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Abstract. A deep recurrent neural network system based on
a long short-term memory (LSTM) model was developed
for daily PM10 and PM2.5 predictions in South Korea. The
structural and learnable parameters of the newly developed
system were optimized from iterative model training. Inde-
pendent variables were obtained from ground-based observa-
tions over 2.3 years. The performance of the particulate mat-
ter (PM) prediction LSTM was then evaluated by compar-
isons with ground PM observations and with the PM concen-
trations predicted from two sets of 3-D chemistry-transport
model (CTM) simulations (with and without data assimila-
tion for initial conditions). The comparisons showed, in gen-
eral, better performance with the LSTM than with the 3-D
CTM simulations. For example, in terms of IOAs (index of
agreements), the PM prediction IOAs were enhanced from
0.36–0.78 with the 3-D CTM simulations to 0.62–0.79 with
the LSTM-based model. The deep LSTM-based PM predic-
tion system developed at observation sites is expected to be
further integrated with 3-D CTM-based prediction systems
in the future. In addition to this, further possible applications
of the deep LSTM-based system are discussed, together with
some limitations of the current system.

1 Introduction

Over the past several decades, South Korea has made con-
tinuous economic growth; however, in accordance with this
rapid economic development, emissions of air pollutants
from various sources such as industrial, transportation, and
power generation sectors have increased, and air quality
has thus deteriorated (Wang et al., 2014). Among the at-
mospheric pollutants, particulate matter (PM) plays an im-
portant role in human health and climate change (Davidson
et al., 2005; Forster et al., 2007). Several epidemiological
studies have reported clear statistical relationships between
aerosol concentrations and human mortality and morbidity
(Dockery et al., 1992; Hope III and Dockery, 2006). To min-
imize the public damage caused by air pollution and to alert
Korean citizens about high-PM events, the National Insti-
tute of Environmental Research (NIER) of South Korea has
carried out daily air quality (or chemical weather) forecast-
ing using multiple 3-D chemistry-transport models (CTMs)
since 2014.

However, the accuracy of the 3-D CTM simulations has
been reported to be low. Researchers believe that this low ac-
curacy originates from uncertain sources of emission inven-
tory, meteorological fields, initial and boundary conditions,
and CTMs themselves (Seaman, 2000; Berge et al., 2001;
Liu et al., 2001; Holloway et al., 2008; Tang et al., 2009;
Han et al., 2011). Many efforts have been made to enhance
the accuracy of the 3-D CTM-based forecasting system. As
a part of the efforts, the Korean government decided to de-
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Figure 1. Schematic diagram of how the LSTM-based PM10 and PM2.5 prediction system was developed.

velop its own air quality forecasting system mainly based on
a new CTM in 2017. This project entailed establishing bet-
ter bottom-up and top-down emissions, developing improved
meteorological fields over East Asia, developing a data as-
similation system using satellite-retrieved and ground-based
observations, and incorporating new atmospheric chemical
and physical processes into the new Korean CTM. Despite
all the ongoing efforts, the traditional chemical weather fore-
casts based on the CTM are still poor at conducting accurate
air quality forecasts over South Korea.

In contrast, statistical models based on artificial neural net-
works (ANNs) have also been applied to air quality pre-
dictions. Because these approaches are based on a statis-
tical method instead of sophisticated mathematical model-
based computations (i.e., without considerations of advection
and convection, photochemistry, or emissions), they are more
cost-effective than 3-D CTM simulations. In previous stud-
ies, simple ANN models were applied to air quality predic-
tions. The time-series concentrations of ambient pollutants
have been predicted by, for example, supported vector ma-

chine (SVM) and radial basis function (RBF) neural network
models (Lu and Wang, 2005). Furthermore, ambient levels
of ozone were predicted by simple feed-forward neural net-
work (FFNN) models (Yi and Rybutok, 1996; Abdul-Wahab
and Al-Alawi, 2002). However, such simple models have the
limitation of neglecting relationships among data at the dif-
ferent time steps. Recently, more complex ANN models have
been developed with recurrent neural networks (RNNs). Al-
though RNNs have typically been used for natural language
recognition, they have the special advantage of remembering
the experiences of past events because they maintain the ac-
tivated vectors at each time step (Cho et al., 2014). Because
of this advantage, RNNs also make accurate time-series pre-
dictions (Che et al., 2018). Several investigators used a shal-
low (single hidden layer) RNN model to predict the peak
mixing ratios of ambient pollutants such as NO2, SO2, O3,
CO, and PM10 (Brunelli et al., 2007), and others used a deep
RNN model to predict ambient levels of PM2.5 (Ong et al.,
2016). However, RNN models have generally shown seri-
ous exploding and/or vanishing gradient problems (Bengio
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Figure 2. Locations of NIER AIR KOREA and KMA AWS sites in South Korea.

et al., 1994; Hochreiter, 1998). To resolve these problems,
researchers developed the long short-term memory (LSTM)
cell (Hochreiter and Schmidhuber, 1997). Unlike traditional
RNNs, LSTM is known to be free from exploding or vanish-
ing gradient problems, and it is better suited for long time-
series predictions than are traditional RNNs. Recently, re-
searchers used a deep LSTM neural network to conduct a
number of air quality studies (Li et al., 2017; Freeman et al.,
2018).

Although ANN-based predictions are not based on math-
ematics, deep learning has demonstrated a strong potential
in the areas of weather and air quality forecasts; for exam-
ple, the Weather Channel in the United States uses IBM Wat-
son for its operational weather predictions (Mourdoukoutas,
2015). Another example is bias corrections based on several
machine-learning techniques. Authors of one study reported
that the biases (or errors) between the operational CTM-
based air quality predictions and observations can be reduced
by utilizing machine-learning algorithms (Reid et al., 2015).
There must be many creative ways to improve the accuracy
of air quality forecasts by combining 3-D CTM-based predic-
tions with artificial intelligence (AI)-based techniques. These
combined approaches have now begun, and this article in-
tends to present one of these efforts in the area of air quality
predictions.

For this study, we developed a deep LSTM model to more
accurately predict ambient PM concentrations. We evaluated

the model performance by comparing the CTM-predicted
and observed PM10 and PM2.5 with the LSTM-predicted
PM10 and PM2.5. The details of the system development and
prediction procedures are presented in Sects. 2 and 3, and
limitations of the model are discussed in Sect. 4.

2 Model development

Figure 1 shows the schematic procedures for the deep LSTM-
model-based PM predictions. There were two main processes
in developing this prediction system: (i) data preprocessing
and (ii) structure design and optimization of the deep neural
network. It is essential to prepare time-series sequential data
sets for both model training and predictions. In this study, we
collected ambient pollutant concentrations and meteorologi-
cal data from ground-based observations. To construct the
system, we first screened several AI-based methods includ-
ing LSTM, such as SVM, relevance vector machine (RVM),
and a technique from convolutional neural network (CNN).
Based on the results from the screening, we chose a multi-
layered deep LSTM neural network and conducted iterative
model training to optimize the weights and biases of models
at seven individual sites. We present the details on develop-
ing the system in the following sections.
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2.1 Data preprocessing

We collected the observation data from both the NIER AIR
KOREA measurement network and the Korea Metrologi-
cal Administration (KMA) automatic weather station (AWS)
network to prepare the input variables. Figure 2 presents
the locations of the AIR KOREA and KMA AWS obser-
vation sites throughout South Korea; the networks consist
of 323 and 494 ground-based monitoring stations, respec-
tively. They provide hourly mixing ratios of the ambient pol-
lutants such as SO2, CO, NO2, O3, PM10, and PM2.5 and
the metrological parameters such as temperature, wind di-
rection, wind speed, hourly precipitation, and relative humid-
ity. PM10 and PM2.5 were measured by β-ray absorption and
a gravimetric method, respectively (Shin et al., 2011). The
ambient mixing ratios of SO2, CO, NO2, and O3 were mea-
sured by pulse ultraviolet fluorescence, a nondispersive in-
frared sensor, chemiluminescence, and ultraviolet methods,
respectively.

Among the observation sites, we chose seven monitor-
ing sites located in the major cities in South Korea (Seoul
(two sites), Daejeon, Gwangju, Daegu, Ulsan, and Busan) for
PM10 and PM2.5 predictions (refer to Fig. 2a–f for the loca-
tions). There were two main criteria for selecting the seven
sites: (i) the distances between air quality and meteorologi-
cal monitoring stations should be the shortest (i.e., colloca-
tion) and (ii) the number of missing observation data should
be minimal. Because there are sometimes too many miss-
ing values in the monitoring data prior to 2013, we used
observations from January 2014 to April 2016 for training.
After the model training, actual predictions of PM10 and
PM2.5 were conducted for the period of the Korea-United
States Air Quality (KORUS-AQ) campaign (from 1 May to
11 June 2016). The KORUS-AQ campaign period is now an
official model testing window in South Korea.

The high quality of input data is critical for LSTM-based
time-series predictions. In the current study, the missing val-
ues in ground-based air quality monitoring data were pro-
duced by using the pretrained deep LSTM model. The per-
centages of missing observations at the seven AIR KOREA
sites are summarized in Table S1 in the Supplement. The per-
centage ranged between 0.7 % and 13.9 %. The schematic di-
agram of missing value generation is presented in Fig. S1 in
the Supplement. As shown in Fig. S1, when the missing data
were detected, the corresponding values were generated from
a pretrained model. For example, the accuracy of the miss-
ing values generated for the Seoul-1 site is summarized in
Fig. S2. It is shown from Fig. S2 that the pollutant concentra-
tions generated by the pretrained model correlated well with
the observed concentrations. The correlation coefficients for
the model training and validation ranged from 0.60 to 0.91
and from 0.52 to 0.93, respectively. The accuracy of the gen-
erated missing values from the seven selected monitoring sta-
tions is summarized in Table S2. For the meteorological pa-
rameters, we determined the missing variables by interpolat-

ing the observed data; in the meteorological data, fewer than
0.01 % of values were missing.

In particular, information on various pollutants is impor-
tant in the LSTM-based predictions of PM10 and PM2.5. Be-
cause H2SO4 and HNO3 are main precursors of inorganic
sulfate (SO2−

4 ) and nitrate (NO−3 ), respectively, correct infor-
mation on the levels of their precursors (SO2 and NO2) is
important. Although CO is not directly related to producing
particulate matter, we included the mixing ratios in the input
data because these are somehow related to the mixing ratios
of ozone and hydroxyl radicals (OH).

Meteorological conditions also play an important role in
particulate matter concentrations. Both wind direction and
speed can represent the origin of air pollutants and intensity
of atmospheric turbulence, and precipitation directly affects
PM10 and PM2.5 by wet scavenging. In addition, there is a
relationship between relative humidity and the levels of hy-
droxyl radicals because H2O is a main precursor of OH. Wa-
ter vapor can also influence the amounts of particulate water
and nucleation rates in the atmosphere. Therefore, all mete-
orological parameters measured in the AWS monitoring data
set can possibly affect PM concentrations, and thus we used
them in the LSTM-based prediction system.

Before feeding the input variables into the LSTM system,
one important step is data normalization. All the input pa-
rameters were rescaled between 0 and 1:

xnormal,i =
xi − xmin,i

xmax,i − xmin,i
, (1)

where xnormal,i is the normalized values of species i; xi is
the observed value; and xmax,i and xmin,i are the maximum
and minimum values of species i, respectively. Because the
LSTM system was designed for daily prediction of PM10 and
PM2.5, the normalized observations of the previous day were
mapped with the PM concentrations of the next day (i.e.,
there is a 24 h time lag between independent and dependent
variables). Thus, the shapes of one unit of training data are
24× 11 and/or 24× 12. This structured data set was then re-
shaped as a three-dimensional vector matrix to feed them into
the hidden LSTM layers. In addition, we excluded the obser-
vation data during the dust event periods in the model train-
ing; because these episodes are infrequent, including data on
them could have interfered with establishing an accurate PM
prediction system (i.e., they can be noisy signals).

2.2 System construction

As mentioned previously, the LSTM has the special advan-
tage of remembering the past experiences. Because of this
advantage, the LSTM has a strong capability for identify-
ing highly complex relationship in the sequential data (i.e.,
the LSTM-based deep neural network has the strong poten-
tial in the time-series predictions). In general, the accuracy
of the time-series prediction with the deep LSTM model is
relatively higher than those with other deep neural networks
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Table 1. Summary of model training and validation results.

Species Site Training Validation

R MSE RMSE R MSE RMSE

PM10 Seoul-1 0.66 379.63 19.48 0.71 589.83 24.29
Seoul-2 0.72 347.62 18.65 0.59 551.71 23.49
Daejeon 0.74 303.48 17.42 0.61 471.32 21.71
Gwangju 0.61 326.98 18.08 0.55 362.88 19.05
Daegu 0.81 259.39 16.11 0.63 378.18 19.45
Ulsan 0.72 318.41 17.84 0.57 382.37 19.55
Busan 0.71 230.59 15.19 0.55 394.44 19.86

PM2.5 Seoul-1 0.68 106.73 10.33 0.57 118.24 10.87
Seoul-2 0.69 121.07 11.00 0.54 131.36 11.46
Daejeon – – – – – –
Gwangju 0.59 112.61 10.61 0.59 151.99 12.33
Daegu 0.80 92.32 9.61 0.66 179.67 13.40
Ulsan 0.75 145.16 12.05 0.75 165.26 12.86
Busan 0.75 107.63 10.37 0.55 170.53 13.06

Note: the units for MSE and RMSE are in micrograms per cubic meter (µg m−3).

(Ma et al., 2015; Amarasinghe et al., 2017). Several previous
studies have proposed the use of the LSTM for more accurate
time-series predictions (e.g., Connor et al., 1994; Saad et al.,
1998). Based on this, in this study we used the LSTM cells
in the construction of the deep hidden layers of daily PM10
and PM2.5 prediction model.

The developed system has two schemes: PM10 prediction
and PM2.5 prediction; the prediction model is designed to
have three to five hidden LSTM layers; one layer consists of
100 hidden nodes, and the layers capture sequential temporal
information. The last LSTM hidden layer is connected to the
output layer, which performs feature mapping between the
output vectors from deep hidden layers and the actual PM10
and/or PM2.5.

In order to learn complicated and nonlinear mappings be-
tween the layers, activation functions are applied to get the
output of a layer, which is then fed into the next layer as an
input. There are several activation functions that can be used
in neural networks; among them, a sigmoid function has been
typically used because it has characteristics of being bounded
and being differentiable; however, this function has a van-
ishing gradient problem due to continuous multiplication of
gradients. In this study, therefore, we used the rectified linear
unit (ReLU) to activate output layer (Nair and Hinton, 2010).
The ReLU is expressed by

f (x)=

{
0 when x < 0
x when x ≥ 0. (2)

As shown in Eq. (2), the ReLU ranges from 0 to∞. Because
the derivative of the ReLU is 0 or 1, the vanishing gradient
does not occur during the back propagations. In the Supple-
ment, we give a detailed description of the LSTM architec-
ture used in this study.

In traditional statistics, the close relationship among the
input variables (i.e., multicollinearity) can lead to instability
of regression coefficients and can distort the effect of the re-
gressive variables on dependent variables. For the deep learn-
ing, the multicollinearity requires a relatively long computa-
tion time because it is slow to converge. We evaluated the
multicollinearity of the independent variables by estimating
the Pearson correlation coefficient (R) between the observed
atmospheric pollutants at the different time steps because the
purpose of recurrent neural network is to identify the rela-
tionships in sequential data. The correlation coefficients are
summarized in Table S3; as shown in Table S3, there are rel-
atively low correlations among the concentrations of atmo-
spheric pollutants. In addition, the LSTM-based deep neu-
ral network is effective for analyzing the relationships be-
tween highly correlated time-series sequential data (Fan et
al., 2014). Furthermore, the problem of the multicollinearity
can be resolved by adopting ReLU as an activation function
(Ayinde et al., 2019).

2.3 Model training

The model training is a process for optimizing the structural
and learnable parameters of the deep LSTM system; we de-
termined the PM10 and PM2.5 prediction system’s structure
from the iterative training, and the structure was described in
Sect. 2.2. In addition to the activation functions described in
Sect. 2.2, there are two more main components in the deep
neural network training: (i) cost function and (ii) optimiza-
tion algorithm. The cost function usually measures how well
the neural network works with respect to given training sam-
ples and corresponding predicted outputs. In other words, it
is used for evaluating the accuracy of predicted values. When
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Figure 3. Training and validating the daily PM10 prediction model: (a) Seoul-1; (b) Seoul-2; (c) Daejeon; (d) Gwangju; (e) Daegu; (f) Ulsan;
(g) Busan. Black and red dots represent the training and validation results, respectively.

the prediction accuracy is poor, the cost is high, whereas as
the model’s predictions are more accurate, the cost decreases.

There are several cost functions commonly used in deep
learning, and the cost function can be classified by its appli-
cation purpose. In this study, the purpose of the cost function
was to minimize the regression cost, and we thus used mean
squared error (MSE) as a cost function, expressed as

JMSE (θ)=
1
N

N∑
i=1

(yi −hθ (xi))
2, (3)

where xi is the input vector for ith training; yi is the target
value (or true value) for the ith training; and hθ (xi) is the
predicted vector corresponding to yi for a given deep neural
network model θ . It should be noted here that θ means the
LSTM network with different parameters (see Eqs. S1–S6 in
the Supplement). In Eq. (3), JMSE (θ) represents the MSE be-
tween the target vector, yi , and its predicted vector, hθ (xi),
when the number of training vectors is N .

The role of an optimization algorithm is to find an efficient
and stable pathway for minimizing the gradient descent of
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Figure 4. Same as Fig. 3 but for PM2.5.

a cost function. In this study, we utilized adaptive moment
estimation (ADAM) to train the neural networks (Kingma
and Ba, 2015). The ADAM is one of the extended algorithms
for stochastic gradient descent, and its detailed explanation is
also given in the Supplement.

In order to train the LSTM system for the PM10 and PM2.5
predictions, the observations from January 2014 to April
2016 (2.3-year data) were used, as mentioned previously. Be-
cause Asian dust is regarded as containing noisy atmospheric
signals, we removed the observations during dust events in
the course of the model training. We divided the training data

set into two groups with ratios of 0.85 to 0.15 for the model
training and validation (Guyon, 1997).

First, we measured the variations in training and valida-
tion costs (i.e., the outcome of MSE cost) during the model
training. In the early stages of the model training, updating
the weights and biases decreases the training and validation
costs. Because the training data set is only considered for up-
dating weights and biases, the training cost is smaller than
the validation cost. With the same reason, the training cost
continues to decrease during the model training. In contrast,
the validation cost decreases until a certain number of it-
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erations, and then it starts to increase. Optimization of the
deep neural network model is to update the weight and bias
vectors until the validation cost reaches such an inflection
point (Mahsereci et al., 2017). In addition, the model training
can also be verified by comparing two statistical parameters,
MSE and root mean squared error (RMSE); these values at
the inflection point are summarized in Table 1. For properly
trained models, the training cost should be slightly smaller
than the validation cost. If the validation cost is much higher
than training cost and the slope of validation cost is positive,
it is called “over-fitting”, which means that both the weight
and bias vectors of the model have been overturned. Based
on the above two essential requirements of the model train-
ing, we concluded that our LSTM PM prediction model was
well trained via general rules of the model training (refer to
Table 1).

Second, the accuracy of the deep LSTM model training for
PM10 and PM2.5 predictions is summarized in Figs. 3 and 4,
respectively; in the figures, the black and red dots denote the
comparison results between the predicted and observed PM
concentrations in the model training and validation, respec-
tively. As shown in Fig. 3, there was reasonable agreement in
the PM10 predictions. TheR for PM10 training and validation
ranged from 0.61 to 0.81 and from 0.55 to 0.71, respectively.
The training results for the PM2.5 model also showed reason-
able correlations (0.59≤ R for training≤ 0.80; 0.54≤ R for
validation ≤ 0.75).

2.4 3-D CTM simulations

In order to assess the accuracy of the LSTM-based predic-
tions in this study, we compared them with 3-D CTM-based
predictions with and without data assimilation (DA). We
employed the Community Multiscale Air Quality (CMAQ)
model v5.1 for the 3-D CTM simulations. We acquired the
metrological fields from Weather Research and Forecasting
v3.8.1 model simulations. The domain of the CMAQ model
simulations is presented in Fig. 5; the model domain covers
northeast Asia with a horizontal resolution of 15km×15 km
and with 27 sigma vertical levels. We used the KORUS v1.0
emission inventory for anthropogenic emissions; this inven-
tory was made for the KORUS-AQ campaign based on three
emission inventories: (i) CREATE (Comprehensive Regional
Emission inventory for Atmospheric Transport Experiment);
(ii) MICS-Asia (Model Inter-Comparison Study for Asia);
and (iii) SEAC4RS (Studies of Emissions and Atmospheric
Composition, Clouds, and Climate Coupling by Regional
Surveys) (Woo et al., 2017). We estimated biogenic emis-
sions from MEGAN v2.1 (Model of Emissions of Gases and
Aerosols from Nature) simulations (Guenther et al., 2006).
We obtained biomass burning emissions from FINN (Fire
INventory from NCAR, http://bai.acom.ucar.edu/Data/fire/,
last access: 13 October 2019) (Wiedinmyer et al., 2011).
We obtained lateral boundary conditions from the MOZART-
4 model simulations (https://www.acom.ucar.edu/wrf-chem/

Figure 5. Domains of the CMAQ model simulations (red line)
and Geostationary Ocean Color Imager (GOCI) sensor (blue line).
Green triangles and red dots represent the locations of ground-based
monitoring sites in China and South Korea, respectively.

mozart.shtml, last access: 13 October 2019) (Emmons et al.,
2010).

To prepare the initial conditions (ICs) for the CMAQ
model simulations, we used the optimal interpolation with
Kalman filter method (OI with Kalman). The DA with the
OI technique has been used in several previous studies
(Carmichael et al., 2009; Chung et al., 2010). The assimi-
lation system is defined as follows:

τm
′
= τm+K(τo−Hτm) , (4)

K= BHT
(

HBHT
−O

)−1
, (5)

where τm
′ represents the assimilated product; τo and τm de-

note the observed and modeled values, respectively; H repre-
sents the observation and/or forward operator; K represents
the Kalman gain matrix; and B and O are the covariance of
modeled and observed fields, respectively. B and O can be
defined with several free parameters.

B(dx,dz)=
[
(fmτm)

2
+ (εm)

2
]

exp
[
−
d2
x

2l2mx

]
exp

[
−
d2
z

2l2mz

]
, (6)

O=
[
(foτo)

2
+ (εo)

2
]

I, (7)

where fm, εm, dx , dz, lmx , and lmz represent the fractional
error coefficient, minimum error coefficient, horizontal res-
olution, vertical resolution, horizontal correlation length for
errors in modeled values, and vertical correlation length for
errors in modeled values, respectively, and fo, εo, and I de-
note the fractional error coefficient, minimum error coeffi-
cient in the observed values, and unit matrix, respectively.
The six parameters in Eq. (6) are called the free parameters,
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Figure 6. Comparisons between the CMAQ-calculated, LSTM-predicted, and the observed PM10. Black open circles show observed PM10
at seven sites. Dashed green and dashed red lines represent CMAQ-predicted PM10 with and without data assimilation, respectively. Dashed
blue lines represent LSTM-predicted PM10. From 26 May to 7 June, the LSTM-based PM10 predictions at the Daejeon site were not
performed due to the continuous missing observations.

which we used to calculate the observation and model error
covariance matrix. In this study, we determined these param-
eters by finding the minimum of χ2:

χ2
=

∑ (xobs− xassim)
2

xassim
. (8)

Here xobs and xassim represent the observed and data-
assimilated values, respectively. More detailed explanations
regarding the data assimilation can be found elsewhere
(Collins et al., 2001; Yu et al., 2003; Park et al., 2011).

For the DA runs, we integrated the CMAQ model sim-
ulations with three observation data sets: (i) the Com-

munication, Ocean and Meteorological Satellite (COMS)
Geostationary Ocean Color Imager (GOCI) aerosol optical
depth (AOD); (ii) ground-based observations in China; and
(iii) AIR KOREA observations in South Korea. The loca-
tions of the observation stations are presented in Fig. 5. Be-
cause the GOCI sensor is geostationary, it can provide hourly
spectral images with spatial resolution of 500m×500 m from
00:00 to 07:00 UTC. Detailed procedures can also be found
in previous publications (Park et al., 2014a, b).
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Figure 7. Same as Fig. 6 but for PM2.5.

3 Results and discussion

PM10 and PM2.5 were predicted for the period of the
KORUS-AQ campaign. To evaluate the performance of the
LSTM system, we compared the LSTM-based predictions
with the observations and two CMAQ-based predictions.

3.1 System evaluation

We evaluated the accuracy of the LSTM-based PM pre-
dictions by comparing them with the observed PM10 and
PM2.5. We also compared PM10 and PM2.5 predicted from
two sets of CMAQ model simulations with the PM10 and
PM2.5 predicted from the deep LSTM; these results are pre-
sented in Figs. 6 and 7. In Figs. 6 and 7, the black circles

and dashed blue lines represent the observed and LSTM-
predicted PM10 and PM2.5, respectively. The dashed green
and dashed red lines denote CMAQ-predicted PM10 and
PM2.5 with and without DA, respectively. The CMAQ model
simulations with DA showed better agreement with the ob-
servations than did those without DA (see Figs. 6 and 7). The
LSTM-predicted PM10 also showed good agreement with the
observed PM10.

However, the results from the CMAQ model simulations
were not intended to be directly compared with those from
the LSTM predictions. In general, Eulerian CTMs calculate
average concentrations of air pollutants in a grid box, but in
the real world the concentrations of air pollutants inside a
gird box can be (highly) variable with proximity to the local
sources (in other words, the air pollutant concentrations in

Atmos. Chem. Phys., 19, 12935–12951, 2019 www.atmos-chem-phys.net/19/12935/2019/



H. S. Kim et al.: Deep LSTM model for daily PM10 and PM2.5 predictions 12945

Table 2. Statistical analysis with modeled and observed PM10 and PM2.5.

Station Species Model Statistical parameter

IOA RMSE MB MNGE MNB

Seoul-1 PM10 CMAQ without DA 0.50 48.37 −40.35 65.89 −65.17
CMAQ with DA 0.61 37.85 −26.96 50.53 −43.54
LSTM 0.62 24.22 −3.20 49.72 −5.27

PM2.5 CMAQ without DA 0.72 17.27 −9.34 54.01 −33.06
CMAQ with DA 0.78 15.24 −0.86 51.44 −3.21
LSTM 0.71 12.51 −1.33 56.03 −4.58

Seoul-2 PM10 CMAQ without DA 0.51 45.87 −34.78 63.07 −62.20
CMAQ with DA 0.61 37.12 −20.99 49.62 −37.53
LSTM 0.76 21.19 −1.29 46.72 −2.40

PM2.5 CMAQ without DA 0.72 19.99 −11.95 53.04 −39.11
CMAQ with DA 0.78 17.21 −3.62 52.26 −11.84
LSTM 0.77 15.14 −1.09 57.60 −3.48

Daejeon PM10 CMAQ without DA 0.46 36.52 −24.68 61.06 −59.08
CMAQ with DA 0.78 26.97 −9.43 51.58 −22.57
LSTM 0.67 19.17 6.28 72.01 15.51

PM2.5 CMAQ without DA 0.45 22.04 −11.94 55.74 −45.00
CMAQ with DA 0.62 18.34 −3.29 53.03 −12.40
LSTM 0.67 12.17 3.99 72.01 16.49

Gwangju PM10 CMAQ without DA 0.36 51.40 −29.27 70.36 −63.56
CMAQ with DA 0.43 46.05 −15.80 57.19 −34.19
LSTM 0.67 18.92 1.69 74.68 3.96

PM2.5 CMAQ without DA 0.62 16.55 −8.47 74.54 −37.62
CMAQ with DA 0.74 14.69 −0.40 74.58 −1.79
LSTM 0.63 11.53 −0.23 82.74 −0.98

Daegu PM10 CMAQ without DA 0.48 35.73 −28.84 66.86 −65.17
CMAQ with DA 0.65 26.23 −16.29 46.69 −36.78
LSTM 0.71 16.46 6.02 44.12 15.26

PM2.5 CMAQ without DA 0.62 17.49 −11.85 59.82 −46.06
CMAQ with DA 0.74 13.89 −4.78 43.85 −18.56
LSTM 0.78 9.91 0.00 39.07 0.01

Ulsan PM10 CMAQ without DA 0.46 55.09 −37.69 67.31 −70.50
CMAQ with DA 0.57 44.44 −26.05 52.46 −48.38
LSTM 0.79 18.57 −1.00 37.33 −2.21

PM2.5 CMAQ without DA 0.59 23.17 −18.21 68.97 −64.28
CMAQ with DA 0.75 16.95 −11.33 52.08 −40.02
LSTM 0.79 12.75 2.52 64.04 9.39

Busan PM10 CMAQ without DA 0.45 41.79 −27.16 59.77 −60.13
CMAQ with DA 0.61 33.11 −15.95 46.28 −35.31
LSTM 0.74 16.58 0.41 44.37 1.03

PM2.5 CMAQ without DA 0.62 19.31 −14.97 64.64 −55.68
CMAQ with DA 0.73 15.78 −8.11 49.01 −30.15
LSTM 0.79 11.13 0.82 38.63 3.05

Note: the units for RMSE and MB are micrograms per cubic meter (µg m−3) and those for MNGE and MNB are in percent
(%).
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Figure 8. Percentage (%) of high-particulate-matter episodes in the
training data set.

a gird box cannot be uniform). This is well-known problem
called “sub-grid variability”. In this sense, both the CMAQ-
model results and LSTM predictions were not directly com-
pared. Instead, in this comparison the CMAQ model simula-
tions provide reference values to give a sense of the accuracy
of LSTM predictions. One intension to develop the LSTM
prediction system is to establish a prediction system at the
observation sites (i.e., point site), and we eventually plan to
integrate the CTM-LSTM prediction (gird-based prediction
and point-based prediction) system for more comprehensive
PM forecasting in South Korea. This will be discussed fur-
ther in Sect. 4.

For further statistical evaluations, we introduced the fol-
lowing five statistical parameters: (i) IOA (index of agree-
ment); (ii) RMSE; (iii) MB (mean bias); (iv) MNGE (mean
normalized gross error); and (v) MNB (mean normalized
bias).

IOA= 1−

N∑
1

(
Ci,Model−Ci,Obs

)2
N∑
1

(∣∣Ci,Model−Ci,Obs
∣∣+ ∣∣Ci,Obs−Ci,Obs

∣∣)2 , (9)

RMSE=

√√√√ 1
N

N∑
1

(
Ci,Model−Ci,Obs

)2
, (10)

MB=
1
N

N∑
1

(
Ci,Model−Ci,Obs

)
, (11)

MNGE=
1
N

N∑
1

(∣∣Ci,Model−Ci,Obs
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Ci,Obs

)
× 100, (12)

MNB=
1
N

N∑
1

(
Ci,Model−Ci,Obs

Ci,Obs

)
× 100. (13)

Here, Ci,Model and Ci,Obs represent the modeled and ob-
served concentrations of species i; Ci,Obs is the averaged
Ci,Obs. The results from the statistical analysis are summa-
rized in Table 2 and are also shown in Figs. 6 and 7.

For the daily PM10 predictions, the LSTM-based predic-
tions (0.62≤ IOA ≤ 0.79) were always more accurate than
two CMAQ-based PM10 predictions (0.36≤ IOA ≤ 0.78).
RMSE and MB between the CMAQ-based and observed
PM10 ranged between 33.11 and 51.40 µg m−3 and between
−40.35 and −15.95 µg m−3, respectively. These negative
MBs indicate that the CMAQ model simulations underesti-
mated PM10. RMSE and MB between the LSTM-based pre-
dictions and observations ranged from 18.57 to 24.23 µg m−3

and from −3.20 to 6.28 µg m−3, respectively. The RMSEs
for the LSTM-based predictions are 1.90 times smaller than
those for the CMAQ-based predictions. Among the seven
sites chosen, the PM10 predictions at the Daegu, Ulsan, and
Busan sites showed the best agreement (0.71≤ IOA ≤ 0.79)
and the lowest errors and biases (16.46≤ RMSE ≤ 18.57;
−1.00≤ MB ≤ 6.02) compared with the two CMAQ-based
PM10 predictions (0.45≤ IOA ≤ 0.65; 26.23≤ RMSE ≤
55.09; −37.69≤MB ≤−15.92).

Figure 7 presents the comparisons for PM2.5. During the
KORUS-AQ campaign, there were no ground PM2.5 obser-
vations at the Daejeon site between 1 May and 11 June
because of instrument malfunction. The LSTM-predicted
PM2.5 again showed good agreement with the observations
(0.63≤ IOA ≤ 0.79); however, the deep LSTM system was
not always able to more accurately predict PM2.5. As with
PM10, the LSTM PM2.5 predictions at the Daegu, Ulsan, and
Busan sites showed better performance (0.78≤ IOA ≤ 0.79)
than the CMAQ-based predictions (0.59≤ IOA ≤ 0.75), but
at the two Seoul sites (Seoul-1 and Seoul-2) the LSTM PM2.5
predictions were inferior to those from the CMAQ model
simulations with DA (dashed green lines in Fig. 7). This
could have been because the AIR KOREA observation sites
are densely located in and around Seoul Metropolitan Area
(refer to Fig. 2). Therefore, data assimilation appears to more
strongly influence the accuracy of the CMAQ predictions.

As shown in Figs. 6 and 7, there were nationwide high-
PM episodes from 25 to 28 May 2016; these high-PM events
were caused by the long-distance transport of atmospheric
pollutants from China due to westerlies, and the relatively
high errors and biases in the LSTM-based predictions oc-
curred during these high-PM events. Because the model’s
weights and biases were optimized based on previous mem-
ories, frequent high-PM episodes can affect the accuracy
of the predictions. The frequencies of the high-PM10 (daily
average of PM10≥ 70 µg m−3) and high-PM2.5 (daily aver-
age of PM2.5≥ 40 µg m−3) episodes in the training data set
are summarized in Fig. 8. The fractions of the high-PM2.5
episodes at the Seoul and Gwangju sites were between 0.04

Atmos. Chem. Phys., 19, 12935–12951, 2019 www.atmos-chem-phys.net/19/12935/2019/



H. S. Kim et al.: Deep LSTM model for daily PM10 and PM2.5 predictions 12947

Figure 9. Dependencies of input variables on the daily PM10 predictions. TA, WD, WS, RN, RNH, and RH represent temperature, wind
direction, wind speed, daily cumulative precipitation, hourly precipitation, and relative humidity, respectively. SO2, O3, NO2, CO, and PM10
refer to the levels of the previous day for these atmospheric pollutants.

and 0.09, clearly smaller than those at Daegu, Ulsan, and Bu-
san (0.12≤ high-PM2.5 episode≤ 0.18). At Gwangju, the ef-
fectiveness of DA and frequency of high-PM episodes were
the lowest. As mentioned previously, the LSTM-based PM10
and PM2.5 prediction system was trained using the observa-
tion data for only 2.3 years because these were the only avail-
able data. The optimized weights and biases are governed by
the variety of input features in the training. If more PM2.5
data are available in the future, the prediction accuracy of
deep LSTM systems will improve; and in fact, continuous
data accumulation with more recent PM data is now under-
way.

Imbalance of the training data set has deteriorated the per-
formances of the deep neural network model. As shown in
Fig. 8, the frequency of high-PM10 and high-PM2.5 events is
very low. There are a number of ways to balance the data,
such as minority oversampling and majority subsampling.
The prerequisite for the data balancing is that the amounts
of available data should be very large. As mentioned pre-
viously, the AIR KOREA network has monitored ground

PM2.5 only since 2015. Therefore, the amount of available
data is relatively small, and compulsory data balancing is
highly likely to hinder the generalization of the PM predic-
tion model. Therefore, we did not perform the data balancing
in this study.

To test the effectiveness of the data balancing, we did bal-
ance the data for the observations of the Seoul-1 site; at this
site, the CMAQ-based PM2.5 predictions were better than the
LSTM-based PM2.5 predictions. Because of the data avail-
ability, it was impossible to balance the training data set
with the subsampling method, and thus we oversampled at-
mospheric conditions during the high-PM2.5 events. To bal-
ance the numbers of high-PM and non-high-PM events, we
replicated the ground observations during the high PM2.5
events; then we generated ±5 % Gaussian random noise on
these oversampled data to reflect the observational errors.
The PM2.5 predictions with and without the data balancing
are represented in Fig. S4. As shown in Fig. S4, the data
balancing did not improve the prediction performances of
the LSTM model. This is because we could not sample the
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Figure 10. Same as Fig. 9 but for PM2.5.

various types of high-PM2.5 events, and similar patterns of
atmospheric conditions were consistently considered in the
model training. Therefore, to improve the performances of
the LSTM-based PM prediction model, it is necessary to
collect various atmospheric conditions through continuous
ground-based observations.

3.2 Dependence on input parameters

In deep learning, the relationships between input variables
and predictions cannot be identified directly because of the
high nonlinearity in the hidden layers. In the present study,
we indirectly investigated the influences of the input param-
eters on the PM10 and PM2.5 predictions with and without
considering each variable in the model operations. The in-
fluences on the input parameters are summarized in Figs. 9
and 10; in the figures, TA, WD, WS, RN, RNH, and RH rep-
resent temperature, wind direction, wind speed, daily cumu-
lative precipitation, hourly precipitation, and relative humid-
ity on the previous day, respectively. SO2, O3, NO2, CO,
PM10, and PM2.5 are the concentrations of the respective
air pollutants on the previous day. The positive and nega-

tive values in each figure represent the directionality of the
influences on the PM10 and PM2.5 predictions; that is, for
instance, the variables with positive dependence indicate in-
creasing influence on the predicted PM10 and PM2.5. The
figures show that among the meteorological variables, tem-
perature and wind direction generally had great influence on
the PM10 and PM2.5 predictions; among the pollutant vari-
ables, previous day PM10 and PM2.5 mainly affected the pre-
dictions for the next day. In particular, the dependencies of
PM10 and PM2.5 ranged from 38.48 % to 60.12 % and from
28.80 % to 83.38 %, respectively. In most cases, the influence
of the pollutant variables (PM10 and PM2.5) was greater than
that of the meteorological parameters. However, at Daejeon,
the most influential parameter on the PM10 predictions was
wind direction (45.67 %), while the contributions of other pa-
rameters were relatively small. The difference in the contri-
butions is mainly due to the persistence of each variable. In
other words, the variables with low dependence on the PM10
and PM2.5 predictions were those that change rapidly in the
atmosphere, and thus their effects are scarcely incorporated
into the trained model.
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4 Outlook and future works

In this study, we established a deep RNN system for daily
PM10 and PM2.5 predictions and evaluated the newly de-
veloped system’s performance by comparing its PM10 and
PM2.5 predictions with the observed and CMAQ-predicted
levels. In the comparisons, the LSTM-based PM predictions
were, in general, superior to the CMAQ-based PM predic-
tions. In terms of IOA, the accuracies of the LSTM predic-
tions were 1.01–1.72 times higher than those for the CMAQ-
based predictions. Based on this, we concluded that the
LSTM-based system could be applied to daily “operational”
PM10 and PM2.5 forecasts. The LSTM-based predictions at
the observation sites can provide useful and complementary
information for air quality forecasters, synthesizing all the
information available such as CTM air quality predictions,
AI predictions, weather predictions, and satellite-derived in-
formation.

In the future, Korea’s air quality forecasting system will
be improved by continuous development of the CTM-based
prediction system including the use of more advanced DA
techniques, together with continuous sophistication of the
AI-based prediction system. If the AI-based predictions at
the observation sites are consistently better than the CTM-
based predictions, the two elements will be more system-
atically combined within a prognostic mode, which will be
our final research goal. In addition, a similar LSTM-based
prediction system can also be applied to the daily forecasts
of gas-phase air pollutants such as NO2, SO2, CO, and O3.
These works are also now in progress.

Although the current LSTM-based system can accurately
predict PM10 and PM2.5, it also has some limitations. For
better prediction accuracy, we need more air quality data
for model optimization. Because PM2.5 has only been moni-
tored in South Korea since 2015, there are too few observa-
tions to optimize the PM2.5 predictions, which require con-
tinuous accumulation of PM2.5 observations. In addition, the
limited number of input variables is another obstacle to op-
timal model performance. The current LSTM-based PM10
and PM2.5 prediction system contains 10–12 input parame-
ters. If more useful parameters such as mixing layer height
(MLH) and barometric distribution are available, its perfor-
mance would improve further (Hooyberghs et al., 2005; Liu
et al., 2007). Therefore, future efforts should be made with
more PM2.5 data and more input variables such as mixing
layer heights entered into our system.
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