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Abstract 
Modern axiomatic uncertainty theories (fuzzy logic, 
probability theory and others) provide a calculus for 
manipulating with probabilities, membership func-
tions, and degrees of belief when the initial values 
such as probabilities of elementary events are already 
given. These theories do not include a mechanism for 
getting initial uncertainty values. The value of these 
theories is in computing uncertainties of complex 
events that follow a structure imposed by axioms of a 
specific uncertainty theory.  The lack of internal 
mechanism for getting initial values often means in the 
end that the same mechanism is applied for getting 
initial probability values, fuzzy logic membership 
functions, and belief functions.  This is a source of 
much confusion -- what is the real difference between 
all of these theories. A resolution of this confusion is 
critical from both theoretical and practical viewpoints. 
We argue that adding an internal mechanism of getting 
uncertainty values means adding irrational, conflicting 
and interacting agents along with their contexts.  
Keywords: uncertainty theory, fuzzy logic, interacting 
agents, irrationality, modal logic, possible worlds.  

1. Introduction 
The freedom of individual agents and their groups is a 
source of irrationality, inconsistency, and semantic 
uncertainty that the fuzzy set theory, the evidence the-
ory, the rough set and others intend to model. The 
agents have a freedom to select a context.  A set of 
agents is not a set of ordinary sets, because of their 
self-evaluation abilities. An agent can tell: “I am a 
reasonable agent”. Can we separate the agent as a 
source of the statement from the statement itself? 
When the statement is written then it is an independent 
entity and we make a link between the statement and 
the agent by saying that agent A made statement S. 
Modeling of self-evaluating sets has been a challenge 
in logic with several logic paradoxes discovered. Con-
texts often are personal for each agent and cannot be 
separated from the agents. In this paper we introduce a 
logic uncertainty theory in the context of evaluation of 
preferences of agents that includes a mechanism for 
getting initial uncertainty values as a part of the the-

ory.  This paper presents a further development of our 
previous works [Resconi, Jain, 2004; Kovalerchuk, 
1990] that contain extensive references to related 
work.  The fundamental analysis of relevant issues can 
be found in [Carnap Jeffrey, 1971; Halpern, 2005].  
 The paper is organized as follows: section 2 intro-

duces agent logic evaluation in the preference system. 
Section 3 links it with fuzzy logic uncertainty and sec-
tion 4 is devoted to links between agents modeled as 
worlds dealing with uncertainty. In this paper we show 
advantages of interpretation of fuzzy logic as an exten-
sion of the classical logic and probability theory with a 
mixture of rational and irrational agents. In this inter-
pretation heuristic min max and others fuzzy logic 
operations can be naturally obtained and interpreted.  
 At first we provide a short review of the current 

situation in fuzzy logic that is depicted in table 1. 
 

TABLE I. 
1. What 
do users 
want?  

A simple universal way to get (1) un-
certainty values m(ai), m(aj) of entities 
ai and aj and (2) combinations m(ai&aj) 
and m(ai v aj) from  m(ai) and m(aj). 

2. What 
is in  
reality ? 

Complex dependency between ai and aj 
and their contexts (including contra-
diction, irrationality and instability) 

3. What 
is  
offered 
to users?  

A collection of simple heuristic opera-
tions:  
m(ai&aj) = min(wi·m(ai), wj·m(aj)),  
m(ai&aj) = wi ·m(ai)· wj·m(aj) and other 
t-norms;  
m(ai∨aj) = max(wi·m(ai), wj·m(aj)),  
m(ai∨aj) = wi·m(ai)+ wj·m(aj) and other 
t-conorms.  

 
 The conclusion from this table is that now users 
have simple (not universal) operations without tools 
to capture complex dependencies.  Obviously, this 
should be compensated. Engineers as users adjust 
weights wi, wj and t-norm or t-conorm. What was 
used to do this?  It is intuition or available data. In 
the case of intuition, the final success should be at-
tributed to users’ engineering art rather than the tools 
and theory used.  In the case when data are available 
we have now a productive neuro-fuzzy interpolation 
approach in fuzzy control. However, we should 



rather attribute the success to the fact data are avail-
able than to set of predefined fizzy logic operations.  
We need a theory that will go beyond current empiri-
cal way of adjusting coefficients wi and operations 
by users. 

 This problem is not new [e.g., Elkan, 1993] and is 
very difficult. How to build an uncertainty theory that 
will be simple for use, universal enough and capture 
complex dependencies in the real world? We claim 
that there is no shortcuts that will allow do this. In 
reality this naïve desire of having a shortcut means 
passing the complexity of the real problem to the user  
 We claim that that a sound solution is in more 
complex context-dependent operations, that is m(a&b) 
can not be a function of only m(a),m(b), f(m(a),m(b) if 
want to deal with complexity of the real problems in-
side of the theory not outside of it.  

The fundamental strength of the probability the-
ory is that it does not look for shortcuts. However it 
does not provide a mechanism for getting initial uncer-
tainty values inside of the theory.  Our goal is to de-
velop a logic of uncertainty that will do this inside of 
the theory. To do this we use concepts of irrational 
agents, modal logic, and contexts. We start from an 
example below to set up a realistic situation for further 
discussion. 

2.  Framework of Irrational Agents  
 
Let us consider 100 agents Gi, two cars A and B and 
preference relation “>” between cars to be assigned by 
each of these agents (potential buyers). We define a 
Boolean variable X such that X=1 (True) if A>B else 
X=0 (False). Each agent Gi answered a questionnaire 
with two options offered: (1) A>B is true and (2) A>B 
is false. Say 70 agents out of 100 marked A>B is true 
giving a fuzzy logic membership function value m(A 
>B) = 70/100.  
 This is a classical relative frequency used in the 
probability theory, which normally implies the neces-
sity of using probability theory operations that differ 
from fuzzy logic operations for computing uncertainty 
values of complex events. Thus, the question is: “Can 
fuzzy logic operations be justified in such situations?” 
We state that there is a way to do this. Implicitly we 
assumed that any agent that marks in the questionnaire 
“A > B is true” does not mark an opposite preference 
“B > A is true”.  This is a fundamental assumption of 
the probability theory – elementary events are disjoint 
and mutually exclusive and one of them needs to hap-
pen. (They must answer something and even non-
marking an option means something) 
 If an agent marks both options, his/her answers 
will be discarded, as non-valid and only agents with a 
single answer will be counted in relative frequencies. 
This is needed to keep fundamental additivity princi-

ple (assumption) of the probability theory at work and 
consequently to be able to use the probability theory 
operations.     
 Now the question is: “How often is this mutual 
exclusion assumption violated in modeling real world 
we processes?”  Let us have 100 agents, 69 agents 
prefer A to B and only one agent out of 100 agents is 
irrational who marked both options. In this case for 
many practical tasks m(A>B)=69/100 does not differ 
significantly from 70/100 or 68/100 if his/her answers 
would be rational However, if 50 agents behave irra-
tionally (use both alternatives) and if we discard their 
responses then we may get m(A>B)=(70-50)/(100-
50)=0.4, which differs significantly from 0.7.  The 
number of irrational agents is not known in advance 
and it makes sense to have a theory that will be able to 
deal with a mixture rational and irrational agents. In 
the case of customer preferences irrational behavior is 
quite common.   
 One of the ways to deal with such mixed situation 
is to modify a questionnaire (probability space) to 
make three alternatives: (1) “A>B is true”, (2) “A>B is 
false”, and (3) both “A>B is true and A>B is false”. 
We will denote these alternatives W1={T, F, T&F} 
that is an extension of a set of rational alternatives 
used the probability theory W0={T, F}. The last con-
tradictory alternative T&F is specifically designed for 
irrational agents. If we assume that alternatives in W1 
are mutually exclusive (each time the agent selects 
only one of them) then the probability theory can be 
applied. Thus, at first glance, we fixed a problem with 
a simple adjustment. However, implicitly we made an 
assumption that agents have a limited irrationality (we 
will call it level 1 of irrationality, L1), that is having 
three alternatives T, F, T&F about preference state-
ment, A>B, the agent will not violate mutual exclusion 
further. The agent will mark only one alternative out 
of these three alternatives and will not mark two or 
three of them simultaneously. 
 Now assume that we have all agents at the level L1 
with alternatives from W1 such that m(a)=0. 7 for a ≡ 
A>B=true and m(b)=0.3 for b= (A>B=true) & 
(A>B=false).  What is the value of m(a & b)? We 
have b nested in a, a ⊃ b, thus m(a&b)=m(b)=0.3. In 
general terms for nested expressions we have          
m(a & b)=min (m(a), m(b)), that is a well known 
fuzzy logic operation. Similarly we can justify max 
operation of disjunction, m(a v b) = max (m(a), m(b)), 
that is 0.7 in our example. 
 If the agent wishes to mark, both T and T&F then 
this agent is more irrational than level L1 allows. We 
will call such agent as an irrational agent at level 2, L2. 
To accommodate L2 agents in the probability theory 
framework we need to expand the set of alternatives 
again and have W2={T, F, T&F, T&(T&F)} built con-
sequently from W1={T, F, T&F) and W0={T,F}. Next 
we may get an agent at the level of irrationality L3 that 



mark two alternatives from W2. This will force us to 
expand W2 again to W3= {T, F, T&F, T&(T&F), 
T&(T&(T&F))} Next the same consideration can lead 
us to agents at level of irrationality L4 and a set of al-
ternatives W4. This process generating can continue 
indefinitely (regress to infinity) if we do not limit the 
level of agent’s irrationality. 
 For highly irrational agents (large levels, Li) the 
number of nested elements in Wi is large too and 
grows when the level of irrationality i grows.  Thus, 
for many AND/OR expressions min max operations 
can be valid for such Li and Wi, in contrast with the 
situation with rational agents working in W0.   
 This consideration shows the need in an uncer-
tainty theory that will deal with such situation of mix-
ture of rational and irrational agents as an extension of 
the probability theory. The additional challenge is that 
we may have agents with different and unknown levels 
of irrationality and we may not be able to limit agents’ 
irrationality.  

3. Logic of uncertainty framework 

Below we outline a logic of uncertainty with contra-
dictory agents to be able to give measures of  uncer-
tainty as an internal part of the theory.  
 The Logic of Uncertainty contains the following 
components that are explained below: 
 
<{A},W, M, {Lw), Ontw, S(A), T(A,B), Com(A,B)>. 
 
• {EA} is a set of agents that includes   Evaluation 

Agents (EAs) that evaluate statements and Ontol-
ogy Agents (OAs) that set up the structure and 
language. 

• W={w} is a set of Possible Worlds,  
• M: {EA}→Γ(W) and  Γ(W) is s set of all subsets 

of W.  
• Lw is a Language that is used to describe world w. 
• Ontw is an Ontology of the w expressed in Lw. It 

includes the level of agent’s irrationality.  The on-
tology agent sets up M, Ontw, and Lw. 

• S(A) is a Irrationality Statement, S(A) =1 if the 
agent A is irrational and S(A)=0 if the agent is ra-
tional.  

• T(A,B) is a Contradiction Relation, S(A,B)=1 if 
worlds of agents A and B contradict to each oth-
ers.  

• Com(A,B) is a Communication Relation, 
Com(A,B)=1 if agents A and B communicate and 
A can change  m(A, V) because A knows m(B,V), 
where m(A, V) and m(B, V) are truth values as-
signed by agents A and B to statement V in their 
worlds wA and wB.  

The accessibility relation in modal logic influenced 
introduction of this relation.   

 The agent A is an entity whose internal knowl-
edge and belief is the set WA of worlds, (possible 
worlds) mapped to it by M:  M(A)= WA.  
 Each worlds W consist of statements in language 
Lw. (each world can be viewed as a model [Mal’cev, 
1973], where the agent can assign only crisp values 
(true/false) to statements.   
 The contradiction between agents means that 
there exists a statement V in wA and wB such that V 
true in WA and false in WB. Thus, each agent can view 
another agent as is irrational if they communicate.  
 In the next section we present a mechanism to 
compute uncertainty values of statements in the pref-
erence system in line with this framework.   

4. Logic of uncertainty in prefer-
ence system 

For a given set of products the preferences of agents 
(evaluators, customers) are given as a preference graph 
[Ishizu, Gehrmann, 2002]. Product G1 is connected by 
an arrow to another product G2 when the agent prefers 
G1 to G2. If an agent cannot compare them then there 
is no arrow between G1 and G2. Say, Car A is a sports 
car, car B is a family car, and car C is a car for trans-
porting goods. The agent C1 may have a transitive 
preference graph shown in Fig. 1 for the attribute “fuel 
efficiency”. A coincidence matrix shown in TABLE 2 
represents this graph, where 1 (true) indicates that the 
agent prefers product X to product Y. The value 0 
(false) means that agent prefers product Y to product 
X.  

 
Fig. 1. Preference graph when the evaluator C1 uses the attribute 
“fuel efficiency”. 
 

TABLE 2 
AGENT’S “FUEL EFFICIENCY” PREFERENCE TABLE 

 A B C 
A 1 0 1 
B 1 1 1 
C 0 0 1 

 
The absence of the value in the table means the agent 
(1) did not evaluate preference yet, or (2) cannot 
evaluate the preference. In the first case for the ra-
tional agent the transitive closure of the preference 
relation can be obtained by reasoning (If B>A  & A>C 
then B>C), where “>” denotes the preference relation. 
In the second case both preference relation A>C and 
C>A are false.  

A B 

C 



 Different evaluators may have different graphs. 
Now we can introduce a fuse operator  
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where a pair of variables (X, Y)  denotes two products 
X and Y connected by an arrow in the graph and        
Ck( X ,Y)  is the evaluation value  (0 or 1) for the 
agent Ck when the agent compares the product X with 
the product Y. For example, for car A and car B, and 
the attribute “car fuel efficiency” we may have  

( , ) ( , ) ..... ( , )
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N
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N N
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where M ≤ N is the number of agents that prefer A to 
B and N is a total  number of agents. Note that the fuse 
operator is not commutative. Now given two attributes 
p1=“car fuel efficiency” and p2=“car inner space” we 
can compose the µ(A,B)p1∧p2, for two cars A and B:  

( , ) ( , )
1
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N
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i
µ = !! "

=

  
Similarly we can define µ(A,B)p1∧p2∧…∧pk. This mem-
bership function indicates how consistent the prefer-
ences of all agents about cars A and B relative to at-
tributes p1, p2,…,pk. It is assumed here that “and” op-
erator is defined is a standard way, 1∧0=0, 1∧1=1, and 
0∧0=0.   
 When the preference graph is a non-transitive 
graph or a graph with cycles, we have an irrational 
agent (with irrational preferences). A preference graph 
for a rational agent should be transitive: if for the 
agent car C is better than B and B is better than A then 
C should be better then A. But in Fig. 1 there is an 
arrow for which A is better than C. This generates a 
contradiction with respect to rational deduction that C 
is better than A. More formally, in a graph shown in 
Figure 2(b), we have P(C, B)=1 (true), 
P(B,A)=1(true), but non of relations P(A,C) and  
P(C,A) is true, P(A,C)=0 (false) and  P(C,A)=0 (false), 
because the agent refused to compare A and C.  Thus, 
¬ P(A,C)=1 and  ¬P(C,A)=1.  On the other hand a 
rational agent should assume transitivity of the prefer-
ence relation. Thus this agent should be able to infer 
that P(C,A) is true,  P(C,A)=1 and respectively, 
¬P(A,C)=0. Combining properties P(C,A)=1 and 
¬P(C,A)=1 we get a  logical contradiction that is true, 
 

P(C, A) ∧ ¬ P(C, A) = True.                       (4) 

Similarly combining P(A,C)=0 and ¬ P(A,C) we get a 
false tautology  
 

P(A,C) ∨ ¬ P(A,C) = False                        (5) 

 
                

Fig 2. Cycle graph (a). Non-transitive evaluation graph (b) 
 
Figure 2 (b) shows that there is no direct comparison 
between A and C. How to explain this?  One option is 
that the agent is irrational, i.e., in spite of normative 
transitivity the agent does not accept it. Another option 
is that the agent simply was not asked and if asked 
would agree with transitivity and change preferences 
accordingly.   
 To model irrational agents we propose a new 
logic uncertainty where contradiction can be true and 
tautology false for some statements of such irrational 
agents.  

5. Operations with uncertainties  
Let E(X)=(X1,X2,…,Xp) and E(Y)=(Y1,Y2,…,Yp) be  
vectors of binary evaluations (true/false) of  attributes 
X  and Y  by p agents. Given these X and Y we have 
the composition rule 
( , ., ) ( , .., ) ( , ..., )
1 1 1 1

( , ..., ) ( , ..., ) ( , ..., )
1 1 1 1
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1 1
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We define the AND fuse operator of evaluations Xi of 
p agents of the attribute X and Y as    
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                  (7) 

where µ is the membership function, and  m1 , …,mp 
are the importance ( weights) of agents. When the 
agents are equal in importance we have the traditional 
fuse operator. The OR fuse operator is defined simi-
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C 

A B 

C 

a 

b 



larly by using µ(X∨Y) instead of µ(XY) in Eq.(7) with 
the definition of X∨Y  fro vectors from Eq. (6).  
 The new negation introduces an irrational term Sk 
that is responsible of the difference between the classi-
cal logic and logic of uncertainty. In fact we assume 
that  
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where  ⊕  is the XOR operation. In this case we have 
 The new negation is the extension of the negation 
operation in the classical logic and can be used to give 
models for negation in the fuzzy logic.   

6. Logic of uncertainty for interde-
pendent worlds 

In the classical Kolmogorov’s definition of the prob-
ability [Shafer, Vovk, 2001; Halpern, 2005] it is as-
sumed that the worlds are independent and are not 
connected with others. The introduction of relations 
between worlds (agents) via a communication relation 
Com (accessible relation R) can change the Kol-
mogorov’s axioms as follows:  
1)  F is a field of sets. This means that if F contains E 

and G then F contains their intersection, union, 
and difference.  

2) F contains the set Ω (sample space Ω or universal 
set). Together with axiom 1, this says that F is an 
algebra of sets. When F is closed under countable 
infinite intersection and union it is called a σ al-
gebra. 

3) Another set W={wi} is given. Each element of W 
is called a world. Every element Obi of Ω is asso-
ciated with one and only one world wi in W and 
with an accessible relation R in Ω. If 
R(Obi,Obj)=T  then element Obi  can “access” 
element Obj, that is it can get information about 
element Obj. Having each Obi associated with 
some world wi, it is possible to say that world wi 
can “access” world wj, that is it can get informa-
tion about world wj. In the simplest case Obi can 
be the same as wi. Elements Obi also sometimes 
called objects or elementary events. Similarly set 
E of elementary events Obi is called a set of 
events. The predicate Qj(Obi) is defined for each 
elementary event Obi. If Qj(Obi)=True then we 
say that event Obi is true (takes place). In essence, 
predicate Qj defines the concepts elementary 
events. The predicate Qj creates a structure of 
events. More generally, a set of predicates Qj and 
axioms that set up relations between these predi-
cates provide a structure for the set of the worlds. 
An Ontology Agent (OA) can set up this structure 

and language L and evaluation agents (EAs) can 
evaluate if Qj(Obi) is true or not for a world wi 
that is associated with Obi.   

4) A non-negative real number P(E) is assigned to 
each set E in F. This number P(E) is called the 
probability of the event (set) E. Note: traditionally 
P(E) reflects the number of elementary events in 
E relative to total number of events in Ω [14].  

5) P( Ω ) = 1. This axiom reflects the intuitive idea 
that number of elementary events in Ω relative to 
itself is 1. 

6) If E and G are disjoint ( E ∩ G = ∅ ) then   
           P( E ∪ G ) = P( E )+P(G). 
7) Two non-negative real numbers P1(E) and P2(E) 

are assigned to each set E in F such that  P1(E) ≤ 
P(E) ≤ P2(E), where P1(E) is the relative number 
of worlds in E that are at least necessary true for 
one element in E , P2( E) is the relative number of 
worlds that are at least possibly true for one ele-
ment in E.  Thus, P1(E) and P2(E) are lower and 
upper limits of probability p(E), also [P1(E), 
P2(E)] is an interval probability.  

8) The measure m(E) is the relative number of 
worlds that are possible true for all the elements in 
E and not possible true for other elements of F. 

7. Conclusion 
Fuzzy logic, probability theory, and other uncertainty 
theories compute uncertainties of complex events that 
follow a structure imposed by their axioms. These 
theories have no an internal mechanism for getting 
initial uncertainty values. We had shown how this 
mechanism can be built by incorporating irrational, 
conflicting and interacting agents and worlds. This 
approach can be applied to many tasks beyond the 
customer preference system we used for illustration.  
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