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Abstract

In Formal Concept Analysis it is very important to
study fast algorithms to compute concept lattices.
This paper introduces an algorithm on the multi-
adjoint concept lattice framework, in order to com-
pute the whole concept lattice. This fuzzy frame-
work is very general and provides more flexibility
in relational systems. This has been theoretically
studied and, now, we need an algorithm to compute
the concept lattice for each frame and context.
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1. Introduction

Formal concept analysis (FCA) has been extended
with ideas from fuzzy set theory [1, 2, 3], fuzzy logic
reasoning [4, 5, 6], rough set theory [7, 8, 9], some
integrated approaches such as fuzzy and rough [10],
or rough and domain theory [11].
There exist several fuzzy extensions of formal con-

cept analysis. To the best of our knowledge, the first
one was given in [12], although it did not go much
further beyond the basic definitions, probably due
to the fact that it did not use residuated implica-
tions. Later, in [13, 1] the authors independently
used complete residuated lattices as structures for
the truth degrees.

Moreover, FCA has been related to rough set the-
ory, which was originally proposed by Pawlak [14]
as a formal tool for modelling and processing in-
complete information in information systems, in a
fuzzy environment in [15].

Multi-adjoint concept lattices were intro-
duced [16, 17] as a new general approach to formal
concept analysis, in which the philosophy of the
multi-adjoint paradigm [18, 19] is applied to formal
concept analysis. This environment provides a
general and flexible framework in which the differ-
ent approaches stated above could be conveniently
accommodated. Moreover, richer information and
better results from the initial databases can be
obtained. For instance, this theory may be used in
retrieval information as a tool to develop software
which allows e.g. the efficient management of the
energy in an infrastructure.
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This paper presents an algorithm for calculating
multi-adjoint concept lattices, which has been de-
veloped with a double goal: flexibility, from the
point of view of the fast implementation of different
algorithms, and the possibility of extension to the
parallelization and high performance computing.

The current version uses a modification of the re-
cently proposed algorithm given in [20], which com-
putes the fixed points of closure operators and which
is based on an estimate of the upper neighbors of
each fixed point of the closure operator. Part of this
algorithm has been implemented in Python, an in-
terpreted programming language of general purpose
that has dramatically increased in popularity in the
last decade.

We have tried to exploit some of its advantages,
including its versatility and speed of development as
well as its orientation to objects. Although Python,
as an interpreted language, is not remarkable for
its great features of computing, we have evaluated
especially the variety of options for adapting the al-
gorithms to high performance computing, once they
have been properly tested and validated. Among
these possibilities there is a whole range that ex-
tends from the use of libraries oriented to matrix
calculation, such as scipy/numpy, to the program-
ming of specific modules C or C++ (the integra-
tion of Python and C/C++ is natural and there
are many possibilities for it), that could potentially
cover all the program, thus making it possible to
achieve optimal computation times.

This concern in processing speed is especially im-
portant in the scope of formal concept analysis,
where the number of operations grows dramatically
when the size of the set of objects and attributes
increases. Furthermore, in the current version, we
have made a significant effort too in these opera-
tions, maximizing the use of entire arithmetic and
eliminating the use of floating point operations, thus
reducing the computing time.

The plan of this paper is the following: multi-
adjoint concept lattice framework is recalled in Sec-
tion 2, together with several results. Section 3 con-
siders new results and introduces a new module to
compute, given a closure operator, the upper neigh-
bors of each closure set. Later, this module is com-
pleted in order to obtain an algorithm to compute
the whole multi-adjoint concept lattice and an ex-
ample is introduced in Section 4. Section 5 presents
the comparison of the algorithm introduced here
to the algorithm that properly uses the one given
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in [20] to obtain the fixed points of a closure oper-
ator. Lastly, the paper concludes with several con-
clusions and prospects for future work.

2. Multi-adjoint concept lattices

This section recalls one of the most important fuzzy
concept lattices frameworks: multi-adjoint concept
lattices [16]. Before that, the common operators
used in these concept lattices will be presented.
The basic operators in this environment are the

adjoint triples [21], which are formed by three map-
pings: a non-commutativity conjunctor and two
residuated implications [22], which satisfy the well-
known adjoint property.

Definition 1 Let (P1,≤1), (P2,≤2), (P3,≤3) be
posets and &: P1 × P2 → P3, ↙ : P3 × P2 → P1,
↖ : P3 × P1 → P2 be mappings, then (&,↙,↖) is
an adjoint triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

for all x ∈ P1, y ∈ P2 and z ∈ P3.

Example of adjoint triples are the Gödel, product
and Łukasiewicz t-norms together with their resid-
uated implications.

Multi-adjoint formal concept lattice framework
generalizes the classic formal concept analysis and
several fuzzy ones [17, 16]. The following definition
presents the basic structure which allows the exis-
tence of several adjoint triples with respect to L1,
L2, P , where (L1,�1) and (L2,�2) are complete
lattices.

Definition 2 A multi-adjoint frame is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices,
(P,≤) is a poset and, for all i = 1, . . . , n, (&i,↙i

,↖i) is an adjoint triple with respect to L1, L2, P .

Given a frame, a multi-adjoint formal context is a
tuple consisting of sets of objects, attributes and a
fuzzy relation among them; in addition, the multi-
adjoint approach also includes a function which as-
signs an adjoint triple to each object (or attribute).

Definition 3 Let (L1, L2, P,&1, . . . ,&n) be
a multi-adjoint frame, a context is a tuple
(A,B,R, σ) such that A and B are non-empty
sets (usually interpreted as attributes and objects,
respectively), R is a P -fuzzy relation R : A×B → P
and σ : A × B → {1, . . . , n} is a mapping which
associates any pair (a, b) in A × B with some
particular adjoint triple in the frame.

The set of mappings g : B → L2, f : A→ L1 will
be denoted as usual LB2 and LA1 , respectively. On
these sets a pointwise partial order can be assumed
from the partial orders in (L1,�1) and (L2,�2),

which provides LB2 and LA1 with the structure of a
complete lattice, that is, abusing notation, (LB2 ,�2
) and (LA1 ,�1) are complete lattices, where �2 is
defined pointwise, given g1, g2 ∈ LB2 , f1, f2 ∈ LA1 ,
g1 �2 g2 if and only if g1(b) �2 g2(b), for all b ∈ B;
and f1 �1 f2 if and only if f1(a) �1 f2(a), for all
a ∈ A.
Given a multi-adjoint frame and a context for

that frame, the mappings ↑σ : LB2 −→ LA1 and
↓σ : LA1 −→ LB2 , which generalize the classic defi-
nitions given in [23], and that can be seen as gener-
alizations of those fuzzy mappings given in [4, 24],
are defined, for all g ∈ LB2 and f ∈ LA1 as:

g↑σ (a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (1)
f↓

σ

(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (2)

It is not difficult to show that these two arrows gen-
erate a Galois connection [16].

The notion of concept is defined as usual: amulti-
adjoint concept is a pair 〈g, f〉 satisfying that g ∈
LB2 , f ∈ LA1 and that g↑σ = f and f↓

σ = g; with
(↑σ , ↓σ ) being an antitone Galois connection.
Therefore, one important feature of these map-

pings is that their compositions form closure op-
erators. This property is very important to allow
to calculate fix points, that is, the concepts in this
framework.

Definition 4 Let (P,≤) be a poset, c : P → P is
a closure operator if it is increasing, x ≤ c(x) and
c(c(x)) = c(x), for all x ∈ P .

Finally, the definition of concept lattice in this
framework is defined [16].

Definition 5 The multi-adjoint concept lat-
tice associated with a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ)
is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑σ = f, f↓
σ

= g}

in which the ordering is defined by 〈g1, f1〉 �
〈g2, f2〉 if and only if g1 �2 g2 (equivalently f2 �1
f1).

In [16], the authors proved that the ordering just
defined above provides M with the structure of a
complete lattice. Moreover, a representation the-
orem to multi-adjoint concept lattices was proven,
which generalizes the classic one and some other
fuzzy generalizations.

3. Computing the fixed points of a closure
operator

The concepts of a multi-adjoint concept lattice are
obtained by the composition of the concept-forming
operators. This composition is a closure operator,
because these operators form a Galois connection.
Therefore, computing the fixed points of a closure
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operator is a very important step in any algorithm
developed in order to obtain these concepts.
Among the algorithms introduced in the lit-

erature to obtain the fixed points of a closure
operator, the most notable is the one presented
in [20]. Specifically, it defines three modules:
NEIGHBORS(B, C) (Algorithm 1), which gets the
upper neighbors of a fuzzy set B from a closure
operator C. GENERATEFROM(B) (Algorithm 2,
where B∗ and B∗ denote the upper and lower set of
a subset B) is a recursive function that, from a set
B, gets all the fixed points of the closure operator
C greater than B, their upper and lower neighbors.
Finally, LATTICE(C, Y ) (Algorithm 3) applies the
previous module to the lowest fixed point of the
closure operator C, obtaining the total set of fixed
points of C along with their upper and lower neigh-
bors, i.e. all the information needed to build the
complete lattice of fixed points. For more details
see [20].

Algorithm 1: NEIGHBORS(B, C)
input : B, C
output: Upper neighbors of B by C

1 U := ∅;
2 Min := {y ∈ Y | B(y) < 1};
3 foreach y ∈ Y such that B(y) < 1 do
4 D := [y]CB ;
5 Incr := {z ∈ Y | z 6= y, B(z) < D(z)};
6 if Min ∩ Incr = ∅ then
7 add D to U
8 else
9 remove y from Min

10 return U

Algorithm 2: GENERATEFROM(B)
1 while B 6= Y do
2 B∗ := NEIGHBORS(B, C);
3 N := B∗ −F ;
4 foreach D ∈ B∗ do
5 add B to D∗;
6 if D ∈ N then
7 add D to F ;

8 foreach D ∈ N do
9 GENERATEFROM(D)

10 return

Now, a new module NEIGHBORS(B, C) (Algo-
rithm 4) will be introduced. For that, different def-
initions and new results are introduced.
From now on, a set Y , a finite lattice (L,�) and

a closure operator C : LY → LY , will be fixed. Al-
though L does not need to be linear, in order to
clarify the algorithm this will be assumed. Using
linear extensions of the possibly non-linear order on

Algorithm 3: LATTICE(C, Y )
1 F := ∅;
2 B := C(∅);
3 add B to F ;
4 GENERATEFROM(B)
5 return
〈F , {B∗ | B ∈ F}, {B∗ | B ∈ F}〉

L a new algorithm can be obtained.
The elements of L are written as L =
{l1, l2, . . . , lk}, where 0 = l1 < l2 < · · · < lk =
1, and we will write l+i instead of li+1, for each
i ∈ {1, . . . , k − 1}. Moreover, given y ∈ Y and a
fuzzy subset B ∈ LA, such that B(y) < 1, the fuzzy
subset B∪{B(y)+/y} is defined as B except for the
element y, in which it is defined as the next element,
B(y)+. The closure of this set, C (B ∪ {B(y)+/y})
is denoted as [y]CB .
Note that, in general, given B ∈ fix(C), the ele-

ment B ∪{B(y)+/y} may not be a fixed point of C,
but [y]CB = C (B ∪ {B(y)+/y}) ∈ fix(C). However,
we cannot ensure that [y]CB is, in general, an upper
neighbor of B.

The goal of the following results is to obtain the
upper neighbors of a fixed point B. Hence, given
B,D ∈ fix(C), such that B ⊂ D, we will consider
the sets SB(D) = {y ∈ Y | B(y) < D(y)} and
GB(D) = {y ∈ Y | D = [y]CB}.

Proposition 6 Given B ∈ fix(C), y ∈ Y and D ∈
fix(C), such that B ⊂ D. If y ∈ SB(D), then [y]CB ⊆
D.

Proof : Since B(y)+ ≤ D(y), the inclusions

B ⊂ B ∪ {B(y)+/y} ⊆ D

hold. Hence, by the monotonicity of C, we obtain
the result:

B ⊂ [y]CB ⊆ D

�

Proposition 7 Let B,D ∈ fix(C), such that B ⊂
D, then D is an upper neighbor of B if and only if
SB(D) = GB(D).

Proof : First of all, we assume that D is an upper
neighbor of B. If y ∈ GB(D), then D = [y]CB and
so B(y) < [y]CB(y) = D(y), that is y ∈ SB(D). If
y ∈ SB(D), then, by Proposition 6, the inclusions
B ⊂ [y]CB ⊆ D hold, and, as D is an upper neighbor
of B, we obtain that [y]CB = D, which leads us to
y ∈ GB(D).

On the other hand, we assume that D is not an
upper neighbor of B, then there exists E ∈ fix(C),
such that B ⊂ E ⊂ D. Since SB(E) 6= ∅, there
exists an element y in SB(E) and, by Proposition 6,
[y]CB ⊆ E holds.
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Hence, we obtain that [y]CB ⊆ E ⊂ D, and,
consequently, [y]CB 6= D. Therefore, y /∈ GB(D),
but y ∈ SB(D), because B(y) < E(y) ≤ D(y).
Thus, SB(D) 6= GB(D), which leads us to a
contradiction and proves the result. �

Proposition 8 Given B,D ∈ fix(C), such that
B ⊂ D. The equality SB(D) = GB(D) holds if
and only if the number of elements in SB(D) is
equal to the number of elements in GB(D), that is
|SB(D)| = |GB(D)|.

Proof : The first implication is clear. For the
other one, we have that if y ∈ GB(D) then
B(y) ≤ [y]CB(y) = D(y), and so y ∈ SB(D). There-
fore, GB(D) ⊆ SB(D) and, moreover, as they are
finite sets, the assumption that |SB(D)| = |GB(D)|
leads to SB(D) = GB(D). �

As a consequence of Propositions 7 and 8, the
following result holds.

Corollary 9 Given B,D ∈ fix(C) satisfying B ⊂
D, the fuzzy subset D is an upper neighbor of B if
and only if |SB(D)| = |GB(D)|.

Hence, using the previous results, the module
given in Algorithm 4 computes the upper neighbors
of each fixed point B of C.
This module computes, first of all, the sets [y]CB ,

for each y ∈ B, such that B(y) < 1, and they are
kept in P . However, it may be possible that there
exist y, z ∈ Y , with y 6= z, such that [y]CB = [z]CB ,
hence, only one of these elements is considered and
it is called generator.1 Since, Y is ordered by an
index set, we will consider the least of the generators
of a set [y]CB and they will be kept in Gen.

Now, for each y ∈ Gen, the number of el-
ements in S([y]CB) will be computed and added
to S_counter(y). Moreover, the numbers of
generators of each set G([y]CB) will be kept in
G_counter(y) (that is, the elements in each equiv-
alence class will be computed).
Finally, using Corollary 9, for each y ∈ Gen, if

S_counter(y) = G_counter(y), then P (y) = [y]CB
is an upper neighbor and will be kept in U , other-
wise, we continue with the next element.
This proves the correctness and termination of

the algorithm. Moreover, it is clear the difference
between Algorithm 1 and Algorithm 4.

4. Algorithm to compute the multi-adjoint
concept lattice

In the classic formal concept analysis there are dif-
ferent algorithms to get the whole set of concepts
and the relationship between them, i.e. the com-
plete lattice of concepts, fastly and efficiently, such

1Note that the equality [y]CB = [z]CB provides an equiva-
lence relation in Y and we only choose one element of each
equivalence class.

Algorithm 4: Neighbors(B)
input : B, C
output: Upper neighbors of B by

C
1 U := ∅; P := ∅;
generators := ∅;
S_counter := ∅;
G_counter := ∅

2 foreach y ∈ Y such that
B(y) < 1 do

3 P (y) := [y]CB
4 S_counter(y) := 0
5 foreach z ∈ Y such that

z < y do
6 if B(z) < P (y)(z) then
7 S_counter(y) + +
8 if B(y) < P (z)(y)

then
9 G_counter(z) + +

10 go to
no_gen_min

11 add y to Gen
12 G_counter(y) := 0
13 foreach z ∈ Y such that

z > y do
14 if B(z) < P (y)(z) then
15 S_counter(y) + +

16 label no_gen_min
17 foreach y ∈ Gen do
18 if S_counter(y) =

G_counter(y) then
19 add P (y) to U

20 return U

as those given in [25, 26]. However, there are not
many efficient algorithms for the fuzzy case.

We have introduced an algorithm to obtain multi-
adjoint concept lattices considering the one given
in [20] and the module explained in the previous
section. We must emphasize that the algorithm
requires finite carrriers. For instance, the lattices
L1, L2 and P can be regular partitions of [0, 1],
and these can be different for each L1, L2 and P ,
i.e. we can consider L1 = [0, 1]20, L2 = [0, 1]8 and
P = [0, 1]100, as in the example introduced in [16].
To its credit is the fact that you can use different

adjoint triples, because the composition of the map-
pings of a Galois connection in the multi-adjoint ap-
proach is a closure operator, even though different
adjoint triples are considered.

Now, we present some examples where performed
implementation has been used. The first of these is
taken from [20], and we have asserted that the same
results are given.

Example 10 The considered multi-adjoint frame
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is L = (L,�,&L), where L = {0, 0.5, 1} and &L

is the Łukasiewicz conjunctor defined on L. In
this framework, the context is (A,B,R, σ), where
A = {y1, y2, y3, y4, y5}, B = {x1, x2, x3}, σ is con-
stantly &L and R : A×B → L is given by Table 1.
In this example, as there are 33 = 27 fuzzy subsets

Table 1: Relation R of Example 10.
R x1 x2 x3

y1 1 1 0
y2 0.5 1 0
y3 0.5 1 0.5
y4 1 1 0.5
y5 1 0.5 1

of objects and 35 = 243 fuzzy subsets of attributes,
at most there may be 27 concepts, if all subsets of
objects were intents of concepts, but the number of
actual concepts is less. In this case, the concept
lattice (M,�), associated with the framework and
context previously set, has 10 concepts listed below.

C0 = 〈{0.5/x1, 0.5/x2},
{1.0/y1, 1.0/y2, 1.0/y3, 1.0/y4, 1.0/y5}〉

C1 = 〈{0.5/x1, 1.0/x2},
{1.0/y1, 1.0/y2, 1.0/y3, 1.0/y4, 0.5/y5}〉

C2 = 〈{1.0/x1, 0.5/x2},
{1.0/y1, 0.5/y2, 0.5/y3, 1.0/y4, 1.0/y5}〉

C3 = 〈{0.5/x1, 0.5/x2, 0.5/x3},
{0.5/y1, 0.5/y2, 1.0/y3, 1.0/y4, 1.0/y5}〉

C4 = 〈{1.0/x1, 1.0/x2},
{1.0/y1, 0.5/y2, 0.5/y3, 1.0/y4, 0.5/y5}〉

C5 = 〈{0.5/x1, 1.0/x2, 0.5/x3},
{0.5/y1, 0.5/y2, 1.0/y3, 1.0/y4, 0.5/y5}〉

C6 = 〈{1.0/x1, 0.5/x2, 0.5/x3},
{0.5/y1, 0.5/y2, 0.5/y3, 1.0/y4, 1.0/y5}〉

C7 = 〈{1.0/x1, 1.0/x2, 0.5/x3},
{0.5/y1, 0.5/y2, 0.5/y3, 1.0/y4, 0.5/y5}〉

C8 = 〈{1.0/x1, 0.5/x2, 1.0/x3},
{0.5/y3, 0.5/y4, 1.0/y5}〉

C9 = 〈{1.0/x1, 1.0/x2, 1.0/x3},
{0.5/y3, 0.5/y4, 0.5/y5}〉

The Hasse diagram of this lattice is shown in Fig. 1.

Considering the Gödel conjunctor in the frame,
(L,�,&G), the complete lattice obtained is isomor-
phic to the one above, although the concepts are dif-

[1.0, 0.5, 0.0]

[1.0, 1.0, 0.0] [1.0, 0.5, 0.5]

[1.0, 1.0, 0.5] [1.0, 0.5, 1.0]

[1.0, 1.0, 1.0]

[0.5, 0.5, 0.0]

[0.5, 1.0, 0.0] [0.5, 0.5, 0.5]

[0.5, 1.0, 0.5]

Figure 1: The Hasse diagram of (M,�)

ferent.

C ′0 = 〈{0.5/x1, 0.5/x2},
{1.0/y1, 1.0/y2, 1.0/y3, 1.0/y4, 1.0/y5}〉

C ′1 = 〈{0.5/x1, 1.0/x2},
{1.0/y1, 1.0/y2, 1.0/y3, 1.0/y4, 0.5/y5}〉

C ′2 = 〈{1.0/x1, 0.5/x2},
{1.0/y1, 0.5/y2, 0.5/y3, 1.0/y4, 1.0/y5}〉

C ′3 = 〈{0.5/x1, 0.5/x2, 0.5/x3},
{1.0/y3, 1.0/y4, 1.0/y5}〉

C ′4 = 〈{1.0/x1, 1.0/x2},
{1.0/y1, 0.5/y2, 0.5/y3, 1.0/y4, 0.5/y5}〉

C ′5 = 〈{0.5/x1, 1.0/x2, 0.5/x3},
{1.0/y3, 1.0/y4, 0.5/y5}〉

C ′6 = 〈{1.0/x1, 0.5/x2, 0.5/x3},
{0.5/y3, 1.0/y4, 1.0/y5}〉

C ′7 = 〈{1.0/x1, 1.0/x2, 0.5/x3},
{0.5/y3, 1.0/y4, 0.5/y5}〉

C ′8 = 〈{1.0/x1, 0.5/x2, 1.0/x3},
{0.5/y3, 0.5/y4, 1.0/y5}〉

C ′9 = 〈{1.0/x1, 1.0/x2, 1.0/x3},
{0.5/y3, 0.5/y4, 0.5/y5}〉

Now, if the granularity of the carriers is changed
to [0, 1]4 = {0, 0.25, 0.5, 0.75, 1}, then there are
53 = 125 fuzzy subsets of objects and 55 = 3 125
fuzzy subsets of attributes. Considering the frame
([0, 1]4,�,&G), we obtain the same number of con-
cepts in this case, that is, 8. However, for ([0, 1]4,�
,&L) the number of concepts is 35, see Fig. 2.
Applying the flexibility of the multi-adjoint frame-

work, if we assume that the object x3 is pre-
ferred to the rest, then we can consider the context
(A,B,R, σ), where σ(a, x3) = &L and σ(a, x3) =
σ(a, x3) = &G, for all a ∈ A. In this case, 17
concepts are obtained and they are represented in
Fig. 3.

5. Comparing both algorithms

This section considers the algorithm introduced pre-
viously and the other one that uses the algorithm
given in [20] to obtain the fixed points of a closure
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{[0.5, 0.75, 0.5]}

{[0.75, 0.75, 0.5]} {[0.5, 1.0, 0.5]}

{[0.75, 0.75, 0.75]} {[1.0, 0.75, 0.5]} {[0.75, 1.0, 0.5]}

{[1.0, 1.0, 0.75]}

{[1.0, 1.0, 1.0]}

{[0.5, 0.5, 0.25]}

{[0.75, 0.5, 0.25]} {[0.5, 0.75, 0.25]}{[0.5, 0.5, 0.5]}

{[0.75, 0.75, 0.25]}{[1.0, 0.5, 0.25]}{[0.75, 0.5, 0.5]} {[0.5, 1.0, 0.25]}

{[1.0, 0.75, 1.0]}

{[0.75, 1.0, 0.25]}{[1.0, 0.75, 0.25]}{[0.75, 0.5, 0.75]}

{[1.0, 0.5, 0.75]}

{[1.0, 0.75, 0.75]}{[1.0, 0.5, 1.0]} {[0.75, 1.0, 0.75]}

{[0.5, 0.75, 0.0]}

{[0.75, 0.75, 0.0]} {[0.5, 1.0, 0.0]}

{[1.0, 0.75, 0.0]} {[0.75, 1.0, 0.0]}

{[1.0, 0.5, 0.5]}

{[1.0, 1.0, 0.5]}

{[0.5, 0.5, 0.0]}

{[0.75, 0.5, 0.0]}

{[1.0, 0.5, 0.0]}

{[1.0, 1.0, 0.25]}

{[1.0, 1.0, 0.0]}

Figure 2: Concept lattice w.r.t. the frame ([0, 1]4,�
,&L)

{[1.0, 0.5, 0.75]}

{[1.0, 1.0, 0.75]}{[1.0, 0.5, 1.0]}

{[1.0, 1.0, 1.0]}

{[1.0, 1.0, 0.0]}

{[1.0, 1.0, 0.25]}

{[1.0, 1.0, 0.5]}

{[0.5, 1.0, 0.25]}

{[0.5, 1.0, 0.5]}

{[0.5, 1.0, 0.75]}

{[0.5, 0.5, 0.5]}

{[1.0, 0.5, 0.5]}{[0.5, 0.5, 0.75]}

{[0.5, 1.0, 0.0]}

{[0.5, 0.5, 0.0]}

{[1.0, 0.5, 0.0]}{[0.5, 0.5, 0.25]}

{[1.0, 0.5, 0.25]}

Figure 3: x3 is preferred to the rest of objects

operator. With the purpose of comparing in prac-
tice the performance of both algorithms, a battery
of experimental tests has been performed.

Specifically, we have chosen the frame

([0, 1]20, [0, 1]8, [0, 1]100,≤,≤,≤,&∗P )

where [0, 1]m denotes a regular partition of [0, 1] into
m pieces and &∗P the discretization of the prod-
uct conjunctor. Moreover, we consider the con-
texts (A,B,Rki , σ), where Rk1 , . . . , RkN is a fam-
ily of squared matrices, representing relations with
an increasing number of rows (elements in A) and
columns (elements in B). Random values have been
assigned to the elements of each matrix Rki , with
i ∈ {1, . . . , N}.
For each relation Rki , a program is designed

which builds the multi-adjoint concept lattice us-
ing two algorithms, one of them properly uses the
algorithm given in [20] and the other one considers
the new module presented in Section 3. The pro-
gram saves the time employed by the computer us-
ing each one of these algorithms. In order to avoid
any possible interference due to differences in the
loading time of the computer when executing the
test, the process has been repeated a large number
of times (500 times for each algorithm). The pro-
cess is repeated for ki = 20 ∗ i, with i ∈ {1, . . . , 15}.
The time employed by both algorithms is increas-

ing super-linearly and the results are almost indis-
tinguishable, although both algorithms have differ-
ent structures. From this result, one can conjec-
ture that the times employed by both algorithms
are asymptotically equivalent when the number of
objects (and attributes) diverge to +∞.

However, new variables can be considered in the
comparison, such as the granularity of the assumed
carriers, that is, given a number of objects and at-
tributes, we can increase m in the regular partitions
[0, 1]m, in which the objects, attributes and rela-
tions are evaluated.

The study of the complexity with respect to the
number of attributes n provides that both modules,
Algorithms 1 and 4, have a quadratic complexity,
in the worse case: O(n2). Hence, the complexity
is not improved but an alternative mechanism is
considered with the same complexity. This can be
interesting if efficient computational procedure can
be applied to Algorithm 4 instead of Algorithm 1,
such as using neural networks, etc. Moreover, the
new module has been introduced based on new in-
teresting results, which are useful to know the gen-
eral building of the multi-adjoint concept lattices.

6. Conclusions and future work

An algorithm to build multi-adjoint concept lat-
tices has been introduced. This has been imple-
mented using Python programming language and
C++. The main properties of Python that have
been used are its versatility and speed of develop-
ment, as well as its orientation to objects. These
have been complemented with the properties of
C++.

In addition, we have developed our own library of
fuzzy sets (instead of opting for the various existing
implementations in Python) that is directly oriented
to sets of evenly spaced truth values, and so we can
represent them by finite ranges of integer numbers.
As a consequence, we have eliminated the use of
floating point operations, which should lead to a
reduction in computation time.

Furthermore, new results and a new module have
been developed to obtain the upper neighbors of
each closure set. This module has been completed
in order to obtain a new algorithm, which computes
the whole multi-adjoint concept lattice. This algo-
rithm is compared to the one given in [20]. At the
moment, we are finding out that the new module
does not introduce new benefits in time, however it
provides a different way to obtain the upper neigh-
bors of each closure set, which opens a new way to
future research. Moreover, this modification shows
that the algorithm given in [20], in order to obtain
the fixed points of a closure operator, is not easy to
be improved.

The verification of the proposed improvements
with respect to other implementations will be de-
veloped as future work. Moreover, C or C++ will
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be used in other specific parts of the algorithm in
order to decrease the computation time.
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