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We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms

with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation

functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

Findings

Artificial neural networks (ANNs) are famous for their applica-
tion in the fields of artificial intelligence and machine learning
[1]. The future of cellular and satellite communications, radar
systems, deep sea and space exploration will likely be closely
related to the capability of ANNs to provide effective solutions
to problems such as classification and recognition of signals or
images [2-6]. The important features of receiving systems
exploited in such areas are high energy efficiency, sensitivity
and variability in signal processing. This makes the utilization

of superconducting electronic constituents a natural choice.

Superconducting digital receiving and computing are emerging
technologies in high-speed/high-frequency electronic applica-
tions markets [7]. The advantages of a superconducting digital
RF receiver [8] are high sampling rate and quantum precision of
quantization, allowing direct digitization of incoming wideband
RF signals without conventional channelization and downcon-
version. The combination of such receivers with highly sensi-
tive, tunable, active, superconducting antennas [8-11] and
ANNSs provides an opportunity for the development of a cogni-

tive radio correlation receiver. Unfortunately, among supercon-
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ducting ANNs [12,13], those for signal classification and recog-

nition are less developed.

A solution for the recognition problem by employing percep-
tron ANNs was sought in earlier works with SQUID-based
neuron switching [14,15] in the resistive state. In subsequent
variations [16,17], this feature was found to drastically reduce
the energy efficiency of the superconducting circuit. In another
recent approach to multilayer perceptron, SQUIDs were utilized
as nonlinear magnetic flux transducers, allowing the ANN to
persist in the superconducting state [18]. The implemented
neuron scheme is quite analogous to the quantum flux para-
metron (QFP) [19,20] — the basic cell of a superconducting
logic circuit, known for their high energy efficiency. It was ex-
perimentally shown that QFP-based circuits operated in the
adiabatic regime can outperform their semiconductor counter-
parts with respect to energy efficiency by seven orders of mag-
nitude (including the power required for superconducting circuit
cooling) [21-24]. While the activation function of the QFP
neuron was not analyzed in [18], our assay shows that it is not
well suited for the chosen type of network.

The activation function commonly has a highly nonlinear form
and is a key characteristic of a neuron. Note that semiconduc-
tor-based neurons contain at least approximately 20 transistors
due to the lack of nonlinearity between the transistor current
and voltage. The typical implementation of an ANN is based on
field-programmable gate arrays (FPGAs), making them rela-
tively slow and hardware/power consumable. The basic ele-
ment of a superconducting circuit is the nonlinear Josephson
junction, which is about three orders faster than a conventional
transistor. In contrast to semiconductor neurons, the supercon-
ducting one typically consists of just a few (two or three)
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Josephson junctions. This presents a distinct opportunity for the
development of energy efficient, high density, fast supercon-

ducting ANNs for cognitive receiving systems.

It was shown that a Josephson structure (e.g., a bi-SQUID or a
SQIF) transfer function can be precisely designed by combin-
ing basic SQUID cells with known characteristics [25-28]. In
this letter we describe designs for superconducting neurons with
sigmoid- and Gaussian-like shapes for the activation functions
inspired by these works. Being based on a simple parametric
quantron cell, our neurons allow an ANN to be operated in an
extremely energy efficient, adiabatic regime. The neurons are
proposed for perceptron and radial basic function (RBF) ANNSs,
which solve the signal recognition and identification problems,
respectively. The complexity of these networks could be in-
creased with further development of nanotechnology [29] with
the implementation of nanoscale Josephson junctions (e.g., on
the basis of variable thickness bridges [30]). Finally, compari-
son of the probability of error curves for RBF ANNs based on
the proposed neuron with those based on an ideal neuron with a

Gaussian activation function is presented.

Sigma-cell: the basic element for a

multilayer perceptron

A multilayer perceptron (MLP) is a feed-forward ANN model
that maps input data onto a set of outputs [1]. An MLP consists
of multiple layers of nodes in a directed graph with each layer
fully connected to the next one. Each node is treated as a neuron

whose activation function usually has a sigmoid-like shape.

We start our pursuit of the MLP artificial neuron with an analy-
sis of a simple quantron (or single-junction superconducting

interferometer, Figure 1a) transfer function. This function links

O'SInput Flux, goX/27t1 0

Figure 1: (a) Principle scheme for a potential quantron. (b) Quantron flux-to-current transfer function for different values of the normalized ring induc-

tance lq; insets show the harmonic amplitudes for selected curves.
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the applied magnetic flux, @y, with current flowing (/) in a
superconducting loop of inductance, Lq. Hereafter, we use the
normalization of inductance, /q = 27l.Ly/®¢ (where @ is the
magnetic flux quantum, /; is the junction’s critical current),

magnetic flux, ¢x = 2ndx/®P, and current, iy, = Loyt /L.

The phase balance for the quantron loop and the relationship be-
tween the current through the Josephson junction and its phase,

¢, are as follows:

¢+l -sing=0x > = fi(ox), 1)
Iout Zw: sin@ = iy (©) = £ (i (9x))- @)
q

One can represent output current as a parametric function [25]
and then plot the nonlinear flux-to-current characteristic, as
shown in Figure 1b. Note that the resulting transfer function is
non-sinusoidal and amplitudes of its higher harmonics increase

with increasing inductance, /.

A sigmoid function is most suitable mathematically for the
solution of the image or pattern recognition problems by means
of MLP. One can provide this form of a flux-to-current transfor-
mation by combining the transfer function of the quantron with
a linear dependence, which is provided by a simple supercon-
ducting ring. The principal scheme of the resulting sigma cell
(or s-cell) as a part of a three-layer perceptron is presented in
Figure 2. The magnetic flux is induced by the excitation current
Ix in the control line, which is magnetically coupled to the
quantron and the linear cell through mutual inductances k| and
ko, respectively. We shall assume for simplicity that the
quantron contains inductances /g and //2, the superconducting
ring — lg, //2, I,. The current it (see Figure 2) allows the oper-
ating point to be set.

For analysis of the proposed cell flux-to-current transformation,
one can write equations similar to Equation 1 and Equation 2.
Here the phase balance and Kirchhoff's rule for the circuit
considered give us the following expressions:

¢+lgsinQ = @xg;
(lg+1/2)(1y+112)+14-1/2

ZS: s
Ly +112+14
. . L, +1/2 3)
= o4y - —a "~ -
Pxs (lT q X 1)la+l/2+lq

Iy (kl +k2)

fylktk) o
X240, ¢ S3(ixsir)
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Figure 2: Principle scheme of a three-layer perceptron conceived as
layers of connected nodes (with different weights in the general case)
in a directed graph, and the suggested sigma cell with sigmoid-like
flux-to-current transformation on the basis of a quantron and supercon-
ducting ring. Intersecting connections can be realized in the "magnetic
domain" via an inductance Iq using a technique described in [18].

lout :l)(ll(—l_(\[’_l/_zsnl(p_)

q q (©)
fout = f2(9)= /4 (f3 (iX;iT))

Note that the expression for the output signal (Equation 4)
contains a term with linear dependence on the input current 7.
The resulting sigma cell flux-to-current transfer function is
presented in Figure 3. An increase in the normalized induc-
tance of the superconducting ring (at fixed quantron parameters)
reduces the slope of the overall characteristic. The same effect
can be obtained by decreasing the coupling of this ring with the
control line. The figure shows that the overall slope practically

disappears at [, = 1, /= 0.6 and k| = k, = 0.1, which therefore is
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a preferred set of parameters for the physical implementation of
the MLP neuron. Consistency of the obtained flux-to-current
transformation with the sigmoid function can be tuned further
by variation of the quantron inductance /g.
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Figure 3: (a), (b) Flux-to-current characteristics of the sigma cell for
different parameters of the superconducting ring /; and a = kq/ky at

/= 0.6. (c) Sigma cell flux-to-current transfer function for a set of values
of the inductance /. The inset shows the amplitude of the transfer
function and its standard deviation from the sigmoid function (x100).

Gauss cell: the basic element for a
probabilistic network

The identification of different sources is a difficult problem in
cognitive signal processing. MLP is the most frequently
used for its solution. However, this type of neural network
does not provide a probabilistic interpretation of the classi-
fication results and requires rather lengthy training [5,6]. An
RBF-based network or a probabilistic network lack these disad-
vantages. Here, a decision requires the estimation of the proba-
bility density function for each class of radio signal sources,
and so the basic cell has to provide a Gaussian-like transfer

function.

Beilstein J. Nanotechnol. 2016, 7, 1397-1403.

The principal scheme of the proposed Gauss cell (or G-cell) is
presented in Figure 4. Its design can be qualitatively under-
stood as the connection of two s-cells in order to obtain a bell-
shaped transfer function from two sigmoid functions. Note that
the resulting scheme is quite analogous to the above mentioned
QFP. The cell is a two-junction interferometer with a total
normalized inductance /, composed of two Josephson junctions
J1 and J; shunted by inductance /5. Once again, the excitation
current /x is applied to a control line, which is magnetically
coupled to the symmetrical arms of the interferometer.

Figure 4: Principle scheme of an RBF neural network (where the
output is a linear combination of radial basis functions of input x and
neuron parameters) and suggested Gauss cell with Gaussian-like flux-
to-current transformation.

One can write the equations for a Gauss cell by analogy with
Equation 1 and Equation 2 in terms of the sum and difference

phases, 0 = (02 + 01)/2; y = (01 — 02)/2:
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Here, the term with a linear dependence on the input current
cancels in the expression for the output signal (Equation 7).
This results in a G-cell flux-to-current transfer function as
presented in Figure 5. It is seen that an increase of the normal-
ized inductances / and /; leads to an increase of the transfer
function amplitude and its standard deviation from a Gaussian

function.

The simulation results for the noise immunity characteristics of
an RBF ANN are shown in Figure 6. Here, the results of the
G-cell implementation (with /=1 and /; = 0.5 taken in order to
get a relatively large output signal) are compared with the ideal
case of a true Gaussian activation function of cells in a hidden
layer of the probabilistic network.

We should note that the obtained sigmoid-like and Gaussian-
like transfer functions are periodic due to the quantization of
magnetic flux in superconducting interferometers. This limits
the ANN dynamic range. We patch this issue by input data
normalization.

In conclusion, we have proposed two superconducting neurons
for energy efficient ANNs capable of operation in the adiabatic
regime. These ANNs are the most frequently used perceptron
and probabilistic RBF network. Consideration of the networks
organization and their interface with well-developed adiabatic
superconductor logic seems straightforward and will be per-

formed in our upcoming papers.

Beilstein J. Nanotechnol. 2016, 7, 1397-1403.
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Figure 5: (a), (b) Gauss cell flux-to-current transfer function for differ-
ent values of the interferometer and shunt inductances / and Iy. Insets
show the function amplitude and its standard deviation from a
Gaussian function.
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