIS) paradigm, is used to solve
the knots’ adjustment problem for B-spline curves.
The goal of the application of this algorithm is to
determine the location of knots automatically and
efficiently. In 12 the authors describe a powerful
methodology, based on simulated annealing (SA),
for optimal placement of the knots. Also the au-
thors in 6 use sparse optimization techniques for this
purpose. However, as pointed out in 13 and many
other related works, a final and definitive method-
ology for optimal placement and selection of knots,
for approximating/fitting curves or surfaces to data,
using smoothing splines, is not still completely in-
vestigated, even in the one dimensional case.

In this paper we propose a new methodology for
optimal placement of random knots, for approximat-
ing/fitting curves or surfaces to data, using cubic
smoothing splines of one or two independent vari-
ables. A new technique is presented to optimize
both the number of knots and its optimal placement
by cubic spline approximations, using a developed
multi-objective genetic algorithm. Our scheme give
very accurate results, even for curves or surfaces
with discontinuities and/or cusps; it also determines
the optimal number of knots automatically.

The paper is organized as follows: after this In-
troduction, Section 2 presents the basic definitions
concerning multi-objective optimization problems;
in Section 3 the proposed methodology for smooth-
ing approximation with bicubic splines is explained
in detail; in Section 4 we present the optimiza-
tion strategy for placement of the knots in bi-cubic
smoothing splines; in Section 5 we show some re-

sults that confirm the performance of the proposed
methodology; and some final conclusions are drawn
in section 6.

2. Basic definitions and ideas about
multi-objective optimization problems

Definition 1. In general, a multi-dimensional opti-
mization problem consists in searching for the mini-
mum of a function f :RN −→R such that there exists
s ∈ RN with f (s) 6 f (x) for all x ∈ RN . The func-
tion f (x) is called the fitness or cost function, for
that optimization problem.

But a multi-evaluated or multi-objective problem
(see 2) always tries to optimize more than one pa-
rameter or function at the same time. The multi-
objective optimization problems are important not
only in Mathematics, because they can also be very
effective in Physics, Engineering and many other
scientific fields. We give now the definition

Definition 2. A multi-objective optimization
problem can be viewed as a quadruple (X ,Y, f ,ξ ),
where X indicates the search or decision space, Y
denotes the objective space, being f : X −→ Y a
function that assigns to each x ∈ X a corresponding
objective vector y = f (x) ∈ Y ; ξ is a binary rela-
tion over Y that characterizes a partial order on the
objective space.

So, the main idea is trying to minimize all the
objective functions in Y at the same time, to obtain
the optimal solution. At the end, the goal is to get
at least one solution that is one of the best; because
not always it will be clear what is the “best” one,
and we can have an entire set (called Pareto front) of
possible best solutions.

3. Proposed Methodology

3.1. Introduction.

In this section we extend the classical cubic B-
splines of class C 2 in one independent variable, to
the bicubic B-splines of class C 2 of two indepen-
dent variables. For this, let a,b,c,d ∈ R and con-
sider R = [a,b]× [c,d].
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3.2. Bicubic spline spaces of class C 2.

Bicubic splines of two variables are an extension
of cubic splines in one variable. We start with two
partitions or knot sequences of [a,b] in m subinter-
vals and [c,d] in n subintervals; i.e. increasing se-
quences, that can be uniform or not.

Let denote 4m and 4n the two parti-
tions of [a,b] and [c,d] respectively, where
4m ≡ {a = x0 < x1 < ... < xm = b} and 4n ≡
{c = y0 < y1 < ... < yn = d}.

We define the bicubic spline functions

S : [a,b]× [c,d]−→ R

such that :

i) S ∈ C 2([a,b]× [c,d]),

ii) S |[xi,xi+1] ×[y j,y j+1] ∈ P3([xi,xi+1]× [y j,y j+1]),
i = 0, ...,m−1, j = 0, ...,n−1,

where P3([xi,xi+1]× [y j,y j+1]) is the space of all
restrictions of two-variable polynomials of partial
degree less than or equal to three on the rectangle
[xi,xi+1]× [y j,y j+1].

Given x−3,x−2,x−1,xm+1,xm+2,xm+3 and
y−3,y−2,y−1,yn+1,yn+2,yn+3 real numbers, such
that,

x−3 6 x−2 6 x−1 6 a < b 6 xm+1 6 xm+2 6 xm+3,

y−3 6 y−2 6 y−1 6 c < d 6 yn+1 6 yn+2 6 yn+3,

then

B0
i (x) =

{
1, xi−3 6 x < xi−2
0, otherwise

, i = 0, . . .m+5

(1)
and Bk

i (x), k = 1,2,3, ... can be defined from the re-
cursive relation, for i = 0, . . . ,m+5− k:

Bk
i (x) =

x− xi−3

xi+k−3− xi−3
Bk−1

i (x)+
xi+k−2− x

xi+k−2− xi−2
Bk−1

i+1 (x).

(2)
These functions verify the following properties:

i) they are positive in the interior of their sup-
port,

Bk
i (x)> 0, ∀x ∈ [a,b];

ii) they form a partition of unity,

m+5−k

∑
i=0

Bk
i (x) = 1, ∀x ∈ [a,b];

iii)
{

Bk
0, . . . ,B

k
m+5−k

}
are linearly independent for

all k = 0,1,2,3 . . . .

We consider the analogous definitions (1,2), in
the variable y, of the functions

{
Bk

0, . . . ,B
k
n+5−k

}
for

the partition in [c,d].
Meanwhile, if S3(4m×4n) represents the set

of bi-cubic spline functions of degree less than or
equal to three and class C 2, then dim S3(4m ×
4n) = (m+ 3)(n+ 3); and if

{
B3

0(x), ...,B
3
m+2(x)

}
and

{
B3

0(y), ...,B
3
n+2(y)

}
are the basis of S3(4m)

and S3(4n) respectively, then a basis of S3(4m×
4n) will be

{
B3

q(x,y)≡ B3
i (x)B

3
j(y),

i=0,...,m+2,
j=0,...,n+2,

q=(m+3) j+i+1

}
.

3.3. Formulation of the problem

The main goal of this section is to solve the follow-
ing problem: Given the data sets

{ul : l = 1, ...,N} ⊂ R⊂ R2

and
{βl : l = 1, ...,N} ⊂ R,

find S ∈S3(4m×4n) such that

S(ul)≈ βl, ∀l = 1, . . . ,N

i.e. S approximates the data set

{(ul,βl) ∈ R×R}N
l=1 .

We define the smoothing variational bicu-
bic spline associated with U = {ul}l=1,...,N ⊂ R,
{βl}l=1,...,N ⊂ R, and ε ∈ (0,∞) as the unique S ∈
S3(4m×4n) minimizing the functional

J : S3(4m×4n)−→ [0,∞)
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defined by

J(v) =
N

∑
l=1

(βl− v(ul))
2 (3)

+ε ∑
|α|=2

∫ b

a

∫ d

c
(∂ αv(x,y))2dxdy (4)

where |α| = α1 + α2,∀α = (α1,α2) ∈ N2, and

∂ αv(x,y)≡ ∂ |α|v
∂xα1∂yα2

.

This problem has a unique solution (see 7) that
can be expressed as a linear combination of our bi-
cubic basis functions

S(x,y)≡
(m+3)(n+3)

∑
q=1

αqB3
q(x,y), (x,y) ∈ R.

where α = (α1, ...,α(m+3)(n+3)) is the unique solu-
tion of the following linear system

(AA>+ εR)α> = Aβ
>

being A∈R(m+3)(n+3),N and R∈R(m+3)(n+3),(m+3)(n+3)

A =
(
B3

q(xl,yl)
)

q=1,...,(m+3)(m+3)
l=1,...,N ,

R =

(
∑
|α|=2

∫ b

a

∫ d

c
∂

αB3
r (x,y)∂

αB3
s (x,y) dxdy

)
r,s

.

The corresponding formulation in the one vari-
able case is just evident and may be written easily
from this general formulation in two variables. It is
also well known, and may be consulted in 13 and the
references therein.

4. Optimization strategy for knots’ placement
in the cases of cubic and bicubic smoothing
splines

In order to verify the ability of the new multi-
objective strategy for the determination of the
knots placement for the proposed bicubic smooth-
ing splines, we will use at least two approximate
discretizations of normalized error estimations, in

C (R) and L 2(R) for example, given by the expres-
sions:

Ec ≡
max

i=1,...,M
| f (ai)−S(ai)|

max
i=1,...,M

| f (ai)|
(5)

El ≡

√√√√√√√√√
M

∑
i=1

( f (ai)−S(ai))
2

M

∑
i=1

( f (ai))
2

(6)

where f ∈ C 2(R) is the function we want to approx-
imate, S ∈ S3(4m ×4n) is the smoothing varia-
tional bicubic spline associated with the given data
sets and {a1, . . . ,aM} ⊂ R is a given random point
set where the errors will be computed. In the case of
functions of only one variable (or 2D point sets), the
expressions are totally equivalent, changing the rect-
angle R by the corresponding interval of real num-
bers.

We will be using a Non-dominated Sorting Ge-
netic Algorithm (NSGA); that is, a Multiple Ob-
jective Optimization Genetic Algorithm (MOGA)
whose objective is to improve the adaptive fit of a
population of candidate solutions to a Pareto front,
constrained by a set of objective functions. In this
paper the algorithm developed to obtain optimal
knots placement of B-spline basis functions uses
an evolutionary methodology, with replacement and
the usual operators, including: selection, genetic
crossover, and mutation.

For the correct use of the NSGA-II algorithm (an
important improvement of the original NSGA one,
see 1) it is necessary to describe three fundamental
issues:

(i) Solution Representation: The chosen repre-
sentation characterizes each individual of in-
terest to be evaluated. The representation de-
termines how the problem is structured in the
NSGA-II and also determines its behavior.

(ii) Genetic Operators: We must define some
important parameters before running any
MOGA algorithm. The important agents in
this part are 1:
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(a) Number of Generations: We can use 5
or more generations, but in this work
we usually take 20 to 40 generations as
stopping criteria of the algorithm, de-
pending on the case.

(b) Population size: This number deter-
mines the number of possible good can-
didates to be taken into account in all the
genetic process. Depending on the prob-
lem, we are using a population size of
about 20 or more members.

(c) Selection function: The selection func-
tion chooses the individuals, called par-
ents, that contribute to the population at
the next generation.

(d) Crossover and mutation functions: in
this algorithm, we use binary crossover
function which combines two parents
to form children for the next genera-
tion; the crossover fraction is 0.9 and use
polynomial mutation.

(e) Pareto fraction: It keeps the others than
most fit population down to the specified
fraction in order to maintain a diversity
of the population; a value of 0.4 is of
common use in this case.

(iii) Fitness function: different forms can be used
in a NSGA-II algorithm; but the main goal
is to minimize the errors Ec and El , between
the original function and the smoothing vari-
ational bicubic spline constructed from each
population of random knots.

5. Simulation examples

The objective of this study is to analyze the perfor-
mance of the explained MOGA procedure for the
optimization of the knots placement for the con-
struction of B-spline basis functions in order to
obtain an optimal approximating cubic or bicubic
spline.

Different experiments have been carried out,
both with functions of one and two variables. In this
section, we will show the results of approximations

for each of these functions, and we present the evo-
lution of the optimal distribution of knots, together
with the related Pareto fronts, using the proposed
methodology.

5.1. Examples of one independent variable

The examples below are mainly chosen from the ex-
istent literature on the subject in the 1D case: ex-
ample 1 coincide with the example 3 in 13, and the
examples 3 and 4 have been also extracted from the
simulations included in the papers 15 and 9 , respec-
tively.

Example 1: f1 : [0,1]−→ R

f1(x) = 90/(1+ e100(x−0.4)) .

Example 2: f2 : [0,π]−→ R

f2(x) = 0.12+0.25e−4(x− π

4 )
2
cos(2x)sin(2πx) .

Example 3: f3 : [0,4π]−→ R

f3(x) = 0.2e−.05x sin(5x)+0.4 .

Example 4: f4 : [−1,1]−→ R

f4(x) = 1− e−50|x| .

To test the behavior of the presented methodol-
ogy for the optimization of knots placement of the
B-spline basis in this case, all the procedure have
been also adapted to this one-dimensional case. Not
a large number of knots have been necessary to ob-
tain sufficiently good results, as you can see in the
corresponding figures.

We can also see clearly, in the right column of
Figure 1, how the evolution of the knots’ distribution
tends to be located in the region where the function
f1(x) change the most within its domain. The left
column also shows the results of the approximating
function, compared with the original one, using this
B-spline function approximation. The correspond-
ing Pareto front, taking also into account one of the
errors in the approximations vs. the number of knots
used, is shown in Figure 2.
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We can view clearly in all these cases that our re-
sults are quite better than the corresponding results
included in the specified articles, with less interior

knots; and always obtaining lower errors when using
the same number of them or less number of genera-
tions.
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Figure 1: Approximating spline vs. actual function f1(x) (left) at final generation and distribution of knots in
each generation (right) for 2, 4 and 6 interior knots respectively

Now we show in Figure 5 our results (with discrete errors of orders of 10−4 and 10−5 in any case) for the
Example 3, also used as test example in 15.

And finally, in Figure 6 some graphical and numerical result for the Example 4, also considered in a classical
paper 9 about this subject.

5.2. Examples of functions of two independent
variables

We begin with a quite simple example of a
paraboloid of revolution in the following example

Example 5: F5 : [0,1]× [0,1]−→ R

F5(x,y) = x2 + y2 .

In order to analyze the behavior of the B-spline
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Figure 2: Pareto front of El error vs. number of knots for f1(x).
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Figure 3: Approximating spline vs. actual function f2(x) (left) at final generation and distribution of knots in
each generation (right) for 8, 11 and 14 interior knots respectively
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Figure 4: Pareto front of El error vs. number of knots for f2(x).
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Figure 5: Approximating splines vs. actual function f3(x) at final generation for 10, 15, 20 and 30 interior knots
(marked on the x-axis) respectively.
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Figure 6: Graphical results for f4(x) with 29 interior knots (marked on the x-axis) and a discretized error of
order 10−4

approximation in these cases, not too many knots
will be used (just 10 to 20 knots in each variable in-
terval). In Figure 7 it can be seen some particular
results of the approximation of function F5(x,y) us-
ing bi-cubic smoothing variational splines.

Similar results can be obtained for a more com-
plicated Example 6, where the well-known Franke’s
function is considered. Graphics in Figure 9 show
the results of the approximation with Bi-cubic
smoothing variational splines in this case.

Example 6: F6 : [0,1]× [0,1]−→ R

F6(x,y) := 3
4 e−((9x−2)2+(9y−2)2)/4

+3
4 e−((9x+1)2/49−(9y+1)/10)

+1
2 e−((9x−7)2+(9y−3)2)/4

−1
5 e−((9x−4)2+(9y−7)2)

.

Figures 8 and 10 represent the Pareto fronts for
the application of this MOGA procedure to these
last two examples. It is clear that the errors with
the MOGA tends to be reduced when the number of
knots to construct the smoothing B-spline basis in-
creases, but also increases (significantly in this case)
the corresponding computational effort.

6. Conclusions

In this paper, a novel evolutionary MOGA method-
ology is presented for knots placement in the prob-
lem of cubic spline approximation of functions of
one or two variables, showing the effectiveness of
the strategy for different types of functions.

So, the goal of using a MOGA for placement of
the knots in such cases of approximating functions
by cubic or bi-cubic splines, of one or two variables,
respectively, can be summarized as follows:

(1) It has been sufficiently proven that the placement
of the knots in spline approximation has an impor-
tant and considerable effect on the behavior of the
final results, but the optimal placement or location
of knots is not known a priori;

(2) The number of knots to be used in classical ap-
proaches, should be selected a priori by the de-
signer; but using MOGA, a Pareto front for differ-
ent or variable number of knots used can also be
directly optimized.

Many simulations have been carried out, show-
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Figure 7: From top to down and left to right, evolution of the knots distribution every 5 generations for the
function F5(x,y).
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Figure 8: Pareto front of El error vs. number of knots for F4(x).
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Figure 9: From top to down and left to right, evolution of the knots distribution every 5 generations for the
function F6(x,y). 1304
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Figure 10: Pareto front of El error vs. number of knots for F6(x).

ing that increasing the number of knots in the def-
inition of the cubic, or bi-cubic B-splines, also in-
creases the accuracy of the approximation, but only
up to a certain limit, where the corresponding com-
putation effort is not worth enough comparing with
the small possible reduction in the corresponding er-
rors. So we can affirm without any doubt, that this
proposed procedure have much better performance
and results than such as the selected knots within an
equally spaced distribution of them, and many other
classical approaches.
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