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Abstract: 

Vegetation carbon use efficiency (CUE) is a key measure of carbon (C) transfer from the atmosphere to 

terrestrial biomass, and indirectly reflects how much C is released through autotrophic respiration from 

the vegetation to the atmosphere. Diagnosing the variability of CUE with climate and other 

environmental factors is fundamental to understand its driving factors, and to further fill the current gaps 35 

in knowledge about the environmental controls on CUE. Thus, to study CUE variability and its driving 

factors, this study established a global database of site-year CUE based on observations from 188 field 

measurement sites for five ecosystem types – forest, grass, wetland, crop and tundra. The spatial pattern 

of CUE was predicted from global climate and soil variables using Random Forest, and compared with 

estimates from Dynamic Global Vegetation Models (DGVMs) from the TRENDY model ensemble. 40 

Globally, we found two prominent CUE gradients in ecosystem types and latitude, that is, CUE varied 

with ecosystem types, being the highest in wetlands and lowest in grassland, and CUE decreased with 

latitude with the lowest CUE in tropics, and the highest CUE in higher latitude regions. CUE varied 

greatly between data-derived CUE and TRENDY-CUE, but also among TRENDY models. Both data-

derived and TRENDY-CUE challenged the constant value of 0.5 for CUE, independent of environmental 45 

controls. However, given the role of CUE in controlling the spatial and temporal variability of the 

terrestrial biosphere C cycle, these results emphasize the need to better understand the biotic and abiotic 

controls on CUE to reduce the uncertainties in prognostic land-process model simulations. Finally, this 

study proposed a new estimate of net primary production based on CUE and gross primary production, 

offering another benchmark for net primary production comparison for global carbon modelling.  50 
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1  Introduction 

The increasing levels of atmospheric CO2 concentrations and climate change have highlighted our need 

to a better understanding of terrestrial carbon cycling and its responses to climate change. Gross primary 55 

production (GPP), net primary production (NPP) and autotrophic respiration (Ra) are the most important 

and highly related components to carbon cycling. The carbon fixed by photosynthesis is allocated to a 

variety of usages in plants, including growth respiration, maintenance respiration and biomass 

accumulation. The allocation proportion is highly relevant to understand ecosystem carbon stock and 

carbon cycles, because it strongly affects the residence time and location of carbon in the ecosystems 60 

(Zhang et al., 2014). For example, the carbon residence time for maintenance respiration and structural 

biomass of organs varied dramatically, which could range from a few hours to decades or even centuries 

(Campioli et al., 2011). Although an increasing number of researches have been conducted on carbon 

exchanges in different ecosystems, unanswered questions about the fate of the carbon taken up by the 

ecosystem and its relationships with the environmental variables and ecosystem types are still remained.  65 

Carbon use efficiency (CUE), defined as the ratio of NPP to gross primary production (GPP), is an 

important parameter to describe the carbon transfer from atmosphere to terrestrial biomass (Bradford and 

Crowther, 2013). A CUE value of 0.5 means that 50% of acquired carbon is allocated to biomass. 

Generally, NPP, which is a most direct and robust estimate, is usually calculated from the biomass 

increment of wood, leaves and litter on an annual base. While GPP is very complex as it consists 70 

photosynthetic carbon gain by all leaves, including overstory and understory, but it is typically not 

measured directly (DeLucia et al., 2007). Alternatively, GPP could be calculated as the sum of NPP and 

Ra (DeLucia et al., 2007;Curtis et al., 2005). Therefore, due to the methodological challenging, a constant 

CUE value of 0.5 has been widely used in modelling carbon cycling.  

Theoretically, if Ra is proportional to GPP in terrestrial ecosystems that vary in vegetation type, age, 75 

climate and soil fertility, CUE should be constant. On the other hand, if Ra is proportional to biomass, 

CUE should vary with differences in allocation (DeLucia et al., 2007). However, the assumption of 

constant CUE have been challenged by both field observations and modelling studies (Zhang et al., 

2009;Xiao et al., 2003), and they have found that CUE vary with ecosystem type, climate, soil nutrient 

and geographic allocation (Albrizio and Steduto, 2003;Maseyk et al., 2008;Xiao et al., 2003;Zhang et al., 80 

2009). These variations have significant effects on landscape estimates of carbon cycling. For example, 

an error of 20% of the constant CUE (0.5) used in landscape models (ranging from 0.4 to 0.6) can 

misrepresent a substantial amount of carbon, comparable to the total anthropogenic CO2 emissions when 

scaling it to total terrestrial biosphere (DeLucia et al., 2007).  

Although global distributions of GPP and NPP were established, such as MODIS and Dynamic Global 85 

Vegetation Models (DGVMs) GPP and NPP (DeLucia et al., 2007;Zhang et al., 2009), GPP and NPP did 

not change in the same pattern, leading to different changing patterns in CUE compared to GPP and NPP. 

For example, a photosynthesis rate reaches its maximum at the temperature of 25-30 oC, while the 
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respiration rate increases exponentially with the increase of temperature (Piao et al., 2010;Ryan et al., 

1997), which results in the decrease of NPP and CUE. Using the DGVMs from the TRENDY ensemble 90 

and MODIS-derived GPP and NPP, He et al. (2018), Zhang et al. (2009) and Zhang et al. (2014) have 

estimated the global CUE and plotted it along a geographical and climate gradients. These studies have 

advanced our knowledge on understanding the global distribution of CUE, however, the validity of the 

conclusion might be sensitive to simplified parameters, including varying plant functional types, the 

constant maximum radiation conversion efficiency and respiration rate per unit of leaf and wood biomass 95 

used in different biomes and applied in these NPP and GPP product algorithms (Zhang et al., 2009).  

Previous studies, based on individual observations or process-based model estimates, indicate that site 

fertility and management are important drivers of CUE by increasing resource availability for plants 

(Vicca et al., 2012;Campioli et al., 2015). However, whether these factors are dominant drivers for 

temporal and spatial variability of CUE has not been assessed. Additionally, atmospheric nitrogen 100 

deposition, largely overlooked before, might be another confounding factor affecting GPP (Fleischer et 

al., 2013) and NPP (Stevens et al., 2015;LeBauer and Treseder, 2008), and the further prediction of the 

spatial variability of CUE.  Therefore, diagnosing the co-variation of CUE with climate and other 

environmental factors is fundamental to understand its driving factors, and to further fill the current gaps 

in knowledge about the controls on CUE. 105 

In this study, we compiled a new dataset consisting of 415 site-year CUE observations from 188 sites 

distributed across all the global terrestrial ecosystems and climate regions (Fig. 1), updated from 

databases from Luyssaert et al. (2007) and Campioli et al. (2015), and other peer review publications 

prior to February 2017. For global CUE mapping and imputation, 15 global variables clarified by four 

types were extracted for each set of site coordinates for the measurement year (Table S1). Furthermore, 110 

we compiled additional local attributes, including climate region, site management practice, and 

ecosystem types. The objectives of this study were to: (1) study the ecosystem gradients of CUE; (2) 

explore the spatial variability of CUE and its potential climatic, edaphic, and management factors; (3) 

estimate CUE-derived NPP.  

2  Materials and methods 115 

2.1  Dataset 

This study established a global database of site-year CUE based on observations from 188 sites 

extending Luyssaert et al. (2007) and Campioli et al. (2015) database. Five ecosystem types were clarified 

– cropland, forest, grassland, wetland and tundra. The key rule for inclusion in this database was that 

measurements of NPP and GPP were available for the same year, and each single year measurement was 120 

taken as an independent observation according to our selecting criteria (“Criteria of selecting 

publications” in Supporting information). NPP included both above- and below-ground growth, which 

could be estimated by harvest, biometric models, or increment core (below-ground). According to the 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-37
Manuscript under review for journal Biogeosciences
Discussion started: 14 February 2019
c© Author(s) 2019. CC BY 4.0 License.



5 

 

procedure of Vicca et al. (2012) and Campioli et al. (2015), gap-filling of missing NPP components, such 

as understory and herb NPP, was conducted in forest ecosystems. After the gap-filling, a seven percent 125 

increase of CUE was observed (Fig. S2).  

The integrated and updated database contained 415 observations. The maximum plausible CUE was 

0.84 and 8 observations were excluded after plausibility check (“Plausibility check” in Supporting 

information). Managed forest sites were excluded from modelling the temporal and spatial patterns of 

CUE although there was a statistical difference on the average of CUE between managed and non-130 

managed forests (Fig. S3), but management as a covariate contributed little to the statistical power of the 

RF model. Furthermore, there is scarce information on management practices globally in order to use it 

as an upscaling covariate, and in general the DGVMs lack also the description of the management 

dynamics that lead to these differences. These management sites mainly included fertilized and thinning 

sites. Finally, the dataset included 286 observations for forests, 33 for grassland, 27 for wetland, 56 for 135 

cropland and 5 for tundra, which were used for one-way analysis of variance (ANOVA) to compare the 

significance of CUE among the five ecosystem types. Before and after removing the managed forest sites, 

one-way ANOVA results did not change and further indicated that CUE varied with ecosystem types 

(Fig. 2 and S4).  

 140 

Figure 1.  Site distribution and the number of observations for forest, grass, wetland, crop and tundra 

ecosystems. Geographical distribution of the observational sites in the database is not even. Western 

Europe has excellent coverage, while Eastern part and Russia only feature sparse sites. Asian sites are 

also mostly grouped on the coastal areas, while Africa is for the great part not represented. From a biome 

point of view, forest sites are largely over-represented with respect to others. 145 

2.2  Global variable selection 

We used 15 variables of four types to predict CUE globally (Table S1). Since NPP and GPP 

observations were collected from the publications based on a yearly-scale, monthly climate data were 
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annually averaged (e.g. temperature) or summed (e.g. precipitation). Since GIMMS NDVI ranged from 

July 1981 to December 2015 and LAI and fPAR ranged from July 1981 to December 2011 for GIMMS, 150 

for the observational years that were not in these year ranges, the values of the closest year were extracted. 

Soil fertility level is an important CUE driving factor (Vicca et al., 2012). However, determining the soil 

fertility levels is challenging because it is determined not only by soil nutrient contents, but also by the 

interaction of soil textures, pH, depth and bulk density. Therefore, in this study, soil organic matter is 

used as an integrated indicator of soil fertility because  it  is  a  nutrient  sink  and source,  enhances  soil  155 

physical  and  chemical  properties, and   promotes  biological  activity (de la Paz Jimenez et al., 2002). 

Global land cover was taken from MOD12Q1 product (https://lpdaac.usgs.gov/data_access/data_pool). 

Primarily, there were 17 land cover types. Because there were not enough observations for the each land 

cover in our dataset, we aggregated the land cover into four land cover types - cropland, forest, grassland 

and wetland, with a spatial resolution of 0.5o × 0.5o.   160 

2.3  TRENDY Models 

Since the reported of NPP and GPP in TRENDY models allowed us to test their capability of predicting 

CUE, in this study, a set of 13 TRENDY models were used. These models included: CLM4.5 (Lawrence 

et al., 2011), HyLand (Levy et al., 2004), ISAM (Cao, 2005), JSBACH (Kaminski et al., 2013), JULES 

(Clark et al., 2011), LPJ (Sitch et al., 2003), LPJ-GUESS (Smith et al., 2001), LPX-Bern (Stocker et al., 165 

2013), OCN (Zaehle and Friend, 2010), ORCHIDEE (Krinner et al., 2005), TRIFFID (Cox, 2001), 

VEGAS (Zeng et al., 2005) and VISIT (Kato et al., 2013).  

Since most of the process models reported a monthly dynamic of NPP and GPP, to calculate CUE, the 

monthly NPP and GPP were first summed to an annual scale. When comparing TRENDY-CUE of 

different ecosystem types, TRENDY-CUE was aggregated to 0.5o × 0.5o for TRENDY models with 170 

different spatial resolutions.  

2.4  Data analysis 

ANOVA analysis with a post hoc Tukey’s HSD test was conducted to test whether CUE varied with 

ecosystem type and management.  

Random Forest (RF) is a machine learning approach that uses a large number of ensemble regression 175 

trees but a random selection of predictive variables (Breiman, 2001). RF does not only consider non-

linear relationships and the interactions of the variables, but also assesses the importance value of the 

variables. The importance value of a given variable is expressed by the mean decrease in accuracy (or 

increase in mean square error, %IncMSE, Breiman, 2001). The higher the importance value is, the more 

importance of the given variable is.  180 

To reduce the number of the variables and improve the model efficiency, “rfcv” function within 

“RandomForest” package was used in R language (Kabacoff, 2015). This function showed the cross-
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validated prediction of models with sequentially reduced number of predictors (ranked by variable 

importance) and a 10-fold cross-validation was applied in this study. At last, six variables (ecosystem 

type, annual mean precipitation, annual mean temperature, nitrogen deposition, latent heat flux and 185 

diurnal temperature range, Fig. S5) were selected to predict temporal and spatial patterns of CUE using 

Random forest (RF). The six variables explained 49% variance in CUE. 

Six types of cross-validations were conducted (Figs. S6-8): leave-one-site-out cross-validation 

(LOSOCV, leave all year observations within one site out and predicted by the rest site-years 

observations for each site), mean-site cross-validation (MSCV, building a RF model using all 190 

observations and validating mean-site CUE as a new dataset), leave-one-latitude-out (LOLOCV, leave 

all year observations of the same latitude out and predicted by the rest site-years observations for each 

latitude) and mean-latitude cross-validation (MLCV, building a RF model using all observations and 

validating mean-latitude CUE as a new dataset), multi-year cross-validation (MCV, validating CUE 

extracted from predicted CUE map only for sites with more than four-year observations with observed 195 

CUE) and “range” cross-validation (RCV, validating predicted CUE and observed CUE within the same 

change range of each predicting variable). These cross-validations contributed to the uncertainty of 

predicting the time series CUE for unknown sites. Finally, Pearson correlation efficiency, model 

efficiency and root mean square error were calculated.  

3  Results and discussions 200 

3.1  Ecosystem gradient of CUE 

CUE varied widely from 0.201 to 0.822 (Fig. 2), while the overall mean CUE across different 

ecosystem types, climate regions and management practices was 0.488 ± 0.136 (mean ± 1 standard 

deviation).  CUE varied significantly by ecosystem types (p < 0.001) with the highest value found in 

wetland (0.607 ± 0.133), followed by tundra (0.573 ± 0.125), cropland (0.566 ± 0.145), forests (0.464 ± 205 

0.127) and grassland (0.457 ± 0.109). Cropland and wetland CUEs were significant higher than forest 

and grassland, while forest CUE did not differ significant from grassland. Tundra CUE was not different 

from that of cropland, forest, grassland and wetland. Lower CUE in forests indicates higher respiration 

requirement to maintain higher forest ecosystem biomass production compared to other ecosystems (Piao 

et al., 2010). In comparison, the lowest CUE value was found in grassland presumably due to the 210 

heightened respiration caused by a limitation of precipitation (Shao et al., 2016). Moreover, the lack of 

oxygen in the saturated soil of wetland may suppress belowground Ra, while fertilization and intensive 

management in cropland help to increase biomass yield and reduce the respiration proportion (Campioli 

et al., 2015;Snyder et al., 2009). Thus, our results imply that CUE among ecosystems was not constant 

and a constant CUE of 0.5 could lead to biased estimates for C cycling modelling across temporal and 215 

spatial scales (see “Practical implication for NPP estimation” section). 
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Figure 2. Carbon use efficiency (CUE) in cropland, forest, grassland, tundra and wetland for both 

observed and TRENDY CUE. The capital letters (A and B) on error bars of observed and model mean 

CUE indicate significant difference among five ecosystem types for observed and model mean CUE, 220 

respectively, using one-way analysis of variance (ANOVA) at p < 0.05; while the different lowercase 

letters (a and b) suggest the significance between observed and modelled CUE for each of the five 

ecosystem types. The red horizontal line indicates constant CUE (0.5).  

However, our conclusion was different from Campioli et al. (2015), who proposed a constant CUE 

across ecosystems. Such different results can be attributed to: 1) different grouping strategies; and 2) a 225 

stricter filtering criteria used in our study. We grouped ecosystems in five classes (see above) due to a 

limited number of observations for some of individual ecosystems. In our database, we only included 

publications simultaneously reporting NPP and GPP in the same given year, while even at the same site, 

NPP and GPP reported in different years were excluded since the climatic variables can lead to significant 

variability in GPP (Anav et al., 2015;Jung et al., 2011) and NPP (Li et al., 2017) (“Criteria of selecting 230 

publications” in Supporting information). Measurements of each single year were taken as an 

independent observation. Additionally, a plausibility check of CUE was conducted in our database for 

each given year and the maximum acceptable CUE was 0.84 (“Plausibility check” in Supporting 

information).  

Management practice increased CUE regardless of the ecosystem types (Fig. S3), which was consistent 235 

with Campioli et al. (2015). This is likely attributed to (1) the increase of carbon allocation to biomass 

production (Campioli et al., 2015); (2) the decrease of belowground C flux (Litton et al., 2007) and (3) 

the decrease of the allocation of GPP to Ra (Vicca et al., 2012). Regarding to the ecosystem types, 

management practice only increased forest CUE, rather than grass ecosystem (Fig. S3). Therefore, when 

modelling temporal and spatial distribution, managed forest sites were excluded (Yang et al., 2014). 240 

However, it should be noted that the one-way ANOVA results did not change when the managed forest 

sites were excluded (Fig. S4). 
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3.2  Spatial variability of CUE 

Random Forest (RF) analysis (Breiman, 2001) indicated that ecosystem type was the most important 

driving factor of CUE (Fig. S5) considering climate, satellite (GIMMS NDVI, LAI and fPAR), soil and 245 

site variables (Table S1). This result corroborated our finding that CUE varied significantly with 

ecosystem types. Across the latitudinal gradient, CUE decreased with latitude, varying from 0.58 at 65oN 

to 0.42 at 10oS (Fig. 3). The latitudinal pattern was consistent with MODIS-based CUE, which can be 

explained by the changes of temperature and CUE sensitivity to temperature (Ryan et al., 1994). 

Normally, the rate of respiration increases exponentially with temperature (Ryan et al., 1994;Ryan et al., 250 

1995), or has a higher sensitivity to temperature compared to GPP (Curtis et al., 2005), or plants have 

higher energy requirements to maintain living tissues (Ryan et al., 1994) or longer growing season with 

the increasing temperature (Piao et al., 2007), while the photosynthesis rate stabilized over a wide range 

of temperatures, i.e. 20–35°C (Teskey et al., 1995). Thus, plants allocate relatively more C to respiration 

cost in higher temperature areas. However, the highest CUE was observed in the intensively cropped 255 

region, such as the central North America, central Europe and North China. Nonetheless, there was no 

significant latitudinal pattern of CUE for cropland ecosystem (Figs. S9), except for a few grid cells above 

60oN. This result indicated that the variations of CUE are more intensively controlled by management 

practices to maximize production, hence increase CUE, while the role of climate variability was lower 

in CUE variability for crops. Besides, nutrient availability was another important controlling factor of 260 

CUE (Vicca et al., 2012). For example, tropical areas are generally constrained by soil nutrient 

availability, particularly by low phosphorus concentration (Reich et al., 2009). These results further 

challenged the conventional assumption that the CUE should be consistent independent of environmental 

conditions (Campioli et al., 2015;Waring et al., 1998;Maier et al., 2004). However, CUE had no 

significantly temporal trend during 1982-2011 (data was not shown). 265 

 

Figure 3. (a) Spatial distribution and (b) zonal mean carbon use efficiency (CUE) during 1982-2011 

predicted by Random forest. The grey range means 2.5 to 97.5 percentile ranges of the predicted CUE. 

3.3  Comparing with the TRENDY models 
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TRENDY models have been widely used to estimate the temporal and spatial variability of NPP (Shao 270 

et al., 2016) and GPP (Jung et al., 2017), providing a valuable tool to analyse temporal and spatial 

variability of CUE. However, due to the definition of different plant functional types among TRENDY 

models, different parameters of the same plant functional type across space were applied in different 

TRENDY models. This leads to a different magnitude and spatial patterns of GPP (Anav et al., 2015) 

and NPP (Shao et al., 2016), and further affecting temporal and spatial patterns of CUE.  275 

 

Figure 4. Latitudinal analysis of TRENDY carbon use efficiency (CUE). The bold purple curve 

represents predicted CUE using Random forest.  

We compared CUEs derived from the 13 TRENDY model simulations for (1) the same number of 

observations at the same locations sites for per ecosystem type and (2) the spatial patterns. TRENDY 280 

model mean CUEs varied from 0.460 for wetland to 0.527 for tundra, which had a lower change range 

compared to observations (Fig. 2). On the other hand, there was no significant difference between 

observed and TRENDY CUEs (p = 0.0715 – 0.539), except for forest (p = 0.018). However, latitudinally, 

we found a large spread among models (Fig. 4 and S10). Larger variabilities of TRENDY-CUE were 

observed compared to predicted CUE and these variabilities were particularly large at high latitude 285 

(>60oN), suggesting that TRENDY models overestimated or underestimated CUE at high latitudinal 

areas. This result was consistent with Xia et al. (2017), which reported overestimated CUE from 

TRENDY model in permafrost areas. Eight of 13 TRENDY-CUE decreased with latitude, and OCN-and 

LPX_Bern-CUE was lowest in high latitude, while JSBACH_v2.5-, LPJ- and LPJ-GUESS-CUE showed 

an increasing pattern in the topical areas. HYL-CUE was constant across all latitudes due to a fixed ratio 290 

(0.5) of plant respiration to total photosynthesis (Levy et al., 2004). Similar patterns were found for 

TRENDY-CUE of each ecosystem type (Fig. S11). These different CUE patterns may be related to 

several reasons:  
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First, different plant function types were used for different TRENDY models and constant parameter 

was used for each plant function type across time and space (Xia et al., 2017).  295 

Second, different sets of equations and parameters can lead to different estimates of GPP and NPP, 

further contributing to the differences of modelled CUE (He et al., 2018). Except the HYL model, none 

of the TRENDY models uses a fixed CUE, thus TRENDY-CUE was determined by the difference 

between the GPP and Ra, including both maintenance and growth respiration. However, the simulated 

maintenance and growth respiration varied greatly among different TRENDY models (Xia et al., 2017). 300 

Based on a global database and upscaling tree-level Ra estimates to the stand-level, annual Ra is linearly 

related to biomass (Piao et al., 2010), indicating that sites with higher biomass need higher maintenance 

respiration. Although TRENDY models stimulated growth respiration dynamically, fixed growth 

respiration coefficients were used, such as 0.25 for JULES (Clark et al., 2011) and TRIFFID (Cox, 2001), 

0.28 for ORCHIDEE (Krinner et al., 2005) and 0.30 for CLM4.5 (Lawrence et al., 2011). Nonetheless, 305 

using constant growth respiration coefficients in model simulation will ignore the inter-annual variability 

of climatic and soil nutrient controls and generate a simplistic representation of plant respiration, which 

could not describe the mechanisms of plant respiration in relation to climate change temporally and 

spatially, thus causing the major source of uncertainty of CUE. For example, maintenance respiration 

varies with temperature and growth respiration contributes 40-60% of total respiration in the growing 310 

seasons (Stockfors and Linder, 1998). Even if growth or maintenance respiration acted as a constant 

fraction of GPP, the respiration rate will change between years due to the variability of GPP. Therefore, 

further studies are still needed to explore how maintenance and growth respiration respond to climate 

change across time and space.  

Third, most models do not consider nutrient constraint, such as nitrogen, which ignore the GPP or 315 

NPP increment induced by increasing nitrogen deposition (Anav et al., 2015;Shao et al., 2016). Fourth, 

due to the lack of explicit representation of CO2 diffusion within leaves (Sun et al., 2014), TRENDY 

models underestimate the photosynthetic responsiveness to increasing atmospheric CO2 (Anav et al., 

2015). Last but not the least, since TRENDY models without representing agricultural management, crop 

physiology and fertilization treatment, which are important practices to increase production (Guanter et 320 

al., 2014), TRENDY models generally underestimated crop CUE and no model could capture the spatial 

change in CUE in croplands (Fig. S11). Additionally, although the same climate data is used for all 

TRENDY models to remove the uncertainty of the different meteorological forcing, using a particular 

forcing can lead to systematic errors that will be propagated to the output of carbon models (Anav et al., 

2015). Therefore, our observed CUE indicated that the model predictive capability of CUE need to be 325 

improved to better representation of the terrestrial C cycling. On the other hand, both predicted CUE and 

TRENDY-CUE challenged a constant CUE and called for variable CUE for modelling global C cycling 

across space and time for different ecosystem types.  

3.4  Practical implication for NPP estimation 
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Table 1. NPP prediction from observations, MODIS and TRENDY models 330 

Model name NPP (Pg C a-1) 

This study 59.1 ± 0.2 

MODIS 54.4 ± 0.9 

LPJ 64.3 ± 1.6 

LPJ-GUESS 54.7 ± 1.6 

ORCHIDEE 47.2 ± 1.7 

ISAM 52.7 ± 1.5 

VISIT 55.5 ± 2.1 

VEGAS 52.7 ± 1.2 

 

Our results had important practical implications, particularly for estimation of global NPP. First, our 

study paves way to derive NPP directly from established base GPP estimates, such as Jung’s GPP (Jung 

et al., 2017). Using this approach, global NPP estimate of this study was 59.1 ± 0.2 Pg C a-1 (Table 1), 

which is close to the reported value of 60 Pg C a-1 of IPCC (Ciais et al., 2013). Such result highlights the 335 

potential of estimating NPP as a proportion of GPP, particularly in area of non-access and complex site 

structures.  

Second, this study shows that using flexible CUE values improves prediction accuracy of global C 

cycling for different ecosystem types. Our results indicated that CUE varied spatially (Fig. 3), thus using 

a constant CUE derived NPP may lead anthropogenic bias for NPP estimate. Using the modelled 340 

(spatially varied) CUE derived NPP in this study could potentially reduce the bias, therefore, such NPP 

estimate could serve as a 'ground truth' or benchmark. NPP estimates using Jung’s GPP multiplied by 

constant CUE (0.5) was 61.9 ± 0.2 Pg C a-1, which overestimated global NPP by 2.8 Pg C a-1 (Fig. S12). 

This amount equals 30% of anthropogenic CO2 emissions (Janssens-Maenhout et al., 2017).  

Third, our NPP estimate indicates the improvement of MODIS algorithms. MODIS NPP was 54.4 ± 345 

0.9 Pg C a-1, which underestimated NPP by 4.7 Pg C a-1 compared to this study, equalling 50% of 

anthropogenic CO2 emissions (Janssens-Maenhout et al., 2017). This conclusion was also confirmed by 

previous study that MODIS underestimated production due to the light saturation in tropical areas 

(Propastin et al., 2012). Such underestimation can be also observed in Fig. S13.   

Fourth, our NPP estimate highlights a better parameterization to improve the representation of 350 

processes controlling NPP in TRENDY models. We calculated TRENDY NPP as a proportion of 

TRENDY GPP, and NPP of different TRENDY models ranged from 47.2 ± 1.2  to 64.3 ± 1.6 Pg C a-1 

from 1982 to 2011 (Table 1). Such result indicates TRENDY models underestimated or overestimated 

NPP due to the simply representing growth and maintenance respiration as a proportion of GPP and 

lacking of representing site management and CO2 fertilization effects (Anav et al., 2015). Considering 355 

the inter-annual variability of respiration coefficient is an important step to reduce the major source of 

uncertainty of C flux and CUE. Last, our global CUE map facilitated ground-truthing NPP estimation, 
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thus providing a viable alternative of existing MODIS and TRENDY estimates of global biosphere 

carbon fixation rates. Our study shows that previous global MODIS NPP estimates that are based on a 

fixed CUE values can be 4.7 Pg C a-1 lower than the actual value, an underestimation that is four times 360 

greater than the total annual fossil-fuel CO2 emission of the entire European Union (Janssens-Maenhout 

et al., 2017). Therefore, it is of great socioeconomic importance to account for the global variability of 

CUE in terrestrial ecosystems in estimating carbon fixation rate of the biosphere.   

In summary, although data-derived CUE may serve as a benchmark for ecosystem models, directly 

upscaling from observations has not been observed. This study presents an approach to fill this 365 

knowledge gap by compiling a global CUE database and predicting CUE with global environmental 

variables using RF algorithm, providing a global CUE product with a moderate resolution of 0.5o × 0.5o. 

Presently, robust findings include: (1) the pronounced CUE variation between and within different 

ecosystem types, challenging the perspective that CUE is independent of environmental controls; (2) a 

strong spatial variability of CUE with higher CUE at higher latitudes and lower CUE in tropical areas; 370 

(3) the comparison of CUE between observed based estimates and TRENDY models, and among 

TRENDY models varied greatly, particularly in high latitude areas, highlighting the need for a better 

process representation to improve the representation of processes controlling CUE in TRENDY models. 

Our data analysis further indicated that the mismatch between RF-CUE and TRENDY-CUE was caused 

by both (1) differences in ecosystem type (significant difference for forest ecosystem in Fig. 2); (2) 375 

differences in land cover distribution globally [e.g. different plant functional types or land overs used in 

TRENDY models (Xia et al., 2017)]. However, a question still remains whether such mismatch in CUE 

between RF and TREDNY can be also related to the misrepresentation of vegetation C stock or CUE 

sensitivities to environmental controls. Additionally, further improvements in the approach should 

overcome shortcomings from reduced data availability and the mismatch in spatial resolution between 380 

covariates and in situ CUE.  
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