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Abstract

Deep neural networks have achieved substantial achievements in several computer
vision areas, but have vulnerabilities that are often fooled by adversarial examples that
are not recognized by humans. This is an important issue for security or medical appli-
cations. In this paper, we propose an ensemble model training framework with random
layer sampling to improve the robustness of deep neural networks. In the proposed train-
ing framework, we generate various sampled model through the random layer sampling
and update the weight of the sampled model. After the ensemble models are trained, it
can hide the gradient efficiently and avoid the gradient-based attack by the random layer
sampling method. To evaluate our proposed method, comprehensive and comparative
experiments have been conducted on three datasets. Experimental results show that the
proposed method improves the adversarial robustness.

1 Introduction
Recently, deep learning models have shown exceptionally good performance in various com-
puter vision tasks such as image classification [9, 24], object detection [22, 23], semantic
segmentation [3, 16]. However, several studies have revealed that deep learning methods
are vulnerable in case images are intervened by small perturbations that are not even per-
ceptible for human-beings. These perturbed images are called adversarial examples, and the
procedure to create such adversarial examples is called adversarial attack.

The adversarial attack algorithms could be categorized into two approaches. The one
is white-box attack and the other one is black-box attack. In the white-box attacks, the
attacker could access to the model’s parameters, while in the black-box attacks, the attacker
could not access to the model’s parameters. In this paper, we focus on handling white box
attacks. In the white-box attacks, interruptions of visually imperceptible perturbations to
original images could lead to erroneous results. The perturbations of these approaches are
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generated based on gradients. The gradient-based adversarial attack methods could simply
and effectively cause malfunctions of target networks. Hence, the presence of adversarial
examples has brought up challenges of great importance for security-critical computer vision
applications.

To enhance the deep learning model against adversarial examples, several methods have
been proposed. Previous adversarial defense methods have been proposed: Randomization
[20] to make the attack ineffective, denoising [6], ensemble training [20], and training the
model with adversarial examples [1, 17]. It has been demonstrated that training with adver-
sarial examples is the most effective way to improve the model robustness [1]. However, it
takes large training time and impractical on large-scale datasets [28].

To increase the robustness of the deep network, in recent studies, randomization and
obfuscation are reported as practically effective strategies to improve the adversarial robust-
ness. The example of randomization is noise addition at different levels of the system [29],
randomized lossy compression [6], random projections [27], and random feature sampling
[5]. The key idea of these approaches is to hide the gradient of the network by randomization.
The adversarial attack is blunted in white box situations, where the defender can effectively
perturb the weight through randomness and make a difference when the attacker makes ad-
versarial examples based on a specific weight. In other words, increasing the diversity of the
networks plays an important role in defense.

One of the simple ways to increase the model diversity and improve the robustness is
to generate ensemble models. It has been empirically observed by Smith et al. [13] that
ensemble networks which are trained with different random initialization can be robust to
adversarial examples. Pang et al. [20] proposed an ensemble model training method to pro-
mote the diversity among the predictions. They proposed the adaptive diversity promoting
regularizer to make individual network predict orthogonally. Most of these ensemble-based
approaches showed prominent in terms of adversarial robustness. However, these ensemble
models require a large number of parameters to improve the adversarial robustness.

In this paper, we focus on tackling the problem of network parameter increase in the en-
semble models when improving the adversarial robustness. To this end, we propose a novel
ensemble model training framework with random layer sampling and group optimization
strategy. In the proposed ensemble models training framework, the ensemble model set is
defined with M sub-models. Each sub-model has same structure with L layers and they have
different weights. From the model set, we sample the layers categorically through the pro-
posed random layer sampling method. Then, we generate sampled models which have the
same structure with sub-model. Each sampled model predicts sample outputs. Through the
proposed random layer sampling method, it is possible to increase possible recombination
cases exponentially by simply adding linear parameters. Also we train the ensemble models
with group optimization to promote the ensemble diversity. Through the group optimization,
we could predict diverse sample outputs that are robust to adversarial examples. In summary,
there are two advantages of the proposed method. Firstly, we can generate various ensemble
models combination only with a few number of sub-models. Secondly, since our proposed
layer sampling method generates a sampled model randomly, we can effectively take a gra-
dient ambiguity and avoid reproducible for the adversarial attack. Then, the sample outputs
guarantee the diversity. Therefore, we could predict robust prediction against adversarial
examples. The contributions of our paper can be summarized below:

• We propose a novel ensemble model training framework with random layer sampling.
Through the proposed framework, we can effectively construct ML ensemble models
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with M sub-models which has L layers. Compared to conventional ensemble methods,
our method can generate a large number of predictions with a few number of sub-
models. Then, the diversity of the predictions is increased with the random layer
sampling training framework and group optimization strategy.

• Our method effectively hides the full gradient of network and improves the adversarial
robustness. It is mainly due to the reason that our method predicts various sample out-
puts from different model combinations. Experimental results show that our method
effectively improves the adversarial robustness compared with other ensemble-based
defense methods.

2 Related Work

2.1 Adversarial Attack Method
The deep neural networks have been shown to be highly vulnerable to adversarial examples.
It was first discovered by Szegedy et al. [26]. Then, Goodfellow et al. [8] proposed Fast
Gradient Sign Method (FGSM). It is a fast and single-step adversarial attack version of [26].
It performs a single step update on the original sample x along the direction of the gradient
of a loss function. After that, Moosavi et al. designed the DeepFool attack [18] starting from
the assumption that models are fully linear. Under this assumption, there is a polyhedron
that can separate individual classes. Recently, more powerful and effective attacks including
C&W [2], PGD [17], EAD [4] are proposed to fool the networks. As stronger attack methods
are reported, the need for developing better defense methods is increased.

2.2 Adversarial Defense Method
To improve the model’s robustness against adversarial examples, several methods have been
reported. There are many approaches including distillation-based approaches [21], adver-
sarial training approaches [1, 17], and ensemble training approaches [7, 13, 15, 20]. In this
section, we mainly describe the ensemble training approaches.

Pang et al. [20] improves the adversarial robustness by promoting ensemble diversity
with Adaptive Diversity Promoting (ADP) regularization. They trained ensemble model
through ADP regularization method. Through the ensemble diversity, the non-maximal pre-
dictions of each model are mutually orthogonal, then predicts robust output. Smith et al. [25]
proposed ensemble models training method with predictive uncertainty estimation and de-
tecting adversarial example. By quantifying the predictive uncertainty, they could optimize
the ensemble models that are robust to adversarial examples. It could also detect adversar-
ial examples with predictive uncertainty. Although these ensemble model training methods
could improve the adversarial robustness, to improve the adversarial robustness, a large num-
ber of parameters are required. Another way to construct ensemble models is to add the noise
in the layer or dropout the weight. The noise addition or dropout method can be interpreted
as ensemble model combination [13] where the predictions are averaged over an ensemble
of neurons. Liu et al. [15] reported a random self-ensemble (RSE) training for improving
the robustness of deep neural models. They add a noise layer before each convolution layer
in both training and prediction phases. They showed that the algorithm is equivalent to en-
semble a huge amount of noisy models together, and ensure that the ensemble model can
generalize well. They further prove the fact that the proposed method is equivalent to adding
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Figure 1: Overall procedure of the proposed ensemble model training framework with ran-
dom layer sampling method. The ensemble model set consists of M sub-models. Each
sub-model has L layers with different weights. From the ensemble model set, we sample
each layer and construct sampled model. Then, we construct K different sampled models
and update each sampled model parameter at once.

a Lipchitz regularization and thus can improve the robustness of neural models. Dhillon
et al. [7] proposed stochastic activation pruning for robust adversarial defense. During the
forward pass, they prune a subset of the activations in each layer. Then, they scale up the
remaining activations to normalize the dynamic range of the inputs to the subsequent layer.

3 Proposed Method

In this section, we describe our proposed ensemble model training framework. Figure 1
shows an overview of the proposed ensemble model training framework with random layer
sampling and group optimization. As shown in the figure, we construct ensemble model set
with M duplicate sub-models. The sub-model consists of L layers, and weight of each layer
is differently initialized over sub-models. To train the ensemble model set, we sample the
layer from the ensemble model set by the proposed random layer sampling method. Then,
we construct K sampled models. The sampled model predicts sample output fk(x). From
the sampled models, we optimize the sampled models at once with sample mean prediction
to increase the diversity between sampled models. In the testing phase, we construct N dif-
ferent ensemble models by the proposed random layer sampling and decide a final decision
by averaging predictions of N sampled models. The details of the proposed random layer
sampling method and training framework will be described in the following subsections.

3.1 Random Layer Sampling

In this section, we describe how to sample the layer and generate a sampled model. As shown
in Figure 1, we design an ensemble model set with M duplicate sub-models which consists
of L layers. Each sub-model has the same structure while having different weights. From
the ensemble model set, we sample the layers by our proposed Random Layer Sampling
(RLS) method. In the proposed RLS method, we sample layers with rl(m) where l denotes
the layer index, m denotes the sub-model index, and rl(m) denotes the categorical random
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variable that indicates whether each layer is selected or not. In order to ensure that each layer
is selected from one sub-model, we constrain the rl(m) as follows

M

∑
m=1

rl(m) = 1, (1)

rl ∼ categorical(x1,x2,x3, . . . ,xM; µ1,µ2,µ3, . . . ,µM). (2)

Therefore, the feed-forward operation can be described as

wl = rl⊗Wl , (3)

z(l+1) = wl ∗ y(l), (4)

y(l+1) = σ(z(l+1)), (5)

where µM denotes probability of each category separately specified, Wl denotes a set of
weights in lth convolution layer, wl denotes a sampled weight from categorical random vari-
ables, ⊗ denotes element-wise multiplication, * denotes a convolution operator, yl denotes a
feature vector of lth layer, z(l+1) denotes the output vector of lth layer, and σ is an activation
function. Eq. 3 denotes that we sample only one weight of the layer in the M sub-models.
By stacking these randomly sampled layers, we can construct sampled models which have
the same structure but have different weights. Through the RLS, we can generate various
ensemble models that have different weight effectively. Theoretically, we can generate ML

different ensemble models only with the M sub-models.

3.2 Training for Adversarial Robustness with Ensemble Diversity
It is widely known that ensemble of several individual models could improve the adversarial
robustness [7, 13, 15, 20]. For the adversarial robustness, the diversity among individual
sub-models should be sufficiently guaranteed. To guarantee the diversity, we trained the
ensemble models by group optimization strategy. As shown in Figure 1, let fk(x) = p(y |
x, ŵk) be a prediction of the sampled model where ŵk denotes the sampled weights, and
F(x) = 1

K ∑ fk(x) be a mean prediction of the sampled models. Following the description of
[11, 30], the ensemble model diversity can be defined as

α( fk | x) = ( fk(x)−F(x))2. (6)

Therefore, the diversity of the ensemble model can be defined as the difference between
individual sub-model prediction and mean prediction of sampled model. If we set the differ-
ence between ground-truth and sample output as mean square error, it can be represented as
MSE( fk | x) = (y− fk(x))2. The mean square error can be decomposed into

E[MSE(F | x)] = E[MSE( f | x)]−E[ᾱ( f | x)], (7)

where

MSE( f | x) = 1
K

K

∑
k=1

MSE( fk | x), and ᾱ( f | x) = 1
K

K

∑
k=1

α( fk | x). (8)
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Figure 2: Comparison of defense scenarios between (a) basic ensemble method and (b) our
method.

To minimize sample mean prediction, we group K different sampled models with the pro-
posed random layer sampling method. By minimizing E[MSE(F | x)], the set of individual
sampled model is optimized and the diversity is guaranteed.

3.3 Adversarial Defense Scenario
In this section, we describe the adversarial defense scenario. Figure 2 shows the comparison
of defense scenario between basic ensemble method and our method. As shown in Figure
2 (a), in the basic ensemble model, if the sub-model is attacked, the prediction is corrupted
by the adversarial attack. Note that the prediction score is calculated by averaging M pre-
dictions. To reduce the effect of adversarial attack, it is required to increase the number of
sub-models but it is limited in real-world applications.

Compared to the basic ensemble approach, our method could generate ML different en-
semble models effectively only with M sub-models. As shown in Figure 2 (b), although a
sampled model is attacked, at the test time, our method randomly samples N different mod-
els with the RLS method. It is very low probability to sample exactly same sub-model which
is attacked (1/ML). Since the weight of the attacked model are different from the ones of
the sampled models, the gradients of the attacked model is different from sampled models.
Therefore, the attack algorithm does not work properly in the sampled models. As a result,
the robustness is improved in the proposed method.

4 Experiments

4.1 Datasets and Implementation Details
To verify the effectiveness of the proposed method, we use three widely studied datasets-
MNIST [14], CIFAR10 [10], and SVHN [19] dataset. MNIST dataset is a collection of
handwritten digits in classes 0 to 9. It consists of 60,000 training images and 10,000 test
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MNIST CIFAR-10 SVHN
Attack Method Para. Baseline Ours Para. Baseline Ours Para. Baseline Ours

No Attack - 99.5 99.6 - 95.1 96.7 - 96.2 97.6

FGSM ε=0.1 89.5 98.6 ε=0.01 45.4 65.1 ε=0.05 40.4 56.2
ε=0.2 44.1 70.4 ε=0.02 35.6 48.1 ε=0.1 28.5 41.0

PGD ε=0.05 68.3 86.4 ε=0.01 36.4 70.9 ε=0.01 66.0 88.4
ε=0.1 30.8 62.5 ε=0.02 12.0 39.2 ε=0.02 35.3 68.5

Deepfool - 3.7 91.4 - 0.4 84.9 - 1.1 84.1

C&W c=0.1 43.7 83.9 c=0.01 41.7 91.7 c=0.01 38.8 92.3
c=1 13.8 75.3 c=0.1 16.4 87.9 c=0.1 9.5 75.7

EAD c=0.1 35.9 68.0 c=0.01 26.2 79.0 c=0.01 29.8 80.3
c=1 12.8 48.3 c=0.1 10.8 47.6 c=0.1 5.9 69.2

Table 1: Classification accuracy (%) on adversarial examples. Models consist of Resnet-50.

MNIST CIFAR-10 SVHN
Attack Method Para. Baseline RSL Para. Baseline RSL Para. Baseline RSL

No Attack - 98.2 99.1 - 92.1 93.7 - 96.5 97.0

FGSM ε=0.4 67.3 84.3 ε=0.1 45.4 53.3 ε=0.1 27.8 40.1
ε=0.8 16.7 28.6 ε=0.2 22.0 28.1 ε=0.2 17.4 26.8

PGD ε=0.1 66.55 83.9 ε=0.01 54.7 78.8 ε=0.02 42.5 74.0
ε=0.2 23.57 49.1 ε=0.02 37.4 58.9 ε=0.04 18.4 45.0

Deepfool - 1.7 82.2 - 0.9 67.9 - 1.3 68.4

C&W c=0.1 58.5 89.5 c=0.01 61.0 91.5 c=0.01 47.1 88.6
c=1 15.2 65.8 c=0.1 18.2 74.3 c=0.1 13.9 68.5

EAD c=0.1 48.1 65.7 c=0.01 51.4 84.3 c=0.01 18.0 67.4
c=1 22.2 45.6 c=0.1 28.5 44.9 c=0.1 3.8 61.2

Table 2: Classification accuracy (%) on adversarial examples. Models consist of VGG-16.

images. SVHN dataset is similar to MNIST dataset but colorful street view house numbers.
It has 10 classes and consists of 63,257 training images and 26,032 test images. CIFAR10
dataset consist of 60,000 images with 10 classes. It consists of 50,000 training images and
10,000 test images. Each class has 6,000 images. The pixel value of images is scaled to
be in an interval [-1, 1]. We evaluate our method with two publicly available networks
(ResNet-50 [9] and VGG-16 [24]). To verify that the proposed method is compact while
robust to adversarial attack, we only use two sub-models and 3 sampled models for training
(M=2, K=3). All networks are trained from the scratch by using SGD optimizer. The initial
learning rate is set as 0.01 and divided by 10 every 50 epochs. We use a weight decay of
5×10−4 and a momentum of 0.9. We run the training process for 50 epochs on MNIST, 150
epochs on CIFAR10 and SVHN.

4.2 Performance Comparison under Adversarial Attacks

We evaluate the performance against well-known white-box attacks. We apply five adversar-
ial attack methods (FGSM [8], PGD [17], Deepfool [18], C&W [2], and EAD [4]) on three
datasets. For the adversarial attack setting, the iteration step is set to be 10 for PGD with step
size of ε/10 where ε denotes a magnitude of noise. For the C&W and EAD, we perform
with constant c. With a selected c, we then run 1000 iterations of gradient decent with Adam
optimizer with the learning rate of 0.01.

Table 1 and 2 show the classification accuracy on each adversarial example on ResNet-
50 and VGG-16, respectively. We conduct experiment with various settings. “No Attack”
denotes the normal setting when testing with normal data. In the case of baseline, we train
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CIFAR-10
Defense FGSM PGD Deepfool C&W EAD

No defense 45.4 36.4 0.4 41.7 26.2
ADP [20] 70.2 61.7 20.3 52.0 61.9
RSE [15] 51.8 45.8 82.1 91.2 75.4

Stochastic Dropout [7] 58.5 59.0 56.4 53.4 38.1
Ours 65.1 70.9 84.9 91.7 79.0

Table 3: Classification accuracy comparison with other defense methods on CIFAR-10.

Model
# of Attacked

Sampled Model FGSM PGD C&W

Resnet-50

1 65.1 70.9 91.7
5 60.5 65.3 84.5
10 58.7 60.9 82.3
15 63.1 60.2 81.7

Table 4: Classification accuracy comparison on CIFAR-10 dataset when the attacker attacks
multiple sampled models.

a sub-model and attacking that sub-model. In the case of our method, we sample a model
from model set by proposed random layer sampling and attack the sampled network. Then,
we evaluate accuracy by mean of 10 sample output (M=2, N=10). As shown in the tables,
our method significantly improves adversarial robustness compared to baseline. Especially,
in the case of recently proposed powerful attack methods C&W and EAD, the accuracy of
the baseline is significantly dropped on three datasets. In the case of our method, although
the adversarial attack is powerful, the accuracy does not drop significantly. Although the
attacker knows the full structure and the weight of the sampled model, it attacks different
sampled model. With the proposed random layer selection method, we can effectively defend
adversarial examples with various sampled model.

4.3 Performance Comparison with Other Defense Methods
We compare our method with other defense methods. We use Resnet-50 network as back-
bone and test on CIFAR-10 dataset. Table 3 shows classification accuracy comparison with
other ensemble based defense methods. We set the attack parameters ( ε , c, and number
of iteration) same as section 4.2. As shown in the table, our method outperforms other en-
semble methods. Compared with other defense methods, our proposed method improves
ensemble diversity through group optimization strategy. Also the sampled models can hide
the gradient through random layer sampling. Through the experiment, we prove that the
proposed method effectively improves the robustness against to adversarial attack.

4.4 Multiple Attack and Defense
If the attacker knows that the model consists of more than two models, the attacker could
attack multiple models. In the multiple attacker scenario, our method could still operate
robustly. To verify that our method is also robust to multiple attacks, we conduct multiple
attack and defense scenario. Table 4 shows the results of the proposed method when the
attacker attacks sampled models. As shown in the table, there are only few accuracy drops
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Dataset Stochastic Dropout RSE ADP Ours
MNIST 0.53 ± 0.005 0.55 ± 0.015 0.52 0.43 ± 0.021

CIFAR-10 0.58 ± 0.004 0.60 ± 0.031 0.54 0.51 ± 0.018
SVHN 0.62 ± 0.003 0.66 ± 0.024 0.62 0.58 ± 0.023

Table 5: Interrater Agreement (IA) score comparison with other ensemble methods.

Method # of Samples FGSM PGD C&W

Base ensemble 3 50.2 53.7 46.7
5 51.1 55.2 47.6

Our ensemble
5 64.8 70.3 91.5

10 65.2 70.8 91.7
15 65.1 70.9 91.7

Table 6: Classification accuracy on adversarial examples according to the number of sample.

even the attacker attacks multiple attacks. In the case of FGSM, since it is hard to generate
adversarial example that could attack more than 10 sampled model, the attacks do not work
properly. Also, it is impossible to attack all sampled network. Therefore, it can be interpreted
that our method is also robust to multiple attacks.

4.5 Ensemble Diversity Comparison

One of the main contributions of our method is to guarantee the ensemble model diversity.
To verify this, we measure the diversity of the proposed method by using Interrater Agree-
ment (IA) score [12, 30]. This score explicitly quantifies the diversity of ensemble models.
The lower the IA, the more diverse the predictions of the models. In the case of Stochas-
tic Dropout, RSE, and our method, we use 10 sample and repeat 10 times. Since the ADP
method use fixed model, we implement only one time. Table 5 shows the IA scores compar-
ison with other ensemble methods. As shown in the table, our method shows lower IA score
than other methods. It means that our proposed method guarantees the diversity.

4.6 Effect of Number of Sample for Adversarial Robustness

We analyze the effect of the number of sample for adversarial robustness. Table 6 shows the
classification accuracy according to the number of sample. In the case of Base ensemble,
we construct 3 and 5 ResNet-50 sub-models and train individually. Then, we select one sub-
model and generate adversarial examples. As shown in the table, as the number of samples
increase, the adversarial robustness is also increased. However, to improve the robustness,
a large number of parameter is required. On the contrary, in the proposed method, with
only two sub-models, it is possible to generate various sampled models with random layer
sampling. As a result, our method can hide the weight of attacked sampled-model effectively.
Therefore, our method effectively defense the adversarial examples with small number of
sub-models.
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5 Conclusion
This paper presents an ensemble model training framework with a random layer sampling
method for adversarial robustness. In the proposed method, we design a model set that con-
sists of multiple sub-models and construct sampled models with the random layer sampling
method. The sampled models are trained by a group optimization strategy to guarantee di-
versity. After the training, our method predicts various sample outputs by recombination
of layers. Therefore, our method effectively hides the full gradient of the models and im-
proves the adversarial robustness. Comprehensive and comparative experiments show that
the proposed method could defends adversarial attack effectively.

Acknowledgements
This work was conducted by Center for Applied Research in Artificial Intelligence (CARAI)
grant funded by DAPA and ADD (UD190031RD).

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false

sense of security: Circumventing defenses to adversarial examples. International Con-
ference on Machine Learning (ICML), 2018.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-
works. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2017.

[4] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-
net attacks to deep neural networks via adversarial examples. In Thirty-second AAAI
conference on artificial intelligence, 2018.

[5] Zhipeng Chen, Benedetta Tondi, Xiaolong Li, Rongrong Ni, Yao Zhao, and Mauro
Barni. Secure detection of image manipulation by means of random feature selection.
IEEE Transactions on Information Forensics and Security, 14(9):2454–2469, 2019.

[6] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen,
Michael E Kounavis, and Duen Horng Chau. Shield: Fast, practical defense and vac-
cination for deep learning using jpeg compression. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
196–204, 2018.

[7] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein,
Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning
for robust adversarial defense. International Conference on Learning Representations
(ICLR), 2018.



LEE ET AL.: ROBUST ENSEMBLE MODEL FOR ADVERSARIAL DEFENSE 11

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. International Conference on Learning Representations (ICLR),
2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[10] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical Report, 2009.

[11] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and
active learning. In Advances in neural information processing systems, pages 231–238,
1995.

[12] Ludmila I Kuncheva and Christopher J Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2):
181–207, 2003.

[13] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in neural
information processing systems, pages 6402–6413, 2017.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[15] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural
networks via random self-ensemble. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 369–385, 2018.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015.

[17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In In-
ternational Conference on Learning Representations, 2018.

[18] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[19] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[20] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial
robustness via promoting ensemble diversity. International Conference on Machine
Learning (ICML), 2019.

[21] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Dis-
tillation as a defense to adversarial perturbations against deep neural networks. In 2016
IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.



12 LEE ET AL.: ROBUST ENSEMBLE MODEL FOR ADVERSARIAL DEFENSE

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, Xiangyu Zhang, and Jian Sun. Object de-
tection networks on convolutional feature maps. IEEE transactions on pattern analysis
and machine intelligence, 39(7):1476–1481, 2016.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. International Conference on Learning Representations
(ICLR), 2015.

[25] Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial
example detection. arXiv preprint arXiv:1803.08533, 2018.

[26] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[27] Nguyen Xuan Vinh, Sarah Erfani, Sakrapee Paisitkriangkrai, James Bailey, Christopher
Leckie, and Kotagiri Ramamohanarao. Training robust models using random projec-
tion. In 2016 23rd International Conference on Pattern Recognition (ICPR), pages
531–536. IEEE, 2016.

[28] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu.
Improving adversarial robustness requires revisiting misclassified examples. In Inter-
national Conference on Learning Representations, 2020.

[29] Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, and Ping Wang. Adversarial
noise layer: Regularize neural network by adding noise. In 2019 IEEE International
Conference on Image Processing (ICIP), pages 909–913. IEEE, 2019.

[30] Zhilu Zhang, Adrian V Dalca, and Mert R Sabuncu. Confidence calibration for convo-
lutional neural networks using structured dropout. arXiv preprint arXiv:1906.09551,
2019.


