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Abstract

In this work we present a thresholding algorithm
for greyscale images. Our proposal is based on the
use of grouping functions to find the best threshold.
These functions are able to measure the member-
ship of a grey intensity to the background or to the
object of the image, so the best threshold is the
one associated with the highest grouping value. To
avoid the hard task concerning the choice of a suit-
able grouping function for any given image, we pro-
pose to use a combination of several of them. We
study different ways of choosing the weights for this
combination.

Keywords: Thresholding, grouping function, con-
vex combination.

1. Introduction

One of the most used techniques in image segmen-
tation is thresholding or segmentation by greylevels
[12],[13],[11]. Such approaches are based on the as-
sumption that different objects of the image are
characterized just by the intensity of their pixels.
This technique consists in finding a threshold t such
that the pixels whose intensities are lower or equal
to t belong to the background of the image while
the intensities that are greater than t belong to the
object, or vice versa [4]. Comparing with other seg-
mentation algorithms, the advantages of threshold-
ing are the simplicity and low computational cost.
This is why this procedure is commonly used as a
first step of more complex segmentation algorithms.

In this work we present a new thresholding algo-
rithm, generalizing previous fuzzy approaches [4],
[8]. Our proposal is based on the construction, for
every possible grey intensity, of two fuzzy sets (QBt

and QOt
) representing the belongingness of every

greylevel to the background (µQBt
(q)) and to the

object (µQOt
(q)) of the image respectively. The goal

is to find the threshold for which the membership
of every grey intensity to the object or to the back-
ground is maximum (µQBt

= 1 or µQOt
= 1), so we

are completely sure that those pixels belong to the
background or to the object of the image.

To quantize the membership to any of two sets
we use the concept of grouping. Any grouping func-
tion is a bivariate aggregation function that gets the
maximum value if and only if one of the arguments
is equal to 1. In this work we study the axiomatiza-
tion of these functions, propose some construction
methods and relate grouping functions with overlap
functions [5].

One of the difficulties of fuzzy thresholding ap-
proaches in the literature is how to choose the
apropiate expression for any image. For example,
if the thresholding is based on maximizing the simi-
larity [4], the obtained results vary strongly accord-
ing to the expression of similarity chosen. Hence,
the choice of a suitable expression for a given image
seems to be crucial in such approaches. To solve
this problem, in this work we study that the convex
combination of grouping functions is also a grouping
function. Following this result, we can use several
grouping expressions and combine them if we do not
know a priori which is the appropiate one.

We also show an illustrative example for a medi-
cal imaging application, where we have to segment
some magnetic resonance images (MRI). The pur-
pose is to separate the gray matter from the white
matter of a brain, which is a very helpful process to
evaluate some diseases like Alzheimer or schizophre-
nia.

The rest of the contribution is organized in the
following way. We start by recalling some pre-
liminary concepts in Section 2. In Section 3 we
study grouping functions, their relations with over-
lap functions and some construction methods. In
Section 4 we present our image thresholding algo-
rithm, and in Section 5 we show an illustrative ex-
ample. We finish with some conclusions in Section
6.

2. Preliminaries

A strict negation [14] is a continuous and strictly
decreasing function N : [0, 1]2 → [0, 1] such that
N(0) = 1 and N(1) = 0. A strong negation is
a strict negation that is also involutive, it means,
N(N(x)) = x for all x ∈ [0, 1].

A triangular norm (t-norm) is a symmetric
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and associative bivariate aggregation function T :
[0, 1]2 → [0, 1] such that T (x, 1) = x for all x ∈
[0, 1]. Some examples of t-norms are minimum
function TM (x, y) = min(x, y) or product function
TP (x, y) = x · y. A triangular conorm (t-conorm) is
a symmetric and associative bivariate aggregation
function S : [0, 1]2 → [0, 1] such that S(x, 0) = x
for all x ∈ [0, 1]. Some examples of t-conorms are
the maximum function SM (x, y) = max(x, y) or the
probabilistic sum function SP (x, y) = x + y − x · y
[2, 9, 1].

In this work we use restricted equivalence func-
tions (REF ) to build the fuzzy sets associated with
an image [3],[4].

Definition 1 A function REF : [0, 1]2 → [0, 1] is
called restricted equivalence function if it satisfies
the following conditions:

1. REF (x, y) = REF (y, x) for all x, y ∈ [0, 1];
2. REF (x, y) = 1 if and only if x = y;
3. REF (x, y) = 0 if and only if x = 1 and y = 0

or x = 0 and y = 1;
4. REF (x, y) = REF (N(x), N(y)) for all x, y ∈

[0, 1], being N a strong negation;
5. if x ≤ y ≤ z then REF (x, y) ≥ REF (x, z) and

REF (y, z) ≥ REF (x, z), for all x, y, z ∈ [0, 1].

We use two different concepts over the weighting
vectors (W = {w1, . . . , wn}) [15]. The first one is
the orness, which measures the degree to which the
aggregation is like an or operator:

orness(W ) =
1

n − 1

n
∑

i=1

(n − i)wi.

The second concept, called dispersion, measures the
degree to which W takes into account all informa-
tion in the aggregation:

disp(W ) = −
n

∑

i=1

wi · ln wi.

3. Grouping functions

We start by recalling the definition of grouping func-
tion. Observe that a grouping function is a partic-
ular case of binary aggregation.

Definition 2 [6] A function GG : [0, 1]2 → [0, 1]
is a grouping function if it satisfies the following
conditions:

(GG1) GG(x, y) = GG(y, x) for all x, y ∈ [0, 1];
(GG2) GG(x, y) = 0 if and only if x = y = 0;
(GG3) GG(x, y) = 1 if and only if x = 1 or y = 1;
(GG4) GG is non-decreasing;
(GG5) GG is continuous.

A relation of duality between grouping functions
and overlap functions is given in [5]. We use this
relation to present several construction methods of
grouping functions.

3.1. Overlap functions

Definition 3 [5] A function GO : [0, 1]2 → [0, 1]
is an overlap function if it satisfies the following
properties:

(GO1) GO is symmetric.
(GO2) GO(x, y) = 0 if and only if xy = 0.
(GO3) GO(x, y) = 1 if and only if xy = 1.
(GO4) GO is non-decreasing.
(GO5) GO is continuous.

Theorem 1 Let GO be an overlap function and let
N be a strict negation. Then

GG(x, y) = N(GO(N(x), N(y))) (1)

is a grouping function. Reciprocally, we have that

GO(x, y) = N(GG(N(x), N(y))) (2)

is an overlap function.

Proof 1 (GG1), (GG4) and (GG5) are direct.
(GG2) GG(x, y) = 0 = N(GO(N(x), N(y))) if and
only if GO(N(x), N(y)) = 1 if and only if N(x) =
N(y) = 1 if and only if x = y = 0. (GG3),
GG(x, y) = 1 = N(GO(N(x); N(y))) if and only
if GO(N(x), N(y)) = 0 if and only if N(x) = 0 or
N(y) = 0 if and only if x = 1 or y = 1.

Following the relation between overlap functions
and t-norms, in this work we proof that any associa-
tive grouping function is also a t-conorm. However,
the reciprocal of this theorem does not hold, as it is
clear if we consider any non-continuous t-conorm.

Theorem 2 Let GG be an associative grouping
function. Then GG is a t-conorm.

Proof 2 We just need to proof that 0 is the neutral
element of GG. Because of the continuity of GG and
GG(0, 1) = 1 and GG(0, 0) = 0, we can say that
for any x ∈]0, 1[ there exists a y ∈]0, 1[ such that
x = GG(y, 0). Then GG(x, 0) = GG(GG(y, 0), 0) =
GG(y, GG(0, 0)) = GG(y, 0) = x and in a similar
way GG(0, x) = x.

Example 1 An associative grouping function and
therefore a t-conorm is the maximum function.

GG(x, y) = max(x, y) (3)

3.2. Convex combination

In Theorem 3 we show the main improvement of this
work to the fuzzy thresholding methods present in
the literature. We introduce how to obtain a new
grouping function from several expressions. This re-
sult helps us to present an algorithm where we do
not need to know which is the most suitable expres-
sion for every image a priori.
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Theorem 3 Let GG1, . . . , GGm be m grouping
functions and let w1, . . . , wm be m non-negative
weights such that

∑m
i=1 wi = 1. Then the convex

sum GG : [0, 1]2 → [0, 1] given by

GG(x, y) =
m

∑

i=1

wiGGi(x, y)

is a grouping function.

Proof 3 Direct.

3.3. Construction of grouping functions

The first result on this section is a representation
theorem of grouping functions.

Theorem 4 The function GG : [0, 1]2 → [0, 1] is a
grouping function if and only if

GG(x, y) =
f(x, y)

f(x, y) + h(x, y)
(4)

for f, h : [0, 1]2 → [0, 1] such that

1. f and h are symmetric;
2. f is non-decreasing and h is non-increasing;
3. f(x, y) = 0 if and only if x = y = 0;
4. h(x, y) = 0 if and only if x = 1 or y = 1;
5. f y h are continuous functions.

Proof 4 We have to take into account that
f(x, y) + h(x, y) 6= 0 for all (x, y) ∈ [0, 1]2.
Then the necessity is straightaway taking
f(x, y) = GG(x, y) and h(x, y) = 1 − GG(x, y).
(Sufficiency)(GG1), (GG2), (GG3) and (GG5) are
direct. (GG4) If x1 ≤ x2 then f(x1, y) ≤ f(x2, y)
and h(x2, y) ≤ h(x1, y). So we have that
f(x1, y)h(x2, y) ≤ f(x2, y)h(x1, y). Adding
f(x1, y)f(x2, y) to both sides of the inequality
we have f(x1, y)f(x2, y) + f(x1, y)h(x2, y) ≤
f(x1, y)f(x2, y) + f(x2, y)h(x1, y). We can rewrite

GG(x1, y) = f(x1,y)
f(x1,y)+h(x1,y) ≤ f(x2,y)

f(x2,y)+h(x2,y) =

GG(x2, y).

The theorem above allows us to construct sev-
eral grouping function. Some of them are shown in
Examples 2-4.

Example 2 If we take f(x, y) = max(x, y) and
h(x, y) =

√

(1 − x)(1 − y) we have

GG(x, y) =
max(x, y)

max(x, y) +
√

(1 − x)(1 − y)
(5)

Example 3 If we take f(x, y) = max(x, y) and
h(x, y) = (1 − x)(1 − y) we have

GG(x, y) =
max(x, y)

max(x, y) + (1 − x)(1 − y)
(6)

Example 4 If we take f(x, y) = 1 −
√

(1 − x)(1 − y) and h(x, y) = min((1−x), (1−y))
we have

GG(x, y) =
1 −

√

(1 − x)(1 − y)

1 −
√

(1 − x)(1 − y) + min((1 − x), (1 − y))
(7)

We can also obtain new grouping expressions
from existing ones. In Theorem 5 we show a con-
struction method based on a grouping function and
two continuous monotone mappings.

Theorem 5 Let ϕ1, ϕ2 : [0, 1] → [0, 1] two continu-
ous monotone mappings such that ϕ1(x) = 0 if and
only if x = 0, ϕ1(x) = 1 if and only if x = 1 and
ϕ2(x) = 0 if and only if x = 0, ϕ2(x) = 1 if and
only if x = 1. Let GG : [0, 1]2 → [0, 1] be a grouping
function. Then, the mapping Gϕ1,ϕ2

G defined as

Gϕ1,ϕ2

G (x, y) = ϕ1(GG(ϕ2(x), ϕ2(y)))

is also a grouping function.

Proof 5 Direct. �

Example 5 Consider the grouping function
GG(x, y) = max(x, y). Let p = q = 2 and con-
sider the following mappings: ϕ1(x) = xp and
ϕ2(x) = xq. Then the mapping

Gϕ1,ϕ2

G (x, y) = (max(x2, y2))2

is also a grouping function.

4. Thresholding algorithm based on

grouping functions

In this work we propose the use of grouping func-
tions as the metric to calculate the optimal thresh-
old of an image. We construct, for every greylevel,
a fuzzy set associated with the background and a
fuzzy set associated with the object of the image.
In this case, we select as the best threshold the one
associated with the greatest degree of grouping be-
tween both fuzzy sets. Hence we obtain that each
intensity has a large membership degree either to
the background or to the object, it means, every
intensity present in the image is very close to the
average intensity of the background or to the aver-
age intensity of the object. To avoid the selection
of a suitable grouping expression for every image,
which is a very difficult task, we use the convex
combination of several expressions. Note that as
exposed in Theorem 3, the convex combination of
grouping functions results in a new grouping func-
tion. This step allows the algorithm to manage a
consensus between the results obtained by several
grouping expressions. The scheme of our proposal
is shown in Algorithm 1.
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Algorithm 1 Thresholding algorithm

1: for t = {0, 1, . . . , L − 1} (For every greylevel)
do

2: Construct a fuzzy set associated with the
background of the image (QBt

).
3: Construct a fuzzy set associated with the ob-

ject of the image (QOt
).

4: for q = {0, 1, . . . , L−1} (For every greylevel)
do

5: Calculate the convex combination of sev-
eral grouping functions obtaining a new
grouping function GGcomb

(QBt
(q), QOt

(q)).
6: end for

7: Calculate the weighted sum of previous
grouping

L−1
∑

q=0

GGcomb
(QBt

(q), QOt
(q)) · h(q)

where h(q) is the number of pixels whose in-
tensity is q.

8: end for

9: Take as best threshold t∗ the one associated
with the maximum sum of grouping:

t∗ = arg max
t

L−1
∑

q=0

GGcomb
(QBt

(q), QOt
(q)) · h(q)

4.1. Construction of fuzzy sets associated

with the image

In thresholding problems with only one threshold,
it is assumed that the image is divided into two ar-
eas, so the procedure consists just in separating one
object from the background. Based on the study
presented in [4], in this work we construct two fuzzy
sets (QBt

associated with the background and QOt

associated with the object) from restricted equiva-
lence functions, bearing in mind the following rea-
soning: the more similar the greylevel (q) to the av-
erage of the background (resp. of the object) inten-
sities the greater the membership of q to the fuzzy
set associated with the background (resp. to the
object).

For a fixed greylevel t, we start by calculating
the average value of the intensities belonging to the
background (mB(t)) and to the object (mO(t)) us-
ing the following expressions:

mB(t) =

∑t
q=0 q · h(q)

∑t
q=0 h(q)

mO(t) =

∑L−1
q=t+1 q · h(q)

∑L−1
q=t+1 h(q)

where q(h) is the number of pixels whose intensity
is q.

Let REF be a restrictred equivalence function,
we construct the fuzzy sets QBt

and QOt
with the

following membership functions, for every greylevel

q = 0, 1, . . . , L − 1:

µQBt
(q) = REF (

q

L − 1
,

mB(t)

L − 1
) (8)

µQOt
(q) = REF (

q

L − 1
,

mO(t)

L − 1
) (9)

Note that, with this construction method and due
to property (2) of Definition 1, a greylevel has the
greatest membership degree to the background (ob-
ject) fuzzy set only if its intensity is the same as the
average intensities of the background (object) of the
image. That is:

• µQBt
(q) = 1 if and only if q = mB(t).

• µQOt
(q) = 1 if and only if q = mO(t).

4.2. Grouping calculus

To calculate the grouping value associated with each
possible threshold t, we use n different grouping
functions (GG1, GG2, . . . , GGn). A grouping func-
tion takes two arguments and calculates the group
level between both of them. In this case we com-
pute the grouping, for every greylevel, between the
membership degree to the fuzzy set associated with
the background and the membership degree to the
fuzzy set associated with the object.

Using the result obtained in Theorem 3, we com-
bine the n grouping functions prevously calculated.
In this way, we obtain a new grouping function that,
experimentally, it outperforms the result obtained
by the worst grouping expression selected. This step
helps us to solve the problem of choosing a group-
ing expression not suitable for a specific image, what
finishes in wrong results.

Once we have one sole value for the grouping of
every greylevel, we calculate the sum. This is the
value for the grouping associated with the threshold
t.

4.3. Selection of the maximum grouping

Every possible threshold t = {0, 1, . . . , L − 1} has
a grouping value associated with it, calculated as
the sum of the grouping function in several points.
To get the best threshold, we choose the one asso-
ciated with the highest grouping value. We choose
the maximum value because of grouping functions
properties. Specifically, the sum is maximum if
GG(µBt

(q), µOt
(q)) = 1 for all q = {0, 1, . . . , L−1}.

By property (GG2) of Definition 2 this is achieved
in two cases:

• µBt
(q) = 1, so q = mB(t). In this case we are

completely sure that the pixels whose intensity
is q belong to the background of the image,
because this intensity is exactly the average in-
tensity of all the pixels of the background.

• µOt
(q) = 1, so q = mO(t). In this case we are

completely sure that the pixels whose intensity
is q belong to the object of the image, because

297



this intensity is exactly the average intensity of
all the pixels of the object.

In this sense, by choosing the highest grouping value
we select the threshold for which all the pixels whose
intensity is lower than the threshold are very closed
to the average of background (object) intensities
and all the pixels whose intensity is greater than
the threshold are very closed to the average inten-
sity of the object (background).

5. Illustrative example

In this section we show the performance of the pro-
posed algorithm over 10 T1-weighted magnetic res-
onance images (see Figure 1). These images are
provided by the Center for Morphometric Analy-
sis at Massachusetts General Hospital (available at
http://www.cma.mgh.harvard.edu/ibsr/). The aim
of the segmentation of this kind of images is to sep-
arate each of the pixels inside the brain into one
of the following two types: grey matter and white
matter. This segmentation can be viewed as a first
step of a volumetric analysis of the brain regions,
which is very useful to evaluate the evolution of dis-
eases such as Alzheimer, epilepsy or schizophrenia
[7, 10]. To measure the quality of the segmented
results, we compare them with an ideal handmade
segmentation provided at the same webpage (see
Figure 2). For this illustrative example we make
this comparison by the percentage of well classified
pixels because of its simplicity, although there ex-
ist more advance measures like Dice and Jaccard
coefficients.

In this example we use seven grouping functions
for the step 5 of the algorithm:

• GG1(x, y) = max(x, y)

• GG2(x, y) = max(x,y)

max(x,y)+
√

(1−x)(1−y)

• GG3(x, y) = 1 −
√

(1 − x)(1 − y)
• GG4(x, y) = x + y − xy

• GG5(x, y) = 2−(1−x)2(1−y)−(1−x)(1−y)2

2
• GG6(x, y) = (max(x2, y2))2

• GG7(x, y) =
√

x2 + y2 − x2y2

To calculate the convex combination of grouping
functions we do not know a priori which expressions
are more suitable for this kind of images. In this sce-
nario, the first approach we can execute is to assign
the same weight to every expression. In this ex-
ample, we have seven expressions, so the weight for
each of them should be 1/7. But we can also use
different weights for any expression. In this work
we use OWA operators [15], so we have to arrange
the grouping values for any possible greylevel. We
compare three different ideas to assign the weights
of the OWA operator, depending on their orness.
For any of them, we use a singleton (only one ex-
pression has a weight maximum and the rest of the
weights are equal to zero, so the dispersion is 0) and

a weighting vector derived from a linguistic quanti-
fier [16]. In this sense, if we want to highlight the
grouping expressions with large orness we use the
weighting vectors:

• Max: [1 0 0 0 0 0 0]
• Half: [0.2857 0.2857 0.2857 0.1429 0 0 0]

where the second one is derived from the expression
“At least half”. For vectors with a medium orness
value we use the weighting vectors:

• Med: [0 0 0 1 0 0 0]
• Most: [0 0 0.2572 0.2857 0.2857 0.1714 0]

where the second one is derived from the expression
“Most”. Finally, if we want to highlight the the
grouping expressions with low orness, we use the
weighting vectors:

• Min: [0 0 0 0 0 0 1]
• Many: [0 0 0 0.1429 0.2857 0.2857 0.2857]

where the second one is derived from the expression
“As many as possible”.

One of easiest ways to measure the quality of the
obtained results is to calculate the percentage of
well (or wrong) classief pixels in the image. In Table
1 we show the percentage of pixels well classified
with our method, using just one grouping expression
(without combination). Any column corresponds to
one expression, while every row represents one of
the ten images. The last row shows the average
percentage over all images.

Based on the percentage of well classified pixels,
we can see that the results obtained by expressions
GG4, GG5 and GG7 are, in general, worse than the
ones obtained by the four other expressions. Based
on this result, we consider that these expressions are
not suitable for this kind of images. In this sense, if
we want to segment more similar images, we would
not use them. But a priori we did not know which
expressions are the most suitable, so all of them are
in the experiment.

In Table 2 we show, in the same way as Table 1,
the percentages obtained by different combinations
of grouping functions.

We can observe that the best results are obtained
when we use weighting vectors with medium values
of orness. In this sense, they ignore the results given
by the most extreme grouping expressions and they
only consider the intermediate ones. We also notice
that if we focus on extreme values, it is better to
work with weighting vectors whose orness value is
low.

Based on this experiment, we can say that if we
do not know a priori which grouping expressions
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GG1 GG2 GG3 GG4 GG5 GG6 GG7

Image 1 97.53 97.15 97.15 96.93 96.43 97.89 96.93
Image 2 97.75 97.25 97.25 96.73 96.14 97.91 96.85
Image 3 98.20 98.18 98.18 97.32 96.50 97.94 97.45
Image 4 97.53 97.40 97.40 96.64 95.73 97.49 96.75
Image 5 97.60 97.67 97.67 96.54 95.21 97.41 96.80
Image 6 97.67 97.70 97.70 96.61 94.90 97.38 96.93
Image 7 97.48 97.60 97.56 96.06 94.43 97.11 96.55
Image 8 97.83 97.94 97.94 96.15 94.43 97.15 96.50
Image 9 96.93 96.67 96.67 94.70 93.08 96.92 94.99
Image 10 96.20 96.20 96.20 94.46 93.13 96.53 9472

Average 97.47 97.38 97.37 96.21 95.00 97.37 96.45

Table 1: Percentage of well classified pixels obtained by our proposal using just one grouping function. Each
column represents one grouping expression while each row is associated with an image. The last row is the
average percentage of all images. In bold we show the best result for any image.

Equal Max Half Med Most Min Many

Image 1 97.42 96.43 97.15 97.53 97.15 97.89 97.42
Image 2 97.61 96.14 97.12 97.75 97.25 97.91 97.61
Image 3 98.25 96.50 98.03 98.20 98.28 97.94 98.25
Image 4 97.56 95.73 97.20 97.53 97.40 97.53 97.57

Image 5 97.64 95.21 97.29 97.60 97.67 97.41 97.60
Image 6 97.67 94.90 97.35 97.67 97.70 97.38 97.67
Image 7 97.56 94.43 96.86 97.48 97.60 97.21 97.21
Image 8 97.92 94.43 96.97 97.83 97.94 97.15 97.68
Image 9 96.67 93.08 94.99 96.93 96.50 96.92 97.01

Image 10 96.20 93.13 94.95 96.20 96.20 96.53 96.33

Average 97.45 95.00 96.79 97.47 97.37 97.39 97.44

Table 2: Percentage of well classified pixels obtained by our proposal using different weighting vectors for the
combination of grouping functions. Each column represents one weighting vector while each row is associated
with an image. The last row is the average percentage of all images. In bold we show the best result for any
image.
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Figure 1: Original images.

Figure 2: Ideal handmade segmentations.

are suitable for an image (or a specific kind of im-
ages) we should use the consensus between several of
them by means of weighting vectors with a medium
value of orness. We advise to use for example the
weighting vector derived from the linguistic quanti-
fier “most”. In Figure 3 we show the segmentations
obtained by our method for every image.

To finish this experiment, we compare the results
obtained by our method with the ones obtained with
Otsu [11], which is one of the most used thresholding
algorithms (see Table 3). We also compare them
with the best possible threshold for every image,
it means, the best result that can be achieved by
thresholding algorithms over these images.

As we can see from the results we obtain, our
method outperforms the one of Otsu. One of the
things we want to highlight is that the result we ob-
tain is almost the best we can obtain by threshold-
ing algorithms (only 0.3% of difference in average,
and exactly the best result in 2 of the 10 images).

6. Conclusions

In this work we have presented a thresholding algo-
rithm for greyscale images based on grouping func-
tions. These functions, applied to our problem,
measure the belongingness of a greylevel intensity

Group. Otsu Ideal

97.15 96.82 97.92
97.25 96.58 97.95
98.28 97.45 98.28
97.40 96.64 97.57
97.67 96.80 97.67
97.70 96.13 97.72
97.60 95.44 97.61
97.94 95.24 97.95
96.50 92.35 97.03
96.20 93.52 96.55

97.37 95.70 97.63

Table 3: Percentage of well classified pixels obtained
by our proposal, Otsu and the ideal threshold for
each image. Each row is associated with every im-
age while the last row is the average percentage of
all images.
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Figure 3: Obtained segmentations by our algorithm using the linguistic quantifier “most” to create the
weighting vector.

to the background or to the object of the image. In
this way, we choose the threshold associated with
the highest grouping value to segment the image.
One of the advantages of our proposal is avoiding
the selection of a suitable grouping function for each
image, by means of a convex combination of several
of them. We have carried out a study on how to
choose the weights for this combination.
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