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Abstract. This study investigates whether a water deficit in-
dex (WDI) based on imagery from unmanned aerial vehi-
cles (UAVs) can provide accurate crop water stress maps at
different growth stages of barley and in differing weather sit-
uations. Data from both the early and late growing season are
included to investigate whether the WDI has the unique po-
tential to be applicable both when the land surface is partly
composed of bare soil and when crops on the land surface
are senescing. The WDI differs from the more commonly
applied crop water stress index (CWSI) in that it uses both
a spectral vegetation index (VI), to determine the degree of
surface greenness, and the composite land surface tempera-
ture (LST) (not solely canopy temperature).

Lightweight thermal and RGB (red–green–blue) cameras
were mounted on a UAV on three occasions during the grow-
ing season 2014, and provided composite LST and color im-
ages, respectively. From the LST, maps of surface-air tem-
perature differences were computed. From the color images,
the normalized green–red difference index (NGRDI), con-
stituting the indicator of surface greenness, was computed.
Advantages of the WDI as an irrigation map, as compared
with simpler maps of the surface-air temperature difference,
are discussed, and the suitability of the NGRDI is assessed.
Final WDI maps had a spatial resolution of 0.25 m.

It was found that the UAV-based WDI is in agreement with
measured stress values from an eddy covariance system. Fur-
ther, the WDI is especially valuable in the late growing sea-

son because at this stage the remote sensing data represent
crop water availability to a greater extent than they do in
the early growing season, and because the WDI accounts for
areas of ripe crops that no longer have the same need for
irrigation. WDI maps can potentially serve as water stress
maps, showing the farmer where irrigation is needed to en-
sure healthy growing plants, during entire growing season.

1 Introduction

Recent developments in unmanned aerial vehicles (UAVs)
have extended the practice of remote sensing in precision
agriculture research (Berni et al., 2009b; Gonzalez-Dugo et
al., 2012; Hoffmann et al., 2016; Turner et al., 2011; Vergara-
Díaz et al., 2016; Zarco-Tejada et al., 2009, 2013b). UAV
platforms now enable the collection of remotely sensed tem-
peratures with higher spatial and temporal resolution than
those collected by satellites and manned aircraft. Tempera-
tures from canopies are closely related to air and soil wa-
ter content, actual transpiration and crop water stress (Idso
et al., 1986; Jackson et al., 1987). If a crop has insuffi-
cient water supply, stomata will close in order to limit water
loss through transpiration. This leads to energy being stored
and thus higher canopy temperatures relative to those seen
in crops with ample water supplies (Guilioni et al., 2008).
Canopy temperature is therefore positively correlated with
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crop water stress and negatively correlated with soil mois-
ture and transpiration. Quantifying crop water stress allows
farmers to assess the need for irrigation. Idso et al. (1981)
and Jackson et al. (1981) developed the well-documented and
commonly used crop water stress index (CWSI) (Barbosa da
Silva and Ramana Rao, 2005; Feldhake et al., 1997; Sepa-
skhah and Kashefipour, 1994; Xiang and Tian, 2011). They
related canopy temperatures to evaporation and presented the
stress index as 1− λEact

λEpot
, where E is the evapotranspiration

rate (mm) and λ is the latent heat of vaporization of wa-
ter (MJ m−2). λE is the latent heat flux density (W m−2).
Practical applications of the CWSI have been hampered by
difficulties in measuring canopy temperature alone in fields
with partial vegetation cover. Remotely sensed land surface
temperatures (LSTs) from partially vegetated fields, such
as arable crops in early growth stages, are composites of
soil and canopy temperatures, and separating the two source
temperatures is problematic (Luquet et al., 2004). High-
resolution thermal images from crops with large canopies al-
low pure canopy pixels, and hence canopy temperatures, to
be isolated. Consequently, most recent research in UAV im-
agery and crop water stress have focused on grapevines, olive
trees and other crops with relatively large canopies (Berni et
al., 2009a; Gago et al., 2013, 2015; Gonzalez-Dugo et al.,
2013; Zarco-Tejada et al., 2013a). Crops with open canopies
in early growth stages, such as barley and other cereals, result
in imagery with composite temperatures, even on spatially
high-resolution images. In order to eliminate the process of
separating soil and canopy temperatures, Moran et al. (1994)
developed the water deficit index (WDI). In addition to using
the composite LST (composite soil and canopy temperature),
this also uses a spectral vegetation index (VI) to estimates the
surface greenness, i.e., the fraction of canopy cover.

In this study, a UAV-based WDI was applied to barley
fields three times during the spring and summer of 2014 in
order to assess whether it can detect intra-field variations of
crop water status at different crop growth stages. Both the
early and the late growing seasons were investigated to as-
sess whether the WDI possesses the unique potential to give
accurate results both when the surface is partially composed
of bare soil and when the crops are senescing. The latter re-
quired the WDI to be based on a VI that can determine the
greenness of crops, i.e., whether they are ripe or not ripe.
We classified yellow barley as ripe or prematurely ripe and
green barley as not ripe. Thus, in this study, the VI served two
purposes: detection of the canopy cover in the early grow-
ing season, as originally intended, and detection of the de-
velopmental stage of crops in the late growing season. The
normalized green–red difference index (NGRDI) was used
as the VI, and its suitability to be incorporated in the WDI
will be discussed below. Further, we extended the original
WDI with an extra set of thermal observations in order to ac-
commodate any offset between surface and air temperature
measurements caused by, for example, atmospheric effects

Figure 1. The two barley fields located in western Denmark (or-
ange square: 56.037644◦ N, 9.159383◦ E). Right-hand side shows
an orthophoto of the two barley fields. Blue lines show tramlines in
which irrigation guns were placed.

(Anderson et al., 1997). The composite LST and the VIs (on
which the WDI was based) were collected in both overcast
and moderately sunny weather conditions.

The objective was thus to investigate whether a WDI based
on UAV imagery can provide accurate crop water stress maps
during different growth stages of barley and in different
weather situations.

2 Materials and methods

2.1 Site

This study was carried out in two adjacent spring barley
fields constituting a 400× 800 m area located in western
Denmark (northern Europe) (Fig. 1). The barley fields were
separated by a road and surrounded partly by other bar-
ley fields and partly by conifer forest. The upper 0.25 m of
the soil profile consisted of homogeneous sandy loam, and
coarse sand with a relatively poor capacity to retain water
was found below. A soil moisture content of 26 % was mea-
sured at field capacity, and the soil porosity ranged between
0.35 and 0.40. The site was located in marine-influenced tem-
perate climate with a mean annual temperature of 8.2 ◦C and
mean annual precipitation of 990 mm. Cloudy conditions are
frequent in this area, with 1727 h of detected sunshine in
2014 (Cappelen, 2015).

The fields were routinely irrigated according to normal
practice on sandy soils. In 2014, irrigation was applied ap-
proximately on 23 May, 29 May, 5 June, 15 June and 2 July.
The irrigation of both fields takes approximately 2 days, and
25 mm of water was applied on each occasion using a travel-
ing irrigation gun. Barley was sown on 14 March 2014 and
harvested on 22 August 2014. Data were collected on three
dates (22 April, 18 June and 2 July), and the growth stages of
the barley were, according to Tottman (1987), 13, 61 and 69,
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respectively. On 22 April, the barley had approximately three
unfolded leaves and a height of 0.08 m. On 18 June, the bar-
ley was in the early stages of anthesis and 0.95 m tall, while
on 2 July, the anthesis was complete and the crops were 1.1 m
tall.

2.2 WDI

The WDI is defined in Moran et al. (1994) as

WDI= 1−
λEact

λEpot
=
(TS− TA)min− (TS− TA)mes

(TS− TA)min− (TS− TA)max
, (1)

where λEact is the actual latent heat flux density (W m−2),
λEpot is the potential latent heat flux density (W m−2), TS
is the composite LST (◦C), TA is the air temperature (◦C)
and the subscripts “min”, “max” and “mes” refer to mini-
mum, maximum and measured. Theoretical upper and lower
limits of surface-air temperature differences ((TS− TA)max
and (TS− TA)min) are constrained by the fraction of canopy
cover. Upper and lower TS− TA limits for a given meteoro-
logical forcing can be expressed through the surface energy
balance, and measured values of the surface-air temperature
differences ((TS− TA)mes) can thus be related to the theo-
retical TS− TA span and thereby to the actual to potential
evapotranspiration ratio (Moran et al., 1994). (TS− TA)max
and (TS− TA)min can be determined with the vegetation in-
dex trapezoid (VIT) approach for a specific crop growth stage
(Moran et al., 1994). Instead of depending on a single span of
upper and lower TS− TA values, the VIT approach thus con-
siders upper and lower TS− TA limits for full-cover green
canopy, bare soil and all the stages in between. Four cor-
responding TS− TA and VI values can be computed repre-
senting conditions with (1) well-watered full-cover vegeta-
tion, (2) water-stressed full-cover vegetation, (3) saturated
bare soil and (4) dry bare soil. When the four extreme water-
and canopy-cover conditions are plotted in a 2-D coordinate
system with TS− TA on the x axis and VI on the y axis, a
trapezoid shape appears, similar to the shape shown in Fig. 2
after Moran et al. (1994).

Corresponding TS− TA and VI values calculated for
the four extreme water- and canopy-cover conditions are
highlighted with numbers at the trapezoid corners. “C”
represents a measured value of surface-air temperature
difference ((TS− TA)mes) and its corresponding measured
vegetation cover. “A” represents theoretical (TS− TA)min
and “B” represents theoretical (TS− TA)max for the specific
fraction of canopy cover measured in C. Graphically, the
ratio of CB to AB distances represent the ratio of actual to
potential evapotranspiration. WDI can thus be formulated as
WDI= 1−λEact/λEpot =AC /AB= (TS−TA)min−(TS−TA)mes

(TS−TA)min−(TS−TA)max
;

see Eq. (1). Computations of (TS− TA)min and (TS− TA)max
for the extreme water and canopy conditions are based on
the surface energy balance for a crop canopy:

Rn =G+H + λE, (2)

Figure 2. Illustration of a standard shape of the trapezoid used
for the VIT index calculations formed by four hypothetical ver-
tices representing the extreme water and canopy conditions: (1),
(2), (3) and (4). “C” represents corresponding values of measured
TS− TA and vegetation cover, “A” represents theoretically cal-
culated (TS− TA)min, and “B” represents theoretically calculated
(TS− TA)max for the canopy fraction measured at “C” (after Moran
et al., 1994).

where Rn is the net radiation, G is the soil heat flux, H is
the sensible heat flux and λE is the latent heat flux density
(all in W m−2). H and λE can be expressed according to
Monteith (1973) and Monteith and Szeicz (1962) as

H = Cv

(
TS− TA

ra

)
, (3)

λE = Cv

(
VPD

γ (ra+ rc)

)
, (4)

where Cv is the volumetric heat capacity of air (J ◦C−1),
TS is the LST (◦C), VPD is the vapor pressure deficit of
air (kPa), γ is the psychometric constant (kPa ◦C−1), ra is
the aerodynamic resistance (s m−1) and rc is the canopy
resistance (s m−1) to vapor transport. Defining 1 as the
slope of the saturated vapor pressure–temperature relation,
(eC ∗−eA ∗ /TC−TA) (kPa ◦C−1); Eqs. (2)–(4) can be com-
bined and solved for TS− TA as in Jackson et al. (1981):

(TS− TA)=

[
ra(Rn−G)

Cv

] γ
(

1+ rc
ra

)
{
1+ γ

(
1+ rc

ra

)}


−

 VPD{
1+ γ

(
1+ rc

ra

)}
 . (5)

When TS− TA are expressed for conditions with well-
watered full-cover vegetation (extreme condition 1), the
canopy resistance is set to be valid for crop transpiration at
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the potential rate (rcp):

(TS− TA)1 =

[
ra(Rn−G)

Cv

] γ
(

1+ rcp
ra

)
{
1+ γ

(
1+ rcp

ra

)}


−

 VPD{
1+ γ

(
1+ rcp

ra

)}
 . (6)

For water-stressed full-cover vegetation (extreme condi-
tion 2), rc is replaced with maximum canopy resistance rep-
resenting conditions with almost no transpiration (rex):

(TS− TA)2 =

[
ra(Rn−G)

Cv

] γ
(

1+ rex
ra

)
{
1+ γ

(
1+ rex

ra

)}


−

 VPD{
1+ γ

(
1+ rex

ra

)}
 . (7)

For saturated bare soil (extreme condition 3), canopy resis-
tance is zero (rc = 0), and the resistance to heat transfer in
the boundary layer immediately above the soil surface (rS),
defined by Shuttleworth and Wallace (1985) and Norman et
al. (1995), is added to the aerodynamic resistance:

(TS− TA)3

=

[
(ra+ rS)(Rn−G)

Cv

][
γ

{1+ γ }

]
−

[
VPD
{1+ γ }

]
. (8)

For dry bare soil (extreme condition 4), canopy resistance is
set to infinity (rc =∞) and the soil resistance remains in the
equation:

(TS− TA)4 =

[
(ra+ rS)(Rn−G)

Cv

]
. (9)

The WDI resembles the two-source models (Norman et al.,
1995; Shuttleworth and Wallace, 1985) since it distinguishes
between fluxes from bare soil and vegetation. Hoffmann et
al. (2016) have shown that the two-source energy models
presented in Norman et al. (1995) and Norman et al. (2000)
are applicable in overcast weather, and we therefore hypoth-
esized that the WDI (as opposed to the CWSI) would be
applicable in overcast weather as well. Further, Hoffmann
et al. (2016) showed that subtracting air and LST obtained
1 h after sunrise from air and LST obtained at midday (the
dual-temperature-difference approach; Norman et al., 2000)
improves estimates of surface energy balance components
based on remotely sensed thermal data. Temperatures ob-
tained 1 h after sunrise represent a starting point for the daily
temperature development, and adding these additional ob-
servations accounts for any offset between collected air and
LST caused by, for example, atmospheric effects (Norman
et al., 2000). The same procedure was therefore applied in

this study, so that for conditions with well-watered full-cover
vegetation the computations become

(TS− TA)1 =
(
TS,i − TA,i

)
−
(
TS,0− TA,0

)
=

[
ra,i(Rn−G)i

Cv

] γ
(

1+ rcp,i
ra,i

)
{
1+ γ

(
1+ rcp,i

ra,i

)}


−

 VPDi{
1+ γ

(
1+ rcp,i

ra,i

)}
− [ ra,0(Rn−G)0

Cv

]
 γ

(
1+ rcp,0

ra,0

)
{
1+ γ

(
1+ rcp,0

ra,0

)}
−

 VPD0{
1+ γ

(
1+ rcp,0

ra,0

)}
 . (10)

The same procedure is applied to conditions (TS− TA)2,
(TS− TA)3 and (TS− TA)4.

The upper and lower VI values (y values) are dependent
on maximum and minimum values extracted from the vege-
tation index maps. The y values have to span the values ob-
tained from areas with green full-canopy coverage and from
areas with bare soil and ripe crops. In this study, the NGRDI
is used as VI.

2.3 NGRDI

The NGRDI is computed according to Hunt Jr. et al. (2005)
as

NGRDI
= (GreenDN − RedDN)/ (GreenDN + RedDN), (11)

where “Green DN” and “Red DN” indicate digital numbers
recorded in the green and red bands, respectively. The differ-
ence between the green and the red band (numerator) reveals
the canopy-soil fraction, while the sum of the green and the
red band (denominator) normalizes the index and accounts
for variations of light intensity caused by variations in expo-
sure time. The NGRDI spans from −1 to 1, where positive
numbers tending towards 1 represent more green vegetation
and negative values represent bare soil. Hunt Jr. et al. (2005)
observed a saturation of NGRDI in ripening corn, but be-
cause barley has a lower biomass than corn, saturation of the
NGRDI was not regarded as an issue in this study. Based on
their color, we assumed that ripening barley and bare soil had
a similar green–red DN response and therefore that ripe bar-
ley and bare soil had the same evaporation response. This is
an approximation, however, since ripe crops cease photosyn-
thesis, the evaporation process will resemble the one from
bare soil. Further, even if the physical responses in ripe crops
and bare soil are not the same, the VIT approach requires
comparably higher TS− TA measurements of ripe crops (and
bare soil) than of transpiring crops before its results are trans-
lated into water-stressed regions (see Sect. 2.2 and shape of
trapezoid in Fig. 2). We hypothesized that this mechanism
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Table 1. Data used to compute TA− TS for the four extreme water and canopy conditions. Values before and after slashes (/) are data from
midday and data from 1 h after sunrise, respectively. Parameters are available energy (Rn−G) where Rn is net radiation and G is soil heat
flux, vapor pressure deficit (VPD), aerodynamic resistance (ra), resistance from air layer immediately above soil (rS), canopy resistance
at potential evapotranspiration (rcp) and maximum canopy resistance, associated with nearly complete stomatal closure (rex) and leaf area
index (LAI).

Date Rn−G VPD ra rS rcp rex LAI
(W m−2) (kPa) (s m−1) (s m−1) (s m−1) (s m−1) LAI

22 April 154/−33 8.2/2.9 74/87 110 22 1136 0.88
18 June 579/8 7.0/0.5 34/56 200 6 248 4.03
2 July 206/−3 4.4/1.6 29/87 181 7 292 3.43

would produce the desired response in WDI maps; areas with
ripe or prematurely ripe crops should ideally appear as less
water stressed in irrigation maps, regardless of the soil water
content, as areas with ripe crops (which are in their final de-
velopmental stage) do not need the same volume of irrigation
as green crops.

2.4 Trapezoid computations

Computations of TS− TA in extreme soil water and canopy
conditions on the 3 campaign days are based on the data
shown in Table 1. Vapor pressure deficit (VPD) was cal-
culated with measurements from a Campbell Scientific
HMP45C temperature and relative humidity probe. Soil heat
flux (G) was measured with heat flux plates (Hukseflux
thermal sensor model HFP01), and net radiation (Rn) was
measured with a Hukseflux four-component radiation sen-
sor (model NR01). The aerodynamic resistance (ra) was cal-
culated after Allen et al. (1998) and rS after Norman et
al. (2000). rcp and rex were obtained as in Monteith (1973)
where rcp = rsm/LAI and rex = rsx/LAI. Values for minimum
stomatal resistance (rsm) and maximum stomatal resistance
(rsx) were 25−1 and 1000 s m−1, respectively, as suggested
in the same paper. LAI was collected with a plant canopy
analyzer (LAI2000) and extrapolated to the three UAV data
collection dates, as described in Hoffmann et al. (2016). Vol-
umetric heat capacity (Cv), psychrometric constant (γ ) and
the slope of the saturated vapor pressure–temperature rela-
tion (1) are kept fixed for all three dates with values of
1200 J ◦C−1, 0.066 and 0.1098 kPa ◦C−1.

Maximum NGRDI values of 0.25 were detected on 18
June and minimum values of −0.1 were detected on 2 July.
Upper and lower y values in trapezoids have to cover at least
the maximum and minimum values; the span establishes how
sensitive the WDI is to the measured NGRDI values. Since
the aim is for the TS− TA and NGRDI maps to affect WDI
maps equally, after an empirical evaluation, an upper level of
0.4 and a lower level of −0.3 were chosen for all three trape-
zoids. The same upper and lower NGRDI values were chosen
for all three trapezoids to enable comparison of the resulting
WDI maps. Final trapezoids with computed (TS− TA)max

and (TS− TA)min, along with measured TS− TA and NGRDI,
are shown in Appendix A.

2.5 RGB and thermal UAV data

RGB and thermal data were collected with a fixed-wing UAV
on three occasions during 2014: 22 April, 18 June and 2 July.
The lithium-battery-driven UAV was in the air for approx-
imately 20 min on each occasion. The thermal camera was
an Optris PI 450 camera that detects infrared energy in the
7.5–13 µm electromagnetic spectrum and computes temper-
ature images of 382× 288 pixels based on an emissivity of
unity. Measurements are accurate to within ±2 ◦C or ±2 %
at an ambient temperature of 23 ◦C. The thermal camera is
uncooled and, being 0.32 kg, mountable on a UAV with a
wingspan of 2 m (Fig. 3). UAV flights with the thermal cam-
era were conducted at times when there was consistent cloud
cover to ensure minimal variation in radiance; however, small
changes in cloud cover thickness did occur during the flights.
Differences in detected thermal energy resulting from shaded
and sunlit surfaces might have occurred on June 18, as the
cloud cover that day was very thin. On 22 April and 2 July,
the clouds were sufficiently thick to avoid anomalies of the
kind that may introduce errors in the subsequent data pro-
cessing.

The thermal camera was triggered by its internal auto-
trigger and each image was assigned GPS coordinates, as de-
scribed in Hoffmann et al. (2016), by comparing the times-
tamp on images with the timestamp and GPS position ex-
tracted from the autopilot log file (created by autopilot soft-
ware, SkyCircuit Ltd SC2). Thermal images were converted
into unsigned 16-bit data to enable stitching of images in Ag-
isoft PhotoScan software (professional edition version 1.0.4).

The RGB data were collected with a digital Panasonic
DMC-LX5 Lumix camera in which exposure times are ad-
justed automatically with a built-in light intensity meter. The
RGB camera was triggered using predefined settings in the
SkyCircuit software, and georeferencing was conducted di-
rectly in the autopilot log file, as each triggered image was
marked next to its corresponding GPS position. No conver-
sion of RGB images was needed for the PhotoScan frame-
work. A flying height of 90 m above the ground allowed res-
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Figure 3. (a) The fixed-wing QuestUAV with a wingspan of 2 m
used to collect data. (b) The digital Panasonic DMC-LX5 Lu-
mix camera with installed trigger cable to ensure link between the
autopilot GPS positions and GPS positions of triggered images.
(c) The Optris PI 450 thermal infrared camera.

olutions of 0.1 m pixel−1 for the RGB data and 0.2 m pixel−1

for the thermal data. Both RGB and thermal images were
triggered every 2 s and the final number of approximately 400
images per flight were aligned and stitched together using a
mean value composition. PhotoScan uses the structure-from-
motion bundle adjustment technique (Bolles et al., 1987;
Triggs et al., 1999) in its image processing.

Half-hourly averages of air temperature measurements
(TA) made from a meteorological tower at the site were col-
lected during UAV flights and subtracted from the stitched
thermal images. Maps of the surface-air temperature differ-
ence ((TS− TA)mes) were used in further WDI calculations,
as described in Sect. 2.2. Extraction of green and red bands
from the RGB imagery, along with the NGRDI computa-
tions, were performed with ImageJ software (Schindelin et
al., 2015; Schneider et al., 2012). NGRDI and (TS− TA)mes
maps were stacked to ensure same pixel size and the result-
ing resolution was 0.25 m. WDI calculations were performed
for each set of corresponding NGRDI and (TS− TA)mes pix-
els using MatLab (MATLAB and Statistics Toolbox Release
2012b, The MathWorks, Inc., Natick, MA, USA).

2.6 Validation data

2.6.1 Data for NGRDI validation

NGRDI maps were compared with UAV-RGB orthophotos
created in PhotoScan. The NGRDI map from 18 June was
also validated against measurements of leaf area index (LAI)
and against near-field remote sensing measurements of the
normalized difference vegetation index (NDVI). LAI mea-
surements were obtained on 18 June with a plant canopy an-
alyzer (LAI2000) at six locations selected according to em-
pirically confirmed different crop yields from previous years.
LAI measurements were repeated four times at each location

and a mean represented the final LAI value for each specific
location. NDVI data were collected on 22 June with a Mobil-
Las mounted on a tractor with three sensors: a near-infrared
laser range finder (AccuRange 4000, Acuity Research Inc.,
CA, USA), a two-band radiometer (Crop Circle ACS-210,
Holland Scientific Inc., NE, USA) and a global positioning
system (GPS 16, Garmin International Inc., KS, USA). The
two-band radiometer was an active canopy sensor provid-
ing its own illumination, and measurements were made in-
dependently of solar radiation. NDVI was calculated as in
Carlson and Ripley (1997) with reflectance measurements
made at near-infrared (780 nm) and red (670 nm) frequen-
cies. Measurements were made at a 50◦ off-nadir angle. The
GPS position was received at a rate of 1 Hz and a full mea-
surement was recorded approximately every 1.6 s. A mea-
surement was recorded for approximately every 2 m traveled
along the tramlines. A total of about 1300 measuring points
were collected from both fields.

2.6.2 Data for temperature validation

The surface-air temperature difference maps were compared
with measurements from time domain reflectometry (TDR)
probes providing information on volumetric soil water con-
tent. Six TDR probes were placed at the same locations as
those for the LAI measurements: three in the field north of
the road and three south of the road. Measurements were col-
lected on 9 days during the growing season 2014: 27 March,
24 April, 8 May, 13 May, 27 May, 4 June, 13 June, 26 June
and 17 July. The TDR100 instrument (Campbell Scientific,
Logan, UT, USA) was deployed as a probe system with a
central hub connecting the six individual probes. The central
hub ensures that measurements can be taken without disturb-
ing the vegetation and soil where probes are installed (Thom-
sen, 2006). The probe rods measured soil water content rep-
resenting the first 0.2 and 0.5 m of the soil profile. Three re-
peat measurements were made at each location, and volu-
metric soil water contents were calculated using the apparent
dielectric constant, as in Topp et al. (1980).

2.6.3 Data for WDI validation

Mean values from WDI maps were validated with measured
stress values computed as 1− λEeddy

Rn−G
, where λEeddy is the

latent heat flux measured with an eddy covariance system
consisting of a Gill R3-50 sonic anemometer and a LI-7500
open-path infrared gas analyzer located between the two bar-
ley fields. Eddy covariance data were processed using Ed-
dyPro version 4.1. Rn is the net radiation measured with the
Hukseflux four-component radiator presented in Sect. 3.1,
and G is the soil heat flux measured with Hukseflux heat
flux plates. λEeddy thus represents λEact and Rn−G repre-
sents λEpot in this stress value; see Eq. (1). Further, WDI
maps were compared with the CWSI, which was computed
using two different approaches: the limit approach (derived
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Table 2. Correlation coefficients (r) between LAI and NGRDI, LAI
and NDVI, and NDVI and NGRDI. The correlation between NDVI
and NGRDI was based on 1300 measurements, while the correla-
tions with LAI were based on 6 measurements. NDVI was interpo-
lated using the natural neighbor technique.

r NGRDI – LAI NGRDI – NDVI NDVI – LAI

0.85 0.56 0.85

from Jackson et al. (1981); Eq. 10) and the resistance ap-
proach (derived from Jackson et al. (1981); Eqs. 6 and 7).
In the resistance approach, actual canopy resistance was re-
quired, and in this study it was obtained according to Herbst
et al. (2007).

3 Results and discussion

Maps of NGRDI, TS− TA and WDI, together with orthopho-
tos from the RGB camera, are shown in Figs. 4–6 (a–d) for
22 April, 18 June and 2 July.
3.1 NGRDI maps

Visual comparison of NGRDI maps and corresponding or-
thophotos (Figs. 4–6, panels a and c) confirms that the
NGRDI can be used to quantify greenness from the RGB
data. This is observed relative to soil (Fig. 4) and relative
to yellowing barley (Figs. 5 and 6). The green stripes along
the edges of the fields in the orthophoto and a northeast–
southwest-orientated stripe of green vegetation in the field
north of the gravel road in Fig. 4c are translated into brighter
areas in Fig. 4a (purple lines), indicating more green vegeta-
tion and a higher canopy cover. Comparing Fig. 5a with c
and Fig. 6a with c shows that the NGRDI is also able to
quantify the degree of crop ripeness. Areas with ripe crops
attain lower (darker) NGRDI values (areas highlighted with
blue). The same NGRDI response is observed in areas with
bare soil (Fig. 4a), and therefore the NGRDI responses to
ripe crops and bare soil are indeed similar.

The NGRDI map from 18 June was compared with
approximately 1300 spatially distributed measurements of
NDVI from 22 June, and a correlation coefficient (r) of
0.56 was achieved (p < 0.001) (Table 2); see Appendix B for
NDVI–NGRDI plot. The offset of 4 days between NDVI and
NGRDI measurements was expected to introduce small dif-
ferences in the detected greenness in areas where vegetation
is near senescence. The correlation might have been stronger
had the dates corresponded. However, it suggests a medium–
strong association.

High LAI values were measured in areas with high
NGRDI values and likewise with low LAI and NGRDI val-
ues. A correlation coefficient of 0.85 was achieved between
these two parameters. On 18 June, low LAI measurements
were located in areas with ripe crops (see Appendix C). Yel-

Table 3. Correlation coefficients (r) between measurements of soil
water content at 0.2 and 0.5 m depth, and the surface-air temperature
difference.

r 22 April 18 June 2 July

0.2 m −0.56 −0.83 −0.74
0.5 m −0.77 −0.77 −0.83

low crops on this date were presumably prematurely ripe and
therefore smaller. Correlations between the NGRDI map and
LAI and NDVI measurements bode well for the quality of
collected RGB data and for the NGRDI as a greenness in-
dex. A correlation has further been conducted between LAI
and NDVI to test whether NGRDI or NDVI best represented
the LAI measurements (see Table 2). The correlation co-
efficients are equally high. According to Knipling (1970),
crop reflectivity response in the visible spectrum depends
on leaf chlorophyll content and information from the visi-
ble bands thus enables a distinction between green and yel-
low crops. However, vegetation indices based on spectrally
narrow bands collected with advanced sensors in the visi-
ble and near-infrared spectra are most commonly used when
crop conditions are assessed (Baluja et al., 2012; Garcia-Ruiz
et al., 2013; Lelong et al., 2008; Primicerio et al., 2012; Sug-
iura et al., 2005; Zarco-Tejada et al., 2012). Rasmussen et
al. (2016) concludes that there is no difference in the abil-
ity to detect spectral crop response between consumer-grade
RGB cameras (broad bands) and multispectral sensors pro-
viding narrow-band information in visible and near-infrared
spectra.

3.2 TS − TA maps

TS− TA maps for 22 April, 18 June and 2 July are shown in
Figs. 4b, 5b and 6b. Temperatures vary most in the 18 June
map (see legend in Fig. 5b) which corresponds with the high-
est net radiation measured on this date (Table 1). Differences
in soil water availability become more obvious in days with
high available energy.

There was clear agreement between TS− TA and TDR
measurements (Table 3). The correlation coefficient spanned
from −0.57 to −0.83 and thus indicated a strong negative
correlation between soil water content and the surface-air
temperature difference.

Appendix D shows the location of the six TDR probes on
the TS− TA map from 18 June (Fig. D1), along with a graph
showing the soil water contents measured at the six TDR
probes during the entire growing season (Fig. D2).

The shape of the elongated warmer areas in TS− TA maps
from 18 June and 2 July are unlikely to be due to soil proper-
ties or other naturally occurring phenomena. Comparing the
shape and placement of warmer areas to the placement of ir-
rigation guns (Fig. 1) gives strong incitements to theorize a
correlation between the two. The repeated placement of ir-
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Figure 4. Imagery and indices from 22 April: (a) NGRDI, (b) TS− TA, (c) orthophoto (RGB data) and (d) WDI. Black areas (no data) within
the field on thermal maps (b) and (d) are due to insufficient texture in images collected in these areas, which meant that the images could not
be aligned with the structure-from-motion algorithm. The RGB imagery do not suffer from insufficient texture as these have a higher spatial
resolution compared to the thermal imagery. Purple lines are placed next to green stripes of vegetation.

rigation guns in tramlines has resulted in less water being
applied in areas furthest away from the tramlines. Vegetation
in these areas has less available water and thus sooner be-
comes water stressed and warmer compared to surrounding
vegetation. Further, a darker/colder area can be seen in the
lower right corner of Fig. 6b. This is the location of an irriga-
tion gun, applying water to the crops as the UAV is collecting
data. The fact that irrigated areas appear colder provides con-

fidence in the intra-field spatial variations that the collected
LSTs reveal.

Comparison of Figs. 5b, c and 7c reveals that thermal
UAV data contain more information than it is possible to see
simply by looking at the RGB images, i.e., more than what
can be seen with the naked eye. White areas highlighted by
red circles (Fig. 5b) indicate higher temperatures and higher
soil water deficits that cannot be detected in the orthophoto
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Figure 5. Imagery and indices from 18 June: (a) NGRDI, (b) TS− TA, (c) orthophoto (RGB data) and (d) WDI. Red circles in (b) are
explained in Sect. 4.2. Areas highlighted with blue are examples of locations with ripe crops.

(Fig. 5c). Crops in the areas highlighted with red circles in
the 18 June map become yellow by 2 July (Fig. 6c). The tem-
perature data from 18 June thus predict where crops on 2 July
will become prematurely ripe as a consequence of being wa-
ter stressed and receiving insufficient irrigation.

3.3 WDI maps

Figures 4–6 (panels a, b and d) show that variations in both
TS− TA and NGRDI maps are reflected in the WDI maps.

This can most clearly be seen on 22 April (Fig. 4a, b and d)
where variations in NGRDI and TS− TA maps deviate most
from each other. On 18 June, areas with high TS− TA and
green vegetation (high NGRDI values) are translated into
areas with higher water deficits (Fig. 6d). The same areas
have high TS− TA on 2 July. However, the increasing inci-
dence of ripe/prematurely ripe crops in the same areas now
translates into lower WDI values. When areas are detected
as those with ripe/prematurely ripe crops, the TS− TA has to
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Figure 6. Imagery and indices from 2 July: (a) NGRDI, (b) TS− TA, (c) orthophoto (RGB data) and (g) WDI. Areas highlighted with blue
are examples of locations with ripe crops.

be higher in order to result in a WDI that predicts stress (see
trapezoid explanation in Sect. 2.2). It is more difficult for
WDI to indicate stress in senesced crops with low transpi-
ration. This confirms the assumed added utility of the WDI
when the NGRDI is extended and applied in the late grow-
ing season. In practice, ripe/prematurely ripe crops do not
require any further irrigation as they have reached their final
developmental stage.

Mean values and standard deviations of the WDI maps are
shown in Table 4, along with computed CWSI indices and
measured stress values (1−λEeddy/(Rn−G)). The mean val-
ues of WDI and the measured stress values correspond well
on all 3 days. The added utility and accuracy of the WDI
is supported by comparison with the CWSI values. With
one exception, the CWSI indices overestimate the degree of
stress in the barley fields compared to the measured stress
values. The exception is the CWSIres on 22 April, which
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Table 4. Mean values and standard deviation (in parentheses) of
WDI maps along with the measured stress index (1−λEeddy/(Rn−
G)) and CWSI indices. CWSIres and CWSIlimit are computed ac-
cording to Jackson et al. (1981); Eqs. (10), (6) and (7), respectively.

22 April 18 June 2 July

WDI 0.58 (0.02) 0.40 (0.04) 0.41 (0.03)
CWSIlimit 0.65 (0.03) 0.91 (0.09) 0.85 (0.05)
CWSIres 0.22 0.70 0.71
1− λEeddy/(Rn−G) 0.54 0.44 0.39

is underestimated. This confirms the need for an alternative
stress index to CWSI in situations with partially vegetated
fields and in fields with areas of ripe crops.

The WDI is highest in April and lowest in June and July.
On 22 April, the barley was in an early growth stage, so
the root networks in the fields were not yet large nor deep.
Further, the low LAI values on this date indicated that small
fractions of the field of view were occupied by canopy. The
LST collected on 22 April is thus an expression of soil wa-
ter in the uppermost soil layer, which may dry rapidly. This
led to the high WDI of 0.58 in 22 April. WDI results from
fields with low LAI and shallow root networks are correct
according to measured stress values and thus also accord-
ing to actual evapotranspiration. However, they only repre-
sent soil water availability in the top few centimeters of the
soil and are therefore less representative of the deeper soil
water content. The relatively low stress values of 0.40 and
0.41 obtained in June and July agree well with the repetitive
irrigation of the fields initiated on 23 May. The large varia-
tion in the WDI map from 18 June is due to the large amount
of available energy detected on this day. Crops with insuffi-
cient soil water availability will heat up in accordance with
the large amount of available energy. Variations in soil water
will result in large variations in crop temperature.

The WDI provides very accurate estimates of crop water
status, and therefore the WDI maps provide precise irrigation
maps. WDI maps are most valuable in the late growing sea-
son. At this stage, the remotely sensed data represent plants’
available water more sensitively than they do in the early
growing season, where the majority of the remotely sensed
data represent water availability in the top few centimeters
of the soil profile. The WDI accommodates absolute stress
values. However, there is a degree of empirical assessment
associated with the determination of upper and lower VI val-
ues in constructing the trapezoid. The TS− TA maps and the
WDI maps have largely similar spatial variations; they re-
veal soil water deficits before they can be detected with the
naked eye (Sect. 4.2) and thus predict where crops will be-
come prematurely ripe without sufficient irrigation. Using
the TS− TA maps as irrigation maps would be simpler and
therefore advantageous in practical applications on cultivated
lands. However, TS− TA maps do not account for, and adjust
to, stress values in areas with ripe/prematurely ripe crops.

Further, they only provide relative stress values, and so em-
pirical assessments will also be required (and to a greater ex-
tent) where irrigation decisions are based on TS− TA maps
alone.

The added utility of WDI response in late growing seasons
is dependent on the color change in ripening crops, and crops
with color change that is similar to that in barley (green to
yellow) will probably be suitable for beneficial monitoring
with WDI applications. We therefore expect that the added
utility of the WDI will be valid for many types of cereals.
However, further studies will need to be conducted to gener-
alize WDI advantages.

CWSI thresholds for stressed and not stressed crops are
species dependent (Feldhake et al., 1997), and so the same
will be true for WDI thresholds. WDI thresholds, which
determine the amount of irrigation needed, are beyond the
scope of this paper; they will need to be analyzed in future
studies.

4 Conclusions

In this study, the UAV-based WDI was applied to barley fields
in April, June and July (2014), to investigate whether crop
water deficits at subfield scale could be determined at differ-
ent crop growth stages. Data from both the early and the late
growing season were investigated to assess whether the WDI
has the unique potential to be applicable both when the land
surface is partly composed of bare soil and when crops on
the land surface are senescing.

We found that the WDI maps determined accurate absolute
water stress values and variations within the barley fields,
in agreement with measured stress values from the eddy co-
variance tower, at different growth stages. This implies that
the WDI accounts for areas with ripe and prematurely ripe
crops that no longer need large volumes of irrigation. The
robustness of the WDI during different growth stages em-
phasizes its added utility compared with the more commonly
used CWSI. Further, the WDI has the potential to become
an efficient and powerful irrigation tool in areas where over-
cast weather is common. We also found that the surface-air
temperature difference maps alone can predict where crops
will become prematurely ripe with insufficient irrigation. The
study also demonstrated that a lightweight UAV system, a
consumer-grade camera and an uncalibrated and uncooled
thermal camera can be combined to produce accurate maps
of crop water stress. In this way, reliance on camera calibra-
tion and costly multispectral cameras can be reduced. The
WDI response in the late growing season was crop-color de-
pendent, and studies applying the setup we have presented to
other crop types are needed in order to confirm the general
added utility of the WDI.
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5 Data availability

The data used in this study are available upon request from
the corresponding author (helene.hoffmann@ign.ku.dk).
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Appendix A

Figure A1. Computed trapezoids for the 3 data collection days. Red
line is (TS− TA)max, light blue line is (TS− TA)min and dark blue
dots are (TS− TA)mes.
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Appendix B

Figure B1. NGRDI from 18 June against NDVI from 22 June.
NDVI seems to saturate at high values of NGRDI.
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Appendix C

Figure C1. Location and size of LAI measurements on NGRDI map
from 18 June. Size of green stars indicates the magnitude of LAI,
according to the legend. Darker areas on the background map repre-
sent low NGRDI values and areas with ripe/yellow crops. Brighter
areas represent high NGRDI values with high green canopy cover.
A correlation coefficient of 0.86 is obtained between NGRDI and
LAI.
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Appendix D

Figure D1. The location of the six TDR probes on the TS− TA map
from 18 June.
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Figure D2. The soil water content measured at the six TDR probes during the growing season. Solid lines represent measurements at 0.2 m
depth and semi-dashed lines represent 0.5 m depth. Black dashed lines indicate days of UAV data collection: 22 April, 18 June and 2 July.

TDR probe 1 and 5 (red and orange) are located in ar-
eas with higher LST. Figure D2 shows that probes 1 and 5
measure lower soil water contents than the other four probes,
especially on 18 June (black dashed lines in Fig. D2 show
dates for UAV data collection). Comparison of the seasonal
trend in Fig. D2 with temperature maps from 22 April and
2 July (Figs. 4b and 6b) shows agreement between soil wa-
ter content and temperature maps: the smaller temperature
variance in the map from 22 April corresponds well with the
small variability in soil water content among TDR probes in
the same period. Similarly, the location of warmer areas in
the June and July maps corresponds well with the lower soil
water content seen at probes 1 and 5 during June and July.
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